
Proceedings oflhe Edinburgh Mathematical Society (1998) 41, 497-515 ©

FRACTIONAL PART SUMS AND LATTICE POINTS

by WERNER GEORG NOWAK*

(Received 23rd September 1996)

The objective of this article are sums S(M) = J3n ^(Af/(n/Af)) where ij/ denotes essentially the fractional part
minus \, f is a C*-function with / " nonvanishing, and summation is extended over an interval of order M.
For S(M) an Q-estimate and a mean-square bound is obtained. Applications to problems concerning the
number of lattice points in large planar domains are discussed.

1991 Mathematics subject classification: 11P21, 11K99.

1. Introduction and statement of results

Let / be a real-valued function defined on an interval [a, b] with continuous
derivatives up to order 4 and the property that / " has no zero on [a, b]. Further, let \p
denote a row-of-teeth function satisfying

for reZ .

Finally, let M be a large real parameter. Then the objective of the present article will
be to study the sum

= E
aM<n<6M,neZ

It is clear that S{M) is connected with the problem of counting the lattice points in
the Euclidean (£, ̂ )-plane between the curve

M J\Mj

and the £-axis (see Section 2 of this paper). In classic times, upper estimates for sums
of this type have been obtained by Vinogradov [26] and van der Corput [4, 5], who
ultimately proved that

S(M) « M2'3-*

* This article is part of a research project supported by the Austrian Science Foundation (Nr. P 9892-PHY).
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498 WERNER GEORG NOWAK

with some (very small) e0 > 0. Under the general conditions stated, there was no
improvement until recently when Huxley deduced his "Discrete Hardy Littlewood
Method" from earlier ideas due to Bombieri and Iwaniec [1] and Iwaniec and
Mozzochi [15]. Huxley's sharpest version [11] contains the bound

S(M)«M46/73(logM)3l5/146

(under the additional technical condition that / ° ' has no zero on [a, b]). For a full
account, the reader is referred to Huxley's textbook [13]. We remark parenthetically
that a more general sum which contains a second parameter T > M, namely

aM<n<6M,neZ

is important for rounding error estimations in connection with classic numerical
integration methods. This, too, has been worked out by Huxley [10]. The upper bounds
he established depend in a complicated way on the relative size of T and M and are
given in a table exceeding one printed page.

The objective of the present article is to complement the known upper estimate for
S(M) by a lower bound (a so-called Omega-result) and a mean-square estimate:
Roughly speaking, we shall prove that

S(M) = n(M1/2(logM)l/4)
and

r2X

(S(Af))2dM«AT2.
/
Jx

We may thus formulate the interpretation that S(M) <$c Ml/2 "on average", with an
unbounded sequence of M-values for which S(M) is "exceptionally large".

Before stating our assertions precisely we have to formulate one more condition
which will be important in our argument and is most efficiently stated in geometric
terms.

Definition. We shall say that a smooth curve C in the plane satisfies the tangent
condition if none of the tangents of C contains the origin.

Furthermore, we shall establish the Q-bound for a family of functions/,, . . . , / ,
(and corresponding i/^,,..., \j/j). This will be meaningful for the applications to lattice
point problems discussed in Section 2.

Theorem 1. For j = 1 , . . . , J, let f{: [ajt bj] -» K be functions with four continuous
derivatives such that the second derivatives Jf have no zero and are all of the same sign.
Let ij/j be row-of-teeth functions satisfying (1.1). Suppose that the graphs of t\=fi{£),
£ e [ajt bj], all fulfil the tangent condition. Let M be a large real parameter and put
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;=1 ajM<n<bjM iY1

Then it follows that

«-» VM'/'OogM)1'4/

where sgn(Jf) denotes the sign of the J"".

In fact, we shall obtain a positive lower bound for this limsup which may depend
on J and on the ranges of values attained by the functions fj and their first four
derivatives. (This applies to all constants, either occurring explicitly or implied by some
order-of-magnitude symbol, throughout the paper.)

Theorem 2. With the notation and assumptions of Theorem 1, it follows that, for X
large,

r2x

/ (5(M))2dM«AT2,
Jx

Remark. The substitution M -> M°, with any fixed 9 > 0, readily gives

f (5(M°))2dM«A"+fl.
Jx

Further, by splitting up into dyadic subintervals, the estimate can be extended trivially
to [0, X] as range of integration.

