FUNCTION CLASSES RELATED TO RUSCHEWEYH DERIVATIVES

O. P. AHUJA and H. SILVERMAN

(Received 8 April 1988)

Abstract

We investigate a family consisting of functions whose convolution with $z /(1-z)^{n+1}$ is starlike of order $\alpha, 0 \leq \alpha<1$. We determine extreme points, inclusion relations, and show how this family acts under various linear operators.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 30 C 45; secondary 30 C55.

1. Introduction

Let A denote the class of functions $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ that are analytic in the unit disk $\Delta=\{z:|z|<1\}$. Let $S^{*}(\alpha)$ and $K(\alpha)$ denote the usual classes consisting of functions starlike of order α and convex of order α, respectively. In [4], Ruscheweyh introduced subclasses

$$
K_{n}=\left\{f \in A: \operatorname{Re} \frac{D^{n+1} f(z)}{D^{n} f(z)}>\frac{1}{2}, z \in \Delta\right\}
$$

of $S^{*}(1 / 2)$, where

$$
\begin{equation*}
D^{n} f(z)=\frac{z}{(1-z)^{n+1}} * f(z), \quad n \in N_{0}=\{0,1,2, \ldots\} \tag{1}
\end{equation*}
$$

and the operation $*$ stands for the Hadamard product of power series, that is, if $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ and $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}$ then $(f * g)(z)=$ $z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}$. Here $K_{0}=S^{*}(1 / 2), K_{1}=K(0)$ and $K_{n+1} \subset K_{n}, n \in N_{0}$

[^0](see [4]). Recently, Ahuja [1, 2] has introduced the classes, denoted by $R_{n}(\alpha)$, of functions f in A which satisfy the condition $\operatorname{Re}\left\{z\left(D^{n} f(z)\right)^{\prime} / D^{n} f(z)\right\}>\alpha$ for some $\alpha(0 \leq \alpha<1)$ and for all $z \in \Delta$. In particular,
\[

$$
\begin{equation*}
f \in R_{n}(\alpha) \text { if and only if } D^{n} f \in S^{*}(\alpha) \tag{2}
\end{equation*}
$$

\]

It is observed [1] that for each $n \geq 0, R_{n}(\alpha) \subset R_{n}(0)$, and for each $n \geq 1$, $R_{n}(\alpha) \subset K_{n}$. The class $R_{n} \equiv R_{n}(0)$ was studied by R. Singh and S. Singh [8]. In [2], it was seen that $R_{n+1}(\alpha) \subset R_{n}(\alpha)$ for each $n \in N_{0}$ and for all α. These inclusion relations establish that $R_{n}(\alpha) \subset S^{*}(\alpha)$ for each $n \geq 0$ and $R_{n}(\alpha) \subset K(\alpha)$ for each $n \geq 1$. In fact, for α fixed and $n=n(\alpha)$ sufficiently large, we can show that $R_{n}=R_{n}(0) \subset K(\alpha)$.

Theorem 1. For any $\alpha, 0 \leq \alpha<1, R_{n} \subset K(\alpha)$ for $n \geq n_{0}=[32 /(1-\alpha)]$.

Proof. For $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \in A$, a computation applied to (1) shows that

$$
\begin{equation*}
D^{n} f(z)=z+\sum_{k=2}^{\infty}\binom{k+n-1}{n} a_{k} z^{k} \tag{3}
\end{equation*}
$$

If $f \in R_{n}$, then $D^{n} f \in S^{*}(0)$ and we must have $\binom{k+n-1}{n}\left|a_{k}\right| \leq k$ or, equivalently,

$$
\begin{equation*}
\left|a_{k}\right| \leq k\binom{k+n-1}{n}^{-1} \quad \text { for every } k \geq 2 \tag{4}
\end{equation*}
$$

