TREVOR EVANS

To Bernard Neumann on the occasion of his eightieth birthday

We use the theory of clones to prove that a countably presented variety of algebras can be embedded in a variety of groupoids.

0. INTRODUCTION

In Section 1 we show that any countable collection of functions $f_i: S^{n_i} \to S$, $n_i \ge 1, i = 1, 2, 3, ...$ on a countably infinite set S can be generated, under composition, by a single function $f: S^2 \to S$. In Section 3 we prove that any countable clone can be represented as a clone of functions and then, in Section 4, we deduce that any finitely or countably presented variety of algebras can be "embedded" in a variety of groupoids.

1. GENERATING FUNCTIONS

Let $S = \{1, 2, 3, ...\}$ and let $f_i: S^2 \to S$, i = 1, 2, 3, ... be a countable collection of functions of two variables on S. Partition S into subsets $S_1, S_2, S_3, ...$ where

$$S_i = \{2^{2-1}(2x-1) \colon x \in S\}, i = 1, 2, 3, \dots$$

and let $f: S^2 \to S$ be defined by

- (i) $f(x,x) = 2x, s \in S;$
- (ii) $f(x,2x) = 2x 1, x \in S;$
- (iii) $f(x,y) = f_i((x+2^i)/2^{i+1}(y+1)/2), x \in S_{i+1}, y \in S_1, i = 1, 2, 3, ...;$
- (iv) f(x,y) is arbitrary for all other values of x and y.

From (i), (ii) f(x, f(x, x)) = 2x - 1, $x \in S$. Also, from (iii),

(1.1)
$$f_i(x,y) = f(2^i(2x-1), 2y-1), x, y \in S.$$

Now if we put $g_1(x) = f(x,x)$, $g_{i+1}(x) = f(g_i(x), g_i(x))$, i = 1, 2, 3..., then $g(x) = 2^i x$, for all *i*. Hence

$$g_i(f(x, f(x, x))) = 2^i(2x - 1).$$

Received 20 June 1989

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

T. Evans

From (1.1) we now have

(1.2)
$$f_i(x,y) = f(g_i(f(x, f(x,x))), f(y, f(y,y))).$$

That is, each f_i can be obtained by repeated composition from f and the projection function $p_1(x, y) = x$, $p_2(x, y) = y$.

Now any function of one variable f can be replaced by a function of two variables g, where g(x,y) = f(x) for all x, y. Furthermore, (see Sierpinski [6]) any function of n variables can be written as a composition of functions of two variables. For example, take any bijection from S^2 to S, say $h(x_1, x_2) = 2^{x_1-1}(2x_2-1)$, and define iterates h_i by $h_1 = h$ and

$$(1.3) h_{i+1}(x_1, x_2, \ldots, x_{i+2}) = h(x_1, h_i(x_2, x_3, \ldots, x_{i+2})), i = 1, 2, 3, \ldots$$

Then for any $f: S^n \to S$, $n \ge 3$, there is a function $g: S^2 \to S$ such that

(1.4)
$$f(x_1, x_2, \ldots, x_n) = g(x_1, h_{i-2}(x_2, x_3, \ldots, x_n)).$$

Combining the above remarks, we have the following:

THEOREM 1. Let $f_i: S^{n_i} \to S$, i = 1, 2, 3, ... be a countable collection of functions on a countable set S. Then there is a function $f: S^2 \to S$ such that f generates each f_i .

Remark. For S finite, a similar result follows from the existence of Sheffer stroke functions on any finite set (see, for example, Evans and Hardy [2]).

2. CLONES

Let S be a nonempty set and let C be a collection of functions $f: S^n \to S$, on some fixed positive integer, such that

(i) C contains the projections $p_i(x_1, x_2, \ldots, x_n) = x_i, i = 1, 2, \ldots, n;$

(ii) C is closed under the (n + 1)-ary composition operation Σ where $\Sigma f g_1 g_2 \dots g_n$ is the function $S^n \to S$ defined by

(2.1)
$$\Sigma f g_1 g_2 \dots g_n \colon (x_1, x_2, \dots, x_n) \to f(g_1(\mathbf{x}), g_2(\mathbf{x}), \dots, g_n(\mathbf{x}))$$

for all $\mathbf{x} = (x_1, x_2, \dots, x_n)$ in S^n .