2. Applications to lattice point problems

In the classic literature the connection between fractional part sums and problems
of estimating the number of lattice points in large regions occurs, for one of the first
times, in the context of the Gaussian circle problem. (For a thorough account on its
history, the reader may consult, e.g., the book of Kratzel [17].) Let r(n) the number of
ways to write n e No as a sum of two squares, i.e.,

r(n) = #{(u, v)eZ2:u2 + vi = n],

then it is well-known that
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500 WERNER GEORG NOWAK

with

t]/m(t) = £ - [t] - \ throughout. Thus it is immediate from our Theorems that

ft(M) = Q_(M1/2(logM)1/4)

and, for any fixed 0 > 0,

I
•x

(Jl{M°)f dM « Xl+t'.

In fact, these two estimates are essentially the best of their kinds known to date: The
sharpest lower bound was established by Hafner [7] and reads

1l(M) = f2_ (Ml/2(log M)l/4(log log M)*log2 expC-cVlogloglogM)) (c > 0),

while Katai [16] obtained the mean-square asymptotic

However, our results apply to a much larger class of planar domains V: Suppose that
C = dT> is a closed piecewise smooth curve which can be written in polar coordinates
(r, X) as

C: r = p{X), 0 < A < 2n,

where p is continuous on [0, 2n] and p(0) = p(2n). Assume further that [0, 2n] can be
subdivided by an increasing sequence

0 = Ao < ; . , < . . . < X} = 2% (*)

such that each restriction pt to an interval [A>_,, AJ possesses four continuous derivatives
on [A;_,, Xj]. Suppose finally that each of the curves

Cf. r = Pj(X), Xhi<X<Xj, j=

has finite nonvanishing curvature throughout and satisfies the tangent condition.
We consider now the planar domain V which lies "inside" the Jordan curve C and

submit it to a homothetic transformation by a large real factor M:
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FRACTIONAL PART SUMS AND LATTICE POINTS 501

We denote by NV(M) the number of lattice points of 1? which belong to MV, where
the lattice points on the boundary MC may get any weight co, 0 < co < 1. The "lattice
rest" or "discrepancy" is then defined as

Tlv(M) = NV(M) - area(P)M2.

Corollary 1. Let V be a planar domain whose boundary C = 3T> satisfies the
conditions stated above. Then it follows that, for X large,

jf
If moreover, the pieces of the boundary Cj are either all convex or all concave with
respect to the domain V, then also

lim sup! —775————rji I > 0
A^OO FVM1 / 2(logM)l / 4/

where ± depends on whether the Cj are concave (+) or convex (—).

Remarks. 1. The sharpest known upper bound for the discrepancy of a domain V
satisfying the conditions of Corollary 1 was established in the deep paper of Huxley
[11] and reads

M46/73(logM)315/146.

2. In the classic literature, lower bounds and mean-square results for the lattice rest
of circles and ellipsoids were usually derived by means of the functional equation of
the Epstein zeta-function of a positive definite quadratic form. These results in turn
can be seen as special cases of much more general theorems of this kind: see, e.g.,
Chandrasekharan-Narasimhan [3], Redmond [23], respectively Hafner [8] and the
references cited there.

Not too much different is the case of a domain V whose boundary C is of class C°°
throughout: Here V possesses a so-called Hlawka zeta-function (see Hlawka [9]) which
shares some characteristic properties with an Epstein zeta-function. By methods
essentially based on this fact, the author [21, 22] had established earlier the results of
Corollary 1 for such convex sets V with C°°-boundary.

The novelty of the present paper is thus (apart from replacing C°° by C4) that the
curve C now may have corners or may even possess an asteroid-like shape. E.g., for
the domain
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502 WERNER GEORG NOWAK

our results imply that

7^(M) = n+(M1/2(log M)1/4), / (Hvo(M))2dM « X2.
Jo

For this very special case, it is known [20] that

3. For V with smooth C4-boundary throughout, Huxley [12] has obtained recently
a mean-square estimate for a much shorter interval, i.e.,

f
Jx

It is likely that further work could yield this bound under the general conditions of
Theorem 2.