It is known [6] that $f \in K(\alpha)$ if $\sum_{k=2}^{\infty} k(k-\alpha)\left|a_{k}\right| \leq 1-\alpha$. In view of (4) it thus suffices to show that $\sum_{k=2}^{\infty} k^{2}\left|a_{k}\right| \leq \sum_{k=2}^{\infty} k^{3}\binom{k+n-1}{n}^{-1} \leq 1-\alpha$ for $n \geq n_{0}$. Since $\sum_{k=2}^{\infty}\left(1 / k^{2}\right)<1$, we need only show that $\sum_{k=2}^{\infty} k^{3}\binom{n+k-1}{n}^{-1} \leq$ $(1-\alpha) \sum_{k=2}^{\infty}\left(1 / k^{2}\right), n \geq n_{0}$, which is true if

$$
\begin{equation*}
c_{k}=k^{5}\binom{n+k-1}{n}^{-1} \leq 1-\alpha \quad\left(n \geq n_{0}, k \geq 2\right) \tag{5}
\end{equation*}
$$

Now $\binom{n+k-1}{n}^{-1}$ is a decreasing function of n, so it suffices to prove (5) for $n=n_{0}$. Inequality (5) follows for $k=2$ because $c_{2}=32 /\left(n_{0}+1\right) \leq 1-\alpha$. The proof will be completed by showing that c_{k} is a decreasing function of $k(\geq 2)$ for $n=n_{0}$. We have that $c_{k+1} / c_{k}=(1+1 / k)^{5}\left(k /\left(n_{0}+k\right)\right) \leq 1$ is equivalent to $g(k)=\left(n_{0}-5\right) k^{4}-10 k^{3}-10 k^{2}-5 k-1 \geq 0$. But $g(k) \geq$ $27 k^{4}-10 k^{3}-10 k^{2}-5 k-1 \geq k^{4}>0$ and the proof is complete.

The extreme points of the closed convex hull of $S^{*}(\alpha)$ and $K(\alpha)$ were determined by Brickman, Hallenbeck, MacGregor, and Wilken in [3]. We
denote the closed convex hull of a family F by $\overline{\mathrm{cl}} F$ and make use of some results in [3] to determine the extreme points of $\overline{\mathrm{cl}} R_{n}(\alpha)$.

2. Extreme points

Theorem 2. The extreme points of $\overline{\mathrm{cl}} R_{n}(\alpha), 0 \leq \alpha<1$, are given by the functions

$$
\begin{equation*}
f_{x}(z)=z+\sum_{k=2}^{\infty} \frac{(2-2 \alpha)_{k-1} n!x^{k-1} z^{k}}{(k+n-1)!} \tag{6}
\end{equation*}
$$

$|x|=1, \quad z \in \Delta$, where $(a)_{k}=a(a+1) \cdots(a+k-1)$.

Proof. In [3] it is shown that the extreme point of $S^{*}(\alpha)$ are

$$
\left\{\frac{z}{(1-x z)^{2(1-\alpha)}}=z+\sum_{k=2}^{\infty} \frac{(2-2 \alpha)_{k-1}}{(k-1)!} x^{k-1} z^{k},|x|=1\right\}
$$

Since $D^{n}: f \rightarrow D^{n} f$ is an isomorphism from $R_{n}(\alpha)$ to $S^{*}(\alpha)$, and consequently preserves extreme points, we see from (3) that the extreme points of $\overline{\mathrm{cl}} R_{n}(\alpha)$ are given by

$$
z+\sum_{k=2}^{\infty}\binom{k+n-1}{n}^{-1} \frac{(2-2 \alpha)_{k-1}}{(k-1)!} x^{k-1} z^{k}, \quad|x|=1
$$

which simplifies to $f_{x}(z)$ defined in (6).
Remark. The special cases $n=0$ and $n=1$ in Theorem 2 reduce to the extreme points of $\overline{\mathrm{cl}} S^{*}(\alpha)$ and $\overline{\mathrm{cl}} K(\alpha)$, respectively, found in [3].

Theorem 2 enables us to solve some extremal problems in $R_{n}(\alpha)$; for example, we have

Corollary 1. If $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \in R_{n}(\alpha)$, then

$$
\left|a_{k}\right| \leq \frac{(2-2 \alpha)_{k-1} n!}{(k+n-1)!}, \quad k \geq 2
$$

with equality for

$$
f_{x}(z)=z+\sum_{k=2}^{\infty} \frac{(2-2 \alpha)_{k-1} n!}{(k+n-1)!} x^{k-1} z^{k}, \quad|x|=1
$$