C is called *n*-clone of functions on S.

Clones and varieties

Note that Σ satisfies the generalised associative law for composition

(2.2)
$$\Sigma\Sigma f g_1g_2 \dots g_nh_1h_2 \dots h_n = \Sigma f \Sigma g_1h_1h_2 \dots h_n \dots \Sigma g_nh_1h_2 \dots h_n$$

for all f, g_i, h_j in C .

An abstract *n*-clone may be defined as an algebra on a set C with *n* constants p_1, p_2, \ldots, p_n and an (n + 1)-ary operation $\Sigma: C^{n+1} \to C$ such that

(2.3)
(i)
$$\sum x p_1 p_2 \dots p_n$$
 for all $x \in C$
(ii) $\sum p_i y_1 y_2 \dots y_n = y_i$ for all y_1, y_2, \dots, y_n in $C, i = 1, 2, 3, \dots, n$
(iii) $\sum \sum x y_1 y_2 \dots y_n z_1 z_2 \dots z_n = \sum x \sum y_1 z \sum y_2 z \dots \sum y_n z$
for all $x \in C, y, z \in C^n$.

Examples of n-clones are:

- 1. C is the set of derived *n*-ary operations of an algebra A;
- 2. C is a free algebra on n generators g_1, g_2, \ldots, g_n and

 $\Sigma u v_1 v_2 \dots v_n = u \alpha$ for all u, v_i in C;

where α is the endomorphism mapping $g_i \rightarrow v_i, i = 1, 2, ..., n$;

3. C is the set of homomorphisms $A^n \to A$ of some algebra A.

Other examples may be found in Evans [3].

We may generalise the notion of *n*-clone to that of heterogeneous clone (or simply clone). Here, in the function case, S is a non-empty set, and collections $C^{(n)}$ of functions $f: S^n \to S, n = 1, 2, 3, \ldots$ such that $C^{(n)}$ contains the projections $p_i, i = 1, 2, \ldots n$, and the set $C = C^{(1)} \cup C^{(2)} \cup C^{(3)} \cup \ldots$ is closed under the composition operations Σ_m^n where

(2.4)
$$\Sigma_m^n: \mathcal{C}^{(m)} \times \left(\mathcal{C}^{(m)}\right)^n \to \mathcal{C}^{(n)}$$

and $\sum_{m}^{n} fg_1g_2 \dots g_m$, $f \in \mathcal{C}^{(m)}$, $g_i \in \mathcal{C}^{(n)}$ is the function $S^n \to S$ given by

(2.5)
$$\Sigma_m^n fg_1g_2\ldots g_m \colon (x_1, x_2, \ldots, x_n) \to f(g_1(\mathbf{x}), g_2(\mathbf{x}), \ldots, g_m(\mathbf{x}))$$

for all $\mathbf{x} = (x_1, x_2, \ldots, x_n)$ in S^n .

For case of reading Σ_m^n will be written simply as Σ when this causes no ambiguity, and vector notation will also be used for the same purpose, for sequences of functions as well as for sequences of elements of S. Thus, $\Sigma_m^n f g_1 g_2 \dots g_m$ may be written as $\Sigma f g$ and (2.2) as

(2.6)
$$\Sigma \Sigma f \mathbf{g} \mathbf{h} = \Sigma f \Sigma g_1 \mathbf{h} \Sigma g_2 \mathbf{h} \dots \Sigma g_n \mathbf{h}.$$

The abstract version of a general clone of functions is defined as follows. We have a set C which is the disjoint union of sets $C^{(1)}, C^{(2)}, C^{(3)}, \ldots$ For each $n, C^{(n)}$ contains elements $p^{(n)}, p_2^{(2)}, \ldots, p_n^{(n)}$ (we omit the superscripts whenever possible) and there is a partial operation Σ on C which is the union of the operations $\Sigma_m^n: C^{(m)} \times (C^n)^m \to C^{(n)}, m, n \ge 1$, such that the following axioms are satisfied: (2.7)

