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Abstract 

Dynamic fracture of a two-dimensional MoWSe2 membrane is studied with molecular 
dynamics (MD) simulation. The system consists of a random distribution of WSe2 patches in a 
pre-cracked matrix of MoSe2. Under strain, the system shows toughening due to crack 
branching, crack closure and strain-induced structural phase transformation from 2H to 1T 
crystal structures. Different structures generated during MD simulation are analyzed using a 
three-layer, feed-forward neural network (NN) model. A training data set of 36,000 atoms is 
created where each atom is represented by a 50-dimension feature vector consisting of radial 
and angular symmetry functions. Hyper parameters of the symmetry functions and network 
architecture are tuned to minimize model complexity with high predictive power using feature 
learning, which shows an increase in model accuracy from 67% to 95%. The NN model 
classifies each atom in one of the six phases which are either as transition metal or chalcogen 
atoms in 2H phase, 1T phase and defects. Further t-SNE analyses of learned representation of 
these phases in the hidden layers of the NN model show that separation of all phases become 
clearer in the third layer than in layers 1 and 2. 
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INTRODUCTION 

Molecular dynamics (MD) simulation of various physical and chemical phenomena 
of materials requires complex data analysis of the simulation results so as to identify different 
phases, chemical reaction and defects generated during the simulation. For example, during 
nanoindentation simulation, plastic deformation occurs inside the material due to dislocation 
nucleation.[1] Similarly, under stress, materials like SiC, AlN show phase transformation.[2, 3] 
Identification of different phases and defects generated during MD simulation requires 
complex structural analysis. These analyses range from calculation of nearest neighbours to 
shortest circuit analysis of atoms. In general, there is no single evaluation technique that can 
be applied to all simulation data since these analyses are system dependent. However, we can 
observe that structures generated in MD simulations are complex functional forms of their 
local environment. Hence, we can create a machine learning (ML) model that can 
automatically learn this functional form directly from the simulation data.  

Recently ML methods in the material science domain have shown phenomenal 
success for high-throughput screening and property prediction.[4-8] For example, statistical 
models built using a smaller fraction of the crystal structures (called training data) can 
accurately predict a wide range of material properties like band gap,[9, 10] dielectric breakdown 
strength[11, 12] and melting point[10] for remaining crystal structure without doing any quantum 
molecular dynamics (QMD) simulation for them. ML methods like support vector regression 
[9, 10], neural network[13] and kernel ridge regression[14] are shown to accurately predict the 
bandgap of double perovskites, polymers[15, 16] and defects in FCC and disordered solid.[17] 
Neural network and gaussian processes model (GP) are also used to create data driven force 
field for materials, where parameters of the model are learned using the QMD simulation 
trajectory.[18-20]  

In this work, we have studied mode 1 fracture of MoWSe2 monolayer using MD 
simulation. At the onset of crack propagation, the system shows strain-induced phase 
transformation. To identify these phases, we have trained a three-layer feed-forward neural 
network (NN) model. The training data set consists of 36,000 atomic data examples, where 
each atom is represented by a 50-dimension feature vector consisting of radial and angular 
symmetry functions. The model classifies each atom in one of the six phases, which are either 
transition metal or chalcogen atoms in 2H phase, 1T phase and defects.  

Traditional approach for structural analysis like common neighborhood analysis 
and centro-symmetry parameter calculation only work for mono-atomic systems like 
FCC, BCC and HCP crystals, do not distinguish 2H and 1T crystalline phases in 
transition-metal dichalcogenide layers considered here. Similarly, both 2H and 1T 
structures in our simulation have the same number of nearest neighbors (nn) – each Mo 
atoms has 6 Se nn and Se atom as 3 Mo nn – due to which nearest-number analysis is not 
able to distinguish these structures either. Compared to these traditional approaches, our 
NN model is able to define an unique order parameter that identifies these phases with 
high accuracy, is highly scalable and can used to analyse large data set quickly.   
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METHOD

A. Mode1 fracture of MoWSe2 hetero-structure 

    
Molecular dynamics (MD) simulations are performed to study mode 1 fracture 

of MoSe2 monolayer consisting of a pre-crack and a single triangular patch of WSe2 in 
front of the pre-crack. The system is first relaxed at 100 K and then subjected to tensile 
force perpendicular to the crack front. The system fractures at a strain of 2.16 %, which 
matches with the experimental value[21] At the onset of crack propagation, we observe 
strain induced 2H to 1T phase transformation as shown in figure 1.[21] The transformed 
1T region also contains defects, which is shown in green colour. Movie S1 in 
supplementary material shows this phase transformation during crack propagation 
MoWSe2 monolayer. 