Corollary 2. If $f \in R_{n}(\alpha)$, then

$$
\begin{aligned}
& |f(z)| \leq r+\sum_{k=2}^{\infty} \frac{(2-2 \alpha)_{k-1}}{(k+n-1)!} n!r^{k} \quad(|z|=r), \\
& \left|f^{\prime}(z)\right| \leq 1+\sum_{k=2}^{\infty} \frac{(2-2 \alpha)_{k-1}}{(k+n-1)!} n!k r^{k-1} \quad(|z|=r)
\end{aligned}
$$

with equality for $f_{x}(z)$ at $z=\bar{x} r$.
Remark. It would be of interest to get $f_{x}(z)$ in (6) into closed form to obtain additional information and solutions to extremal problems. For example, we believe that the lower bounds for $|f(z)|$ and $\left|f^{\prime}(z)\right|$ when $f \in R_{n}(\alpha)$ occur for $f_{x}(z)$ at $z=-\bar{x} r$. This is true for $n=0$ and $n=1$ (see [3]).

The determination of the extreme points of $\overline{\mathrm{cl}} K_{n}$ is an immediate consequence of inclusion relations for K_{n}.

Theorem 3. The extreme points of $\overline{\mathrm{cl}} K_{n}$ are $\left\{z /(1-x z) ;|x|=1, n \in N_{0}\right\}$.
Proof. Note first from (1) that $D^{n}(z /(1-x z))=z /(1-x z)^{n+1}$ so the family of functions $\{z /(1-x z)\}$ is contained in K_{n} for every n. Thus we have the double inclusion

$$
\{z /(1-x z)\} \subset K_{n} \subset K_{0}=S^{*}(1 / 2) \quad(n=0,1,2, \ldots)
$$

Since the extreme points of $\overline{\mathrm{cl}} S^{*}(1 / 2)$ are $\{z /(1-x z):|x|=1\}$ (see [3]) the result follows.

3. Convolution invariance

For

$$
\begin{equation*}
h_{n}(z)=\frac{z}{(1-z)^{n+1}}=z+\sum_{k=2}^{\infty}\binom{k+n-1}{n} z^{k} \tag{7}
\end{equation*}
$$

we may express $D^{n} f$ as $D^{n} f=h_{n} * f$. We also denote by $h_{n}^{-1}(z)$ the function normalized by $h_{n}^{-1}(0)=0$ with $\left(h_{n}^{-1} * h_{n}\right)(z)=z /(1-z)$. Then $h_{n}^{-1}(z)=$ $z+\sum_{k=2}^{\infty}\binom{k+n-1}{n}^{-1} z^{k}$. With this notation, we may rewrite (2) as $f \in R_{n}(\alpha)$ if and only if $h_{n} * f \in S^{*}(\alpha)$ or, equivalently, $g \in S^{*}(\alpha)$ if and only if $h_{n}^{-1} * g \in R_{n}(\alpha)$.

The work of Ruscheweyh and Sheil-Small in [5] shows that the convolution of a convex function with a function in $S^{*}(\alpha)$ yields a functions in $S^{*}(\alpha)$. We make use of this result in establishing convolution properties for $R_{n}(\alpha)$.

Theorem 4. If $f, g \in R_{n}(\alpha), n \geq 1$, then $(f * g)(z) \in R_{n}(\alpha)$.
Proof. With h_{n} defined by (7) we must show that if $f * h_{n} \in S^{*}(\alpha)$ and $g * h_{n} \in S^{*}(\alpha)$, then $(f * g) * h_{n} \in S^{*}(\alpha)$. Since $f \in R_{n}(\alpha) \subset R_{1}(\alpha)=K(\alpha)$, we have $(f * g) * h_{n}=f *\left(g * h_{n}\right)$ is the convolution of a convex function with a function in $S^{*}(\alpha)$ and must therefore be in $S^{*}(\alpha)$. Hence $(f * g)(z) \in R_{n}(\alpha)$, and the proof is complete.

Theorem 4 may be put in an equivalent form.
TheOrem 4a. If $z+\sum_{k=2}^{\infty}\binom{k+n-1}{n} a_{k} z^{k}$ and $z+\sum_{k=2}^{\infty}\binom{k+n-1}{n} b_{k} z^{k}$ are both in $S^{*}(\alpha), n \geq 1$, then so is $z+\sum_{k=2}^{\infty}\binom{k+n-1}{n} a_{k} b_{k} z^{k}$.