4. As a consequence of the freedom that (1.1) provides concerning the values of ip
at the integers, we may count lattice points on the boundary of MV with any weight
(o e [0, 1], without affecting the validity of our results. This is obvious for the mean-
square estimate (since the M-values for which MV contains any lattice points form a
set of measure zero) but perhaps remarkable for the Q-bound: It should be observed
that all we know in general about the total number of lattice points on MV is that it is
«; M$+c, for any E > 0, according to a deep work of Swinnerton-Dyer [24].

Proof of Corollary 1. We shall show that 7^(M) can be represented in the form
-S(M) + 0(l), with S(M) as in Section 1. We start with one of the curves C, with
endpoints (a,,)?,) and (a2, f}2) (with £*•<£*), both contained in the interior of the first
quadrant. We may assume that C} is in Cartesian coordinates (<!;, r\) the graph of a
C'-function r\ —fj(O (or vice-versa); if necessary, we might refine the subdivision of
[0,2n]. Now let Vj denote the sector which is bounded by the curve C, and the two
straight line segments joining the origin with (a,,/?,), (a2,/?2), respectively. Let further
NV.(M) denote the number of lattice points in MVt where points on the straight line
segments are weighted with the factor \ while points on MC} get any weight co e [0,1].
Then an elementary lattice point counting argument shows that

NVj(M) = area(2})M2 - ¥(aiifc)(M) + ¥(„.,, >(M) - e,S£M) + 0(1) (2.1)

where

Z^ \b (-r^\ ti(t)=lt~W~i f o r t

' °Vot / ' ° I 0 for 16
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FRACTIONAL PART SUMS AND LATTICE POINTS 503

Sj(M) is a i/'-sum as defined in section 1, and e;- = +1 if V is below the curve C, and
e, = - 1 if I? is above Cr

If Cj happens to have a vertical tangent and thus can be represented only in the form
£ =f*{ri)y we may interchange the roles of the variables and then apply the elementary
identity

to obtain (2.1) with the same ^ ' s . Further, if (a,,/?,) lies on the horizontal or (<x2, /?2)
on the vertical axis, the corresponding ^-term vanishes. Putting together adjacent
sectors P, we see that the ^-expressions cancel and obtain

where N(^\M) denotes the number of lattice points of MV which lie in the first
quadrant, points on the axes being counted with weight \. By suitable transformations,
the same argument applies to the other quadrants. (Note that the substitution
£ ->• — £ leaves invariant the sign of_/J", and that —if/^—t) again meets the conditions
(1.1) if <j/(t) does.) Finally, a little reflection shows that the convexity conditions
together with the factors e; just ensure that the requirements concerning the second
derivatives of Theorem 1 are satisfied. This completes the proof of Corollary 1.

The analysis just carried out enables us to apply our estimates to the case that V is
a rather general sort of sector. Let

C: r = p(k), Ao < k < k},

p continuous on [Ao,Ay], with a subdivision

0 < Ao < A, < . . . < kj < In

such that on each subinterval [A;_,, A;] all the conditions stated earlier are satisfied.
Let

P\ = (P(AO) cos Ao, p(Ao) sin Ao), P2 = (p(kj) cos kJt p(kj) sin Ay)

be the endpoints of C, and call V the planar domain bounded by C and the two straight
line segments from the origin to Plt P2, respectively. Then the above argument gives
for NV(M) immediately a representation (2.1) involving ^ (Af) , ^ ( M ) . In order that
these do not affect our estimates, it is desirable that they should be «. Ml/2. For
P = (a, P) with /?/a rational this is no difficulty: A short elementary calculation shows
that

a

« ! f o r f l x e d rational - .
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For irrational fl/a. we have to recall a few facts from the theory of Diophantine
approximation: By the (approximation) type t(y) of an irrational real number y we
understand the infimum of all reals r for which there exists a constant c{r, y) > 0 such
that

c(r, y)

for all integers p and all positive integers q. We note that, according to a celebrated
result of Thue, Siegel, and Roth, all algebraic irrationals y are of type t(y) = 1. By
another well-known (though less deep) theorem due to Khintchin, the same is true of
almost all reals y (in the sense of Lebesgue).