(i)
$$\Sigma x p_1 p_2 \dots p_m = x$$
, for any x in $\mathcal{C}^{(m)}$

(ii)
$$\Sigma p_i y_1 y_2 \dots y_m = y_i$$
, for any projection p_i in $\mathcal{C}^{(m)}$ and y_1, y_2, \dots, y_m in $\mathcal{C}^{(n)}$;

(iii)
$$\Sigma \Sigma x y_1 y_2 \dots y_m z_1 z_2 \dots z_n = \Sigma x \Sigma y_1 z \Sigma y_2 z \dots \Sigma y_m z$$

for any
$$x$$
 in $\mathcal{C}^{(m)}, y_1, y_2, \ldots, y_m$ in $\mathcal{C}^{(n)}$ and $\mathbf{z} = (z_1, z_2, \ldots, z_n)$ in $(\mathcal{C}^{(t)})^n$.

The examples of *n*-clones given earlier can be extended. The set of all derived operations of an algebra A is a clone. Similarly, the set of all homomorphisms $A^n \to A$, $n = 1, 2, 3, \ldots$, is a clone. In both cases the clone operation is composition. For the third examples, we take $C^{(n)}$ to be the free algebra $F_n(\mathcal{V})$ in the variety \mathcal{V} and the value of the clone operation $\Sigma uv_1v_2 \ldots v_m$ for $u \in F_m(\mathcal{V})$, $v_i \in F_n(\mathcal{V})$ is defined to be the image of u under the homomorphism which maps the generating set of $F_m(\mathcal{V})$ onto v_1, v_2, \ldots, v_m in $F_n(\mathcal{V})$.

3. Representing clones as clones of functions

Let C be an *n*-clone, that is, a set C, an (n + 1)-ary operation Σ and projection elements p_1, p_2, \ldots, p_n , satisfing (2.3). It is a simple matter to extend to *n*-clones the Cayley representation theorem for groups and semigroups. To each $c \in C$, we assign the function $f_c: C^n \to C$ where

$$f_c(x_1, x_2, \ldots, x_n) = \Sigma c x_1 x_2 \ldots x_n, \ \mathbf{x} \in \mathcal{C}_n$$

and it is easily checked that $c \to f_c$ is an isomorphism from C to a clone of functions. A corresponding theorem holds for general heterogeneous clones but is more complicated to prove.

Let C be a heterogeneous clone with elements

$$\mathcal{C} = \mathcal{C}^{(1)} \cup \mathcal{C}^{(2)} \cup \mathcal{C}^{(3)} \cup \dots$$

where $\mathcal{C}^{(m)}$ is the set of elements of arity m. Let 0 be an element not in \mathcal{C} and consider the set S of all sequences

$$(x_1, x_2, x_3, \ldots), x_i \in \mathcal{C}^{(i)} \cup \{0\}$$
 such that for some $i, x_i \neq 0$, and

$$(3.1) \qquad (i) \quad \text{if } x_i = 0, \text{ then } x_j = 0 \text{ for all } j < i$$

(ii) if
$$x_i \neq 0$$
, then $x_j = \sum x_i p_1^{(j)} p_2^{(j)} \dots p_i^{(j)}$ for all $j > i$.

Note that if i < j < k, by (3.1) and the generalised associative law

(3.2)
$$x_k = \sum x_j p_1^{(k)} p_2 \dots p_j^{(k)} = \sum x_i p_1^{(k)} p_2^{(k)} \dots p_i^{(k)} ... p_i^{(k)}$$

Thus, a sequence in S begins with an initial segments of 0's (possibly empty) and after the first non-zero x_i , each term is determined uniquely by (3.1).