Compare this with the following remarkable result of Suffridge.
Theorem A [9]. Define $\gamma(\alpha, k), \alpha \leq 1$, by

$$
\frac{z}{(1-z)^{2(1-\alpha)}}=z+\sum_{k=2}^{\infty} \gamma(\alpha, k) z^{k}
$$

If $z+\sum_{k=2}^{\infty} \gamma(\alpha, k) a_{k} z^{k}$ and $z+\sum_{k=2}^{\infty} \gamma(\alpha, k) b_{k} z^{k}$ are both in $S^{*}(\alpha)$, then so is $z+\sum_{k=2}^{\infty} \gamma(\alpha, k) a_{k} b_{k} z^{k}$.

Another equivalent form to Theorem 4 a is
Theorem 4b. If $z+\sum_{k=2}^{\infty} a_{k} z^{k}$ and $z+\sum_{k=2}^{\infty} b_{k} z^{k}$ are both in $S^{*}(\alpha)$, then so is $z+\sum_{k=2}^{\infty}\binom{k+n-1}{n}^{-1} a_{k} b_{k} z^{k}$ for $n \geq 1$.

Setting $b_{k}=a_{k}$ and $n=2$ in Theorem 4 b , we obtain the following
COROLLARY. If $z+\sum_{k=2}^{\infty} a_{k} z^{k} \in S^{*}(\alpha)$, then $z+\sum_{k=2}^{\infty} \frac{2 a_{k}^{2}}{k(k+1)} z^{k} \in S^{*}(\alpha)$.
Remark. Theorem 4 cannot be extended to include the case $n=0$. The Koebe function $k(z)=z /(1-z)^{2}$ is in $R_{0}=S^{*}(0)$ but $\left(k^{*} k\right)(z)=z+$ $\sum_{m=2}^{\infty} m^{2} z^{m}$ is not even univalent in Δ.

We next show how to move to different classes of $R_{n}(\alpha)$ through convolution with hypergeometric functions. Recall the generalized hypergeometric function

$$
\begin{array}{r}
m F_{n}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} ; \beta_{1}, \beta_{2}, \ldots, \beta_{n} ; z\right) \\
=\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k}\left(\alpha_{2}\right)_{k} \cdots\left(\alpha_{m}\right)_{k}}{\left(\beta_{1}\right)_{k}\left(\beta_{2}\right)_{k} \cdots\left(\beta_{n}\right)_{k} k!} z^{k}
\end{array}
$$

where $(a)_{0}=1$ and $(a)_{k}=a(a+1) \cdots(a+k-1)$ for $k \geq 1$. We will apply this operator after establishing the following lemma.

Lemma. Let $J: A \rightarrow A$ be defined by $J(f)=\frac{n+1}{z^{n}} \int_{0}^{z} t^{n-1} f(t) d t$. Then $f \in R_{n}(\alpha)$ if and only if $J(f) \in R_{n+1}(\alpha)$.

Proof. We need to show that $D^{n} f \in S^{*}(\alpha)$ if and only if $D^{n+1} J(f) \in$ $S^{*}(\alpha)$. In fact, we will show that $D^{n} f=D^{n+1} J(f)$. For $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ we have $J(f)=z+\sum_{k=2}^{\infty} \frac{n+1}{n+k} a_{k} z^{k}$. Hence

$$
\begin{aligned}
D^{n+1} J(f) & =z+\sum_{k=2}^{\infty}\left(\frac{k+n}{n+1}\right)\left(\frac{n+1}{n+k}\right) a_{k} z^{k} \\
& =z+\sum_{k=2}^{\infty}\binom{k+n-1}{n} a_{k} z^{k}=D^{n} f .
\end{aligned}
$$

Theorem 5. Let

$$
H(z)={ }_{m+1} F_{m}(n+1, n+1, \ldots, n+1,1 ; n+2, n+2, \ldots, n+2 ; z)
$$

be a hypergeometric function. Then $f \in R_{n}(\alpha)$ if and only if $f * z H(z)$ belongs to the class $R_{n+m}(\alpha)$ for any $m=1,2, \ldots$.