We use the following bound:

for fixed a > 0 and fixed algebraic y. This is apparently essentially due to Hardy and
can be found in convenient form in the book of Kuipers-Niederreiter [18, p. 123 and
143]. For our purpose, this implies that

4%.«(M) « M"2 if t (Q < 2.

We may thus summarize our conclusions as follows.

Corollary 2. Let V be a general sector, bounded by a piecewise smooth curve C with
endpoints P, — (a,,/?,), P2 = (a2.&)> and the straight line segments OPU OP2- Suppose
that C is composed of finitely many pieces Cs (as described above) each of which is of
class C4, has finite nonzero curvature throughout, and satisfies the tangent condition.
Assume further that fj- and |* are either rational or irrational of an approximation type
less than 2. Then the lattice rest ^ ( M ) satisfies

f
Jo

If, in addition, the pieces Cs are either all convex or all concave with respect to the domain
V, then also

hm supl
\

i I > 0
/

where ± depends on whether the C, are concave (+) or convex (—).
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3. Some lemmas

Lemma 1. (Transition from fractional parts to trigonometric polynomials according
to Vaaler [25].) For arbitrary w e R and H e N, suppose that \j/ satisfies (1.1), and put

h

where

T(O = it«l - 0cot(«£) + £ /or 0

Then there holds the inequality

Proof. For w ^ Z, this is one of the main results in Vaaler [25]. For a very well
readable exposition, see also the book of Graham and Kolesnik [6, p. 116]. The case
w € Z is an obvious consequence by a limit argument or by direct evaluation.

Lemma 2. For a real parameter P > 1, let FP denote the Fejer kernel

Then for arbitrary real Q ^ 0, y € R, it follows that

I F P ( w ) c o s ( 2 7 i Q w + y ) d w = m a x ( l - ^ , 0 ) c o s y + 0 1 — - ) ,
J - i \ P ) \I6I/

where the O-constant is independent of P andy.

Proof. This is adopted from Hafner [7]. The reader may recall the classic Fourier
transform formula

JR
F , ( w ) e x p ( 2 « i f i w ) d w = / f ) p f ) f

J \ IW / \ P ) \

Since FP(±1) = O(P~l) and F'P(w) = O(w'2) for \w\ > 1 (uniformly in P > 1), integration
by parts readily shows that the intervals ] - o o , - 1 ] and [l,oo[ contribute only
O(lgr'). Multiplying by exp(iy) and taking the real part on both sides gives the
assertion.
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Lemma 3. (A strong form of the van der Corput transform.) Let f be a real
function with continuous derivatives up to the fourth order on an interval [a, b\. Suppose
that f"(w) <0 on [a, b] throughout. Let h>\, U > 1, be real parameters. Let finally q>
denote the inverse function of f, and write e(£) for e2mi as usual. Then it follows that

where

Proof. This is an immediate consequence of Lemma 3.6 in Graham and
Kolesnik [6]. We are going to have a closer look at the function G(u, v): Its natural
domain of definition is

Tt = {(u, v) e K2: v > 0, -vf\a) <u< -vf\b)).

We shall construct a map M: V -*• C where C is the curve

C: i 7 =

For given (w, v) e V, {£,, rj) — M(u, v) is defined as that point of the curve C where
the vector (M, V) is orthogonal to C. Then the distance of the origin from the tangent of
C in (£, rj) — M(u, v) is equal to

\G(u, v)\

For what follows, we shall assume that the curve C satisfies the tangent condition.
As a first consequence, it is clear that \G(u, v)\ attains a positive minimum and
maximum on

{(u,v)eV: u2 + v2 = l}.

Since G(u, v) is homogeneous of order 1, it follows that there exist constants
c2> ct > 0, such that, for all (w, v) e V,

v2 < \G{u, v)\ < c 2vV + v2. (3.1)
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It follows further from the tangent condition that G(u, v) is of the same sign throughout
V: let e* e {—1, 1} denote this sign. We consider the curve

C = {(u,v)eT>': G(u,v) = e'}.

