Ergod Th & Dynam Sys (1987), 7, 559-566
Printed in Great Britain

Recurrence without uniform recurrence

T W KORNER
Trinuity Hall, Unwersity of Cambridge, Cambndge, England

(Received 10 November 1986)

Abstract We construct a minimal homeomorphism of a compact space such that a
sequence of 1ts 1terates converges pointwise to the identity but no sequence of 1its
1terates converges uniformly

1 Introduction
The object of this paper 1s to construct the system described below

THEOREM 11 There exists a compact, complete, metric space (X, d) and a homeo-
morphism T X - X such that
(1) the set {T"x n=0} s dense in X for each xc X,
(11) sup,exd(T"x,x)=1 for each m=1, yet
(1) there exists a sequence n(1)<n(2)< such that d(T"x, x)»0 as j >0
for each xe X

I should iike to thank B Weiss for suggesting this problem and for pointing out a
flaw 1n my original attack Since, in my opinion, the interest of this paper lies more
in the method of construction than in the result itself I shall begin by indicating
why we might expect such a construction to be fairly complicated The following
result was pointed out to me, again by B Weiss

LEMMA 12 Suppose that (X, d) 1s a compact metric space and T X->X 1s a
homeomorphism such that {T"x n=0} s dense in X for each x € X Suppose further
that we can find a sequence n(1)<n(2)< of integers and a sequence £(1)>
e(2)> of positwe real numbers such that £(j)— 0 as j—» c© and such that for each
x € X there exists an integer jo(x) with

d(T"Vx, x)=<£(}) Sor all j= jo(x)
Then sup,.x d(T"V"x, x) >0 as j»©
Proof Let
E(k)={xe X d(T"Vx, x)=<¢e(j) for all j= k}
Then each E (k) 1s closed and, by hypothesis, |_J5-; E(k) = X By the Baire category

theorem we can find a k, and a non-empty open set U such that U < E(k;) Since

{T"x n=0}1s dense in X, the sets T""U [n=0] form an open cover of X and so,
by compactness, we can find an M such that | J¥_, T""U =X, 1e such that for

each x€ X there exists an 0=m=< N with T"xec U
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Now let w(¢) be the common modulus of continuity of I, T', T2, |, T ™ 1e

let
w(e)= sup sup{d(T ™u, T"™v) d(u,v)=<c¢e}

O=m=N
We observe that w(e) >0 as £ 0 and that we can now conclude the proof For if
x€ X then T"xe U for some 0=m=M and so, If k=k,
d(T"®T™x, T"x) < e(k),
whence
d(T"®x, x)=d(T"™(T"*T™x), T"™(T"x)) < e(k)
Thus supxex d(T"®'x, x) = w(e(k)) for all k= k, and the lemma follows a

2 Reduction to a semi-combinatorial problem
Let A be a compact subset of R and let A” be the space of two-sided sequences
x Z- A% Let d be the distance defined on AZ by

d(x, y)=sup 27 ¥|x, — y|
keZ

and let T be the shift map T A%~ A% given by
(Tx)=x,sy  (keZ)

Then (A%, d) 1s a complete, compact, metric space and T a homeomorphism
Furstenberg and his collaborators Katznelson and Weiss have brilhantly exploited
the analytic structure of (A%, d, T) to obtain results on the combinatorial structure
of A% (see [1]) We shall reverse the process by using a combinatonal construction
in A% to obtamn the analytic Theorem 11 Examples of such constructions are
discussed 1n [1, Chapter 1, §§