Proof. For $f(z)=\sum_{k=1}^{\infty} a_{k} z^{k} \in A, a_{1}=1$, and J defined in the lemma, we have that

$$
\begin{aligned}
J(f) & =\sum_{k=1}^{\infty} \frac{n+1}{n+k} a_{k} z^{k}=\left(z \sum_{k=0}^{\infty} \frac{n+1}{n+k+1}\right) z^{k} *\left(\sum_{k=1}^{\infty} a_{k} z^{k}\right) \\
& =\left(z \sum_{k=0}^{\infty} \frac{(n+1)_{k}(1)_{k}}{(n+2)_{k} k!} z^{k}\right) * f(z)=\left[z_{2} F_{1}(n+1,1 ; n+2 ; z)\right] * f(z)
\end{aligned}
$$

belongs to $R_{n+1}(\alpha)$. By repeated use of the lemma, the result follows.
Finally, we give a necessary and sufficient convolution condition for a function to be in $R_{n}(\alpha)$. In [7] it was shown that $f \in S^{*}(\alpha)$ if and only if

$$
\begin{equation*}
f * \frac{z+\left(\frac{x+2 a-1}{2-2 a}\right) z^{2}}{(1-z)^{2}} \neq 0 \quad(0<|z|<1,|x|=1) . \tag{8}
\end{equation*}
$$

We use this result to prove
Theorem 6. The function f is in $R_{n}(\alpha)$ if and only if

$$
f * \frac{z+\left(\frac{x(1+n)+n-1+2 \alpha}{2-2 \alpha}\right) z^{2}}{(1-z)^{n+2}} \neq 0 \quad(0<|z|<1,|x|=1) .
$$

Proof. An application of (2) to (8) shows that $f \in R_{n}(\alpha)$ if and only if

$$
\begin{equation*}
f *\left(\frac{2}{(1-z)^{n+1}} * \frac{z+\left(\frac{x+2 \alpha-1}{2-2 \alpha}\right) z^{2}}{(1-z)^{2}}\right) \neq 0 \quad(0<|z|<1,|x|=1) . \tag{9}
\end{equation*}
$$

Since $g(z) *\left(\frac{z}{(1-z)^{2}}+\frac{B z^{2}}{(1-z)^{2}}\right)=z g^{\prime}+B\left(z g^{\prime}-g\right)$, the result follows from (9) upon setting $g(z)=z /(1-z)^{n+1}$ and $B=(x+2 \alpha-1) /(2-2 \alpha)$, and then simplifying.

References

[1] O. P. Ahuja, 'Integral operators of certain univalent functions', Internat. J. Math. Sci. 8 (4) 1985, 653-662.
[2] O. P. Ahuja, 'On the radius problem of certain analytic functions', Bull Korean Math. Soc. 22 (1) 1985, 31-36.
[3] L. Brickman, D. J. Hallenbeck, T. H. MacGregor, and D. R. Wilken, 'Convex hulls and extreme points of families of starlike and convex mappings', Trans. Amer. Math. Soc. 185 (1973), 413-428.
[4] S. Ruscheweyh, 'New criteria for univalent functions', Proc. Amer. Math. Soc. 49 (1975), 109-115.
[5] S. Ruscheweyh, and T. Sheil-Small, 'Hadamard products of schlicht functions and the Pólya-Schoenberg conjecture', Comment. Math. Helv. 48 (1973), 119-135.
[6] H. Silverman, 'Univalent functions with negative coefficients', Proc. Amer. Math. Soc. 51 (1975), 109-116.
[7] H. Silverman, E. M. Silvia, and D. N. Telage, 'Convolution conditions for convexity, starlikeness, and spiral-likeness', Math. Z. 162 (1978), 125-130.
[8] R. Singh and S. Singh, 'Integrals of certain univalent functions', Proc. Amer. Math. Soc. 77 (1979), 336-343.
[9] T. J. Suffridge, 'Starlike functions as limits of polynomials', Advances in Complex Function Theory, pp. 164-202, (Lecture Notes in Math. 505, Springer, 1976).

Department of Mathematics
College of Charleston
Charleston, South Carolina 29424
U.S.A.

[^0]: This research was completed while the second author was a Visiting Professor at the University of Papua New Guinea.
 © 1989 Australian Mathematical Society $0263-6115 / 89 \$ A 2.00+0.00$