  

  

Figure 1: Strain induced 2H to 1T phase transformation in MoSe2 monolayer with WSe2 triangular patch. 2H regions are 
shown in orange, transformed 1T regions in blue and red, and defects are in green. 

B. Feature Vector for Neural Network model for structural analysis   

  To build a NN model, we need to define a mathematical representation for each atom 
(feature vector) that captures its local environment. There  are many choices for feature vector 
such as electronegativity (EN), ionization potential (IP), atomic displacement, atomic mass, 
local stress, radial and angular symmetry functions. In general, the choice of correct feature 
vector is highly problem specific. For example, EN, IP and atomic mass are suitable for build 
regression models for band gap for different materials,[9, 10] whereas radial and annular 
symmetry functions are suitable to create NN and GP force fields.[18-20]  To build a NN model 
for structural analysis, we have represented each atom by 436-dimension feature vector, which 
consists of combinations of radial and angular symmetry functions. The equations for radial 
and angular feature are shown in equations 1 and 2 respectively. 
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      (Eq. 1)

(Eq. 2)

   (Eq. 3)

In equations 1-3, 1, 2 ,  and Rcut are tunable parameters, which are also known as hyper-
parameters of the model. For each atom i, contribution due to all its N neighbors that are within 
the cutoff distance Rcut (8Å) is computed for a specific value of radial ( 1 ) and angular ( 2, , 
) features, respectively. Effect of neighbor atoms that are further away from the central atom is 

damped using equation 3. The radial feature vector for each atom is created using the 
contribution from Mo-Mo, Mo-Se and Se-Se bond, where 1 is varied between 0.0001 to 1000 
on a log scale. For the angular features, contribution from Mo-Se-Mo, Se-Mo-Se, Mo-Mo-Se, 
Se-Se-Mo bonds are used. For the angular features,  is taken as -1 or +1,  and 2 between 0.1 
to 10. In total, we have 113 radial feature and 323 angular features for each atom.  

C. Neural Network model for structural analysis   

A neural network model with three hidden layers is trained to identify the different 
phases of MoWSe2 monolayer (see figure 2). Output layer of the NN model consists of 6 
classes, which are Mo in 2H phase, Mo in 1T phase, Mo as defect, Se in 1H phase, Se in 1T 
phase and Se as defect. Here, input to NN model is the feature vector of the atoms, and the 
output is their probabilities in these six classes, and we choses the class with maximum 
probability as the phase label for  the atoms. The first, second and third hidden layer has 350, 
100 and 50 hidden units. In the first and second hidden layer, we have used Relu 

ation function while in the third hidden layer sigmoid function 
 The NN model is trained using 36,000 examples, which consists of 

equal distribution of atomic data from all six classes. The model is trained for 200 epoch, 
where in each epoch a batch size of 512 is used with a dropout probability of 0.25 for each 
hidden layer. After training, the performance of the  model is validated on an unseen test 
simulation dataset. 

 activ
 is used.
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Figure 2: Schematic of the neural network model showing the mapping of atomic coordinates into sets of radial and 

angular feature vectors, NN layer architecture and the six out phases predicted by the model. 

RESULTS 

Visualization of the learned data representation by NN model 

Figure 3 shows the learned representation of the data set by the first and third layer 
of the neural network and the original feature vector using principal component analysis 
(PCA) and t-distributed stochastic neighbor embedding (t-SNE).[22] Both PCA and t-SNE are 
dimensionality reduction technique and represents high-dimensional data in lower dimension. 
However, PCA preserves the global information like the distance between different clusters, 
nearest neighbor of clusters but in doing so loses the local variation among data. For example, 
in figure 3a-b, we observe that PCA is able to distinguish the two major phases, which are 
transition metal (Mo, W) and chalcogen atoms (Se) but it fails to capture the local variation in 
their structural representation, which are 2H crystal, 1T crystal and defects. The separation 
between 2H and 1T crystal structures become clearer in the third hidden layer as it contains 
four clusters compared to hidden layer 1,2 and the original feature space who contains only 
two clusters. Here, the axis of figure 3a-c corresponds to the largest two eigenvalues of the 
feature vector of the training data set. 