Its endpoints are

/ -/'(a)*' e> \ ( -f'(b)e' e' \
\f(a) - af\a) 'f(a) - af(a)) \f(b) - bf\b) 'f(b) - bf\b)J"

Denote by Mo the restriction of M to C, then it is easy to see that Mo' C -*• C is
one-one. Further, if p'(u, v) is the radius of curvature of C* at (w, v), and p(£, n) that of
C at the corresponding point (<!;, n) = M0(u, v), a recent and elaborate result of Huxley
[12, Lemma 4], tells us that

p(£, r))p'(u, v) sin3 A(u, v) = 1

where X(u, v) is the angle between the radius vector ({) and the tangent of C in the
point (<!;, q). (A multi-dimensional analogue of this formula has been established quite
recently by Miiller [19].) Because of the tangent condition, A(w, v) is bounded away from
0 and n. Therefore, since C has finite nonzero curvature throughout, the same is true
for the curve C*. This enables us to estimate the number of lattice points in the strip
between the curves YC* and (Y - A)C* where Y is large and 0 < A < \ Y:

Lemma 4. Suppose that the function f satisfies the conditions of our theorems, and
let N(Y, A) denote the number of lattice points in

{(u, v) e R2: Y - A < e'G(u, v)<Y,v>0, -vf\a) <u< vf\b)}.

Then it follows that

Proof. For A > \ (say) this is trivial, since

N(Y, A) «: area + length of the boundary

gives what we need. For A < J, we may appeal to a result of Branton and Sargos [2]
and Huxley and Sargos [14].

4. Proof of Theorem 1

We may suppose that JJ'(w) < 0 throughout. Otherwise we might replace all ft by
—fj, since -i^(—t) again satisfies the requirements (1.1). For what follows, let M be a
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large real parameter, and let U e [M - 1, M + 1]. Our first important step is to apply
Lemma 1 in order to compare the fractional part sum with an appropriate
trigonometric polynomial. We choose H = [M] and infer from Lemma 1 that, for any
we R,

Consequently,

[M]

Our next step is to transform each of the inner trigonometric sums over n by
Lemma 3. We start with estimating the contribution of the O-terms from the Lemma:
This is

since T is bounded. Using the real and imaginary part of Lemma 3 separately, we thus
conclude that

j

S(U) > t/1/2 J2 S;{U) - C, Ul/2 ( 4 . 2 )
;=<

where

ft(/j, M)sm(-2nUGj(m, h)+*)- 02(h, M)cos(-2nUGj(m, h) + f)

with
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for short (<Pj the inverse function of fj), and the domain of summation P;(M) is

Vj(M) = {(m, h) € Z 2 : 1 < h < M, -hf;(a) < m < -hJJ(b)).

We would like to estimate S*(U) from below. However, the trigonometric sum
involved still contains too many terms. To get rid of the greater part of them, we
multiply S*(U) by a Fejer kernel FP(U — M) (where P is a new large real parameter)
and integrate over U from M — 1 to M + 1. In view of Lemma 2, we thus obtain

/•AM-1 /•!

/;(M) := / S;(U)FP(U - M)dU = / SJ(M + w)FP(w)dw

with K;(OT, ft) = A/|y/"(<P;(ir))l x I- (^o r ^ e O-term, (4.3) has been used.) Let us estimate
first the remainder term sum: By (3.1),

(m.h)eVj(M) ( . ) j ( )

- Eh'5'2 E ! « E h'vl«!- (44)
]<h<M

The next important step is to make sure that in the sum which represents the main
portion of Ij(M) all terms are positive. For that purpose we specify the relation
between the two parameters P and M involved: For given P sufficiently large, we pick
M according to Dirichlet's approximation theorem such that

(i) ||AfG,-(m,fi)|| < - ^ for all (m, h) e I1 with |Gfm, h)| < P,

and for all j — 1 , . . . , J (where ||. || denotes the distance from the nearest integer), and

(ii) P2 <M < P2l6Cip2.