We now define two sequences $s = (x_1, x_2, x_3, ...)$, $t = (y_1, y_2, y_3, ...)$ in S to be equivalent, $s \equiv t$, if there is some non-zero term x_i such that $x_i = y_i$. Let \bar{s} denote the equivalence class containing s and let \bar{S} denote the set of equivalence classes. Note that in each \bar{s} there will be a unique sequence with a shortest initial segment of 0's and the first non-zero term in this sequence determines \bar{s} .

For each $c \in C^{(m)}$, m = 1, 2, 3, ..., in the clone C we define a function $f_c: \overline{S}^m \to \overline{S}$ as follows. Let $\overline{s}_1, \overline{s}_2, \overline{s}_3, ..., \overline{s}_m$ be elements of S and let i be such that for all j each sequence in \overline{s}_j has its *i*th term non-zero. Denote this *i*th term for \overline{s}_j by $x_j, j = 1, 2, ..., m$. Then we define

$$(3.3) f_c(\overline{s}_1,\overline{s}_2,\ldots,\overline{s}_m) = \overline{t}$$

where \overline{t} contains all sequences of S having

$$(3.4) \qquad \qquad \Sigma c x_1 x_2 \dots x_m$$

as ith term. Since $x_i \in C^{(i)}$, this element also belongs to $C^{(i)}$.

We claim that the f_c form a clone of functions on \overline{S} and that $c \to f_c$ is a isomorphism from C to this clone of functions.

- (i) f_c is well-defined in the sense that it is independent of the particular *i* we choose. This follows from (3.2).
- (ii) $c \to f_c$ is one-one. For if $f_c = f_d$, then

$$f_c(\overline{p}_1,\overline{p}_2,\ldots,\overline{p}_m)=f_c(\overline{p}_1,\overline{p}_2,\ldots,\overline{p}_m),$$

where p_1, p_2, \ldots, p_m are the projection elements in $\mathcal{C}^{(m)}$. Hence, $\sum c p_1 p_2 \ldots p_m = \sum d p_1 p_2 \ldots p_m$ and so by (2.7), c = d.

(iii) $c \to f_c$ is a homomorphism. Let $c \in \mathcal{C}^{(m)}$ and $d_1, d_2, \ldots, d_m \in \mathcal{C}^{(n)}$. Then $d = \sum c d_1 d_2 \ldots d_n$ belongs to $\mathcal{C}^{(n)}$. We have to show that

$$(3.5) f_d = \Sigma f_c f_{d_1} f_{d_2} \dots f_{d_m}$$

Let $s_j \in S$, j = 1, 2, ..., n so that $(\overline{s}_1, \overline{s}_2, ..., \overline{s}_n) \in \overline{S}^n$ and let $f_{d_1}(\overline{s}_1, \overline{s}_2, ..., \overline{s}_n) = \overline{t}_l$, $1 \leq l \leq m$ where, by (3.3), \overline{t}_l consists of all S-sequences having $\Sigma d_l x_1 x_2 ... x_n$ as ith term, for some *i* such that each x_j is a non-zero *i*th term of S_j . Then $f_c(\overline{s}_1, \overline{s}_2, ..., \overline{s}_n) = \overline{w}$ where \overline{w} is the class of sequences having, as the *i*th term

$$\Sigma dx_1, x_2 \dots x_n = \Sigma \Sigma cd_1 d_2 \dots d_m x_1 x_2 \dots x_n$$
$$\Sigma c \Sigma d_1 \mathbf{x} \Sigma d_2 \mathbf{x} \dots \Sigma d_m \mathbf{x}.$$

But

$$\Sigma f_c f_{d_1} f_{d_2} \dots f_{d_m}(\overline{s}_1, \overline{s}_2, \dots, \overline{s}_n) = f_c(\overline{t}_1, \overline{t}_2, \dots, \overline{t}_m)$$

where \overline{z} is the class of sequences having

$$\Sigma c \Sigma d_1 \mathbf{x} \dots \Sigma d_m \mathbf{x}$$

as ith term. Hence, $\overline{w} = \overline{z}$ and (3.5) is verified.

THEOREM 2. Every countable clone is isomorphic to a clone of functions.