Figure 3d-f shows the t-SNE representation of training data set. We observe that 
separation between all the six phases become clearer in the third hidden layer as compared to 
in hidden layer 1 and the original feature space. In the original feature vector representation of 
atoms, each atom is represented as some combination of radial and angular symmetry 
functions, which does not consider the non-linear interaction between these symmetry 
functions. Due to the absence of this nonlinear interaction among symmetry functions, there is 
no clear separation between all phases in the original feature vector (see figure 3d). Hidden 
layer 1 considers this nonlinear interaction between the symmetry function, as result of which 
it is able to understand the representation of 2H and 1T crystal structure (figure 3e). However, 
it is still not able to distinguish between defects and 1T crystal structure. Addition of more 
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layers alleviate this problem, and the third layer of the NN model is able to distinguish all the 
six phases (figure 3f). 

 

 

Figure 3: (a-c) shows PCA and Figure (d-f) shows t-SNE analysis of the input feature vector and the learned 
representation of data in hidden layer 1 and 3 of neural network 

Neural Network training and Feature learning 

The training accuracy of the model after 200 epoch is 93%, where each atom is represented 
by a 436-dimension vector. Since the hyper-parameters of the symmetry function are randomly 
chosen, many attributes of the feature vector will be highly correlated or irrelevant. Removing 
these irrelevant features will not only make the computation faster but also it will make the 
model more compact and increase its interpretability. 

For multi-layer neural network, relevance of each feature can be computed by calculating 
its gradient with respect to the input feature. Figure 4a-b shows the gradient of the 10 features 
whose gradient either changed the most (figure 4a) or the least (figure 4b). We have re-trained 
another model using only a 50-dimension feature, which consists of only the most significant 
features with maximum gradient change or the least significant ones. The training accuracy of 
these two models is shown in figure 4c-d, where we can see that model constructed using only 
the 50 most significant features have an accuracy of 91% which is just 2% less than model 
accuracy created using entire feature vector. On the other hand, model constructed using less 
significant features have only a training accuracy of 58%.  

ht
tp

s:
//

do
i.o

rg
/1

0.
15

57
/a

dv
.2

01
8.

67
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1557/adv.2018.673


1115

 

 

Figure 4: (a) 10 features whose gradient change is maximum during training using full feature vector set. (b) 10 features 
whose gradient change is minimum during training. (c) and (d) show training and validation accuracy of models, which 
are training with 50 features with maximum gradient change or minimum gradient change in the original feature space. 

Hyper-parameter tuning and data visualization 

 Figure 5a visualizes the fracture data set where structure type for each atom is predicted by 
the NN model. We observe that it classifies the 1T and 2H crystal structure accurately; 
however, it mislabels some of the defects as 1T and vice versa. As we mentioned earlier, in the 
t-SNE visualization of the hidden layer (figure 3f), clusters of 2H and 1T crystal structures are 
completely separated whereas the boundary between the 1T phase and defects is not clear. 
Namely, for some atoms, their local neighbor environment is similar in 1T phase and defects, 
which causes this misclassification. For example, for some defects Mo-Se-Mo bond angle (BA) 
does not deviate much from the mean BA value of crystals as Mo-Se bond length is slightly 
above bond length of crystals, which is 2.9 Å. Since, in this model a cutoff distance of 8 Å is 
used for symmetry function calculation, and hence damping factor will be very small for these 
defects. This creates noise or ambiguity in the angular symmetry function value as it will 
exactly same in the 1T phase and the defects. Figure 5b visualizes the same fracture data but 
using a reduced cutoff distance (3 Å) for angular symmetry function. This tuning of the cutoff 
distance increased the model accuracy up to 95% as we can observe that misclassification 
between 1T phase and defects has significantly been reduced. 
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Figure 5: Visualization of validation set of a MoWSe2 fracture data for modes tuned with two different cutoffs for 
angular symmetry function calculation (a) rcut= 8 Å and (b) rcut=3 Å  

CONCLUSIONS 

In summary, we observed that neural network-based analysis code can 
automatically learn the relevant information from the simulation data. Multiple hidden layers 
help better separate the phases of MoWSe2 compared to shallow network. A careful tuning of 
various model hyperparameters (e.g. number of radial and angular symmetry functions and 
cutoff distance for symmetry-function calculation) increases the model performance up to 
95% while keeping the model complexity very small. The analysis of the learned features of 
the network gives us further information about the parameters of the symmetry functions that 
are important to separate different phases. 
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