(By (3.1), for each ; the number of integer pairs (m,h) with \Gj{m,h)\ < P is «: P2.)
As an immediate consequence of (i),

sin(-27tMGy(m, h) + j \ > sin- and - cos(-27tMG/m, h) + - J > - cos -
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for all (m, h) involved in the sum. Furthermore, again by (3.1),

h < v V + h2 « \Gj(m, h)\<P< VM,

thus it is clear that, for P large, Ji3/2/?,(/i, M) is close to - throughout, (observing that
T({) -> 1 as Z, -*• 0), and hy202(h, U) is small, hence *

> + ^

for all (m,h)eVj(M) with \Gj(m,h)\<P, and for all j — 1, . . . , J. We now choose
c4 > 0 sufficiently small and put

V"(P) = {(m, h)eZ2: ' 1 <

then it follows that

7,(M) > C3

Now

E L-3/2 V^

.. = 2?
>C5 Y^, ^1/2>QP1/2>C7(logM)l/4,

1<*<C4P

where the very last inequality is a consequence of (ii). Thus, for j = 1, . . . , J,

7/M)>C8(logM)l/4.

On the other hand, by the definition of Ij(M),

y2lj(M)< sup lJ2s;(U)) f FP(w)dw.

Since

j-p'

there exists some U' e [M — 1, M + 1] such that

(4.5)
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It remains to recall that if P runs through an unbounded sequence of values, so do
M and U' by construction, in particular in view of (ii). Therefore, (4.5) together with
(4.2) completes the proof of Theorem 1.

5. Proof of Theorem 2

We may assume that J = 1 and thus have to estimate

p2X

T{X)= \ (S(M))2dM.

It is easy to see from Lemma 1 that there exists a sequence of complex numbers
(y(h, X))lshsx with

such that

£
*<* aM<n<bM.neZ

Assuming again that / " < 0, we infer from Lemma 3 that

dJVf

We first estimate the contribution of the 0-terms: It is clear that

v 2

Jx \txh logAr dM«AT2.

Therefore, by Cauchy's inequality,

J(X) «; XI'(X) + Xy2T(X)l/2 + X2

where

T(X) -f
Jx

dM,

(5.1)

(5.2)

(5.3)
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E(h, M) =
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y{h, X) y-^ e(-MG(m, h))E

K(m,h) = Jf"((p-^))Xl.

We split up the domain of summation over h into dyadic subintervals: Let

1 u r/1 V i" fl 1 I
i — } * * i+1» " i j i - " i — —i"» ' ~~ "» 1» • • • » •* t

where / is the largest integer for which 2' < X. By Cauchy's inequality,

i=0 i=0

with some fixed e > 0 sufficiently small. Therefore,

with

,M) E^?
i=0

i.M)
lieH,-

(5.4)

f1

Jx
dM.

In what follows, we write u = (w,, u2), v = (u,, u2) for elements of Z2, and put

A, = {(m, h) eZ2: he H,, -fcT(a) < m < -hf'(b)}.

A straightforward calculation yields

««r>E E (5.5)

with an appeal to the bound (5.1) for the coefficients y().
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We now keep u e At fixed for the moment and split up the inner sum over v. First
of all,

X * G ( ) * G ( ) ' G ( )X < e-G(u)-e»G(v) * e G ( u ) * < e G ( v ) * C G ( U )-

In view of Lemma 4, the total contribution of these v to the inner sum in (5.5) is
thus

« XNU'Gka), -^J « X(e'G(u))2/3 + e'G(u). (5.6)

To deal with the other v's, we define a sequence (<5r)JLo, by 5r = 2r/X for
r = 0,1 R— 1, and <5R = e*G(u), where R is the largest integer such that
2R/X < e*G(u). Then

e'G(u) - e'G(v) e [<5r> 5r+l[4» e*G(u) - <5r+1 < e*G(v) < e'G(u) - 5r,

thus, again by Lemma 4, the corresponding portion of the inner sum in (5.5) is

« -j-N(e'G(u) - Sr, 5r) « i(e*G(u))2/3 + e'G(u).

Summing this over r — 0, I,..., R— 1 and adding (5.6), we obtain altogether

By (3.1) and the definition of At, it follows that e*G(u) <K //, for u e .A,. Therefore,
inserting (5.7) into (5.5), we arrive at

Going back to (5.4) and (5.3), we finally obtain

T(X) « £(X//TI / 3 + H) log AT) « X,
i=0

and

1{X) « X2

which completes the proof of Theorem 2.
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