4. Embedding theorems

The set of derived operations of an algebra A = (A : F) is a clone C(A) under composition. An algebra B = (A : F') obtained by taking some set of derived operations of A as basic operations is called a *derived algebra* of A. Its clone C(B) is a subclone of C(A). Theorem 1 can be stated in the following equivalent forms

THEOREM 3.

- (i) Any countable algebra with countably many finitary operations is isomorphic to a derived algebra of some groupoid.
- (ii) The clone of any algebra (countable with countably many finitary operations) is isomorphic to a subclone of the clone of some groupoid.

To obtain a corresponding theorem for varieties, we first combine Theorems 1 and 2 in the following form.

THEOREM 4. Any countable clone can be embedded in a clone which is generated by one element of arity two.

Let \mathcal{V} be a variety defined by a countable number of finitary operations. There are various ways of associating a clone $\mathcal{C}(\mathcal{V})$ with the variety \mathcal{V} (see, for example, W.D. Neumann [6]). We adopt a different approach. Regard the primitive operations of the variety \mathcal{V} as generators of a clone $\mathcal{C}(\mathcal{V})$ and translate the defining identities of \mathcal{V} into defining relations for $\mathcal{C}(\mathcal{V})$. For example, if \mathcal{V} is given by two binary operations +, \cdot

205

and the defining identity x(y+z) = xy + xz, then $C(\mathcal{V})$ is generated by elements m, a of arity two (corresponding to multiplication and addition) and satisfies the defining relation

$$\Sigma m p_1 \Sigma a p_2 p_3 = \Sigma a \Sigma m p_1 p_2 \Sigma m p_1 p_3.$$

We omit the tedious description of the general case of this correspondence between \mathcal{V} and $\mathcal{C}(\mathcal{V})$ and the verification (by induction on length and the rules of equational logic) that an identity holds in \mathcal{V} if and only if the corresponding relation on the generators holds in $\mathcal{C}(\mathcal{V})$. Putting together the preceding theorems, we obtain the following result on the embedding of a variety in a variety of groupoids.

THEOREM 5. Let \mathcal{V} be a countably presented variety with finitary operations. Then there exists a variety of groupoids \mathcal{W} such that to each n-ary operation of \mathcal{V} there corresponds a groupoid word in n variables (a derived n-ary operation in \mathcal{W}) and an identity holds between the operations in \mathcal{V} if and only if the corresponding identity holds between the derived operations of \mathcal{W} .

5. Remarks

The origin of the above results is, of course, the original embedding theorem of Higman, Neumann, and Neumann [4] that any countable group can be embedded in a group generated by two elements. Many analogous theorems have been proved for other algebras, semigroups, quasigroups, rings, lattices, et cetera. For monoids, which are 1-clones, the result states that any countable monoid can be embedded in a monoid generated by two elements. A consequence of the results in this paper is that any *n*-clone (n > 1) can be embedded in an *n*-clone generated by one element.

References

- T. Evans, 'Embedding theorems for multiplicative systems and projective geometries', Proc. Amer. Math. Soc. 3 (1952), 614-620.
- [2] T. Evans and F.L. Hardy, 'Sheffer stroke functions in many-valued logics', Portugal. Math. 16 (1957), 83-93.
- [3] T. Evans, 'Some remarks on the general theory of clones': Proc. Conf. on Finite Algebra and Multiple-valued Logic, Szeged, Hungary (1979). (North-Holland Pub. Co.), Colloq. Math. Soc., Janos Bolyai 28 (1982), 203-244.
- [4] G. Iligman, B.H. Neumann and II. Neumann, 'Embedding theorems for groups', J. London Math. Soc. 26 (1949), 267-254.
- [5] W.D. Neumann, 'Representing varieties of algebras by algebras', J. Austral. Math. Soc. 11 (1970), 1-8.
- [6] W. Sierpinski, 'Sur les fonctions de plusieurs variables', Fund. Math. 33 (1945), 169-173.

Department of Mathematics and Computer Science Emory University Atlanta, GA 30322 United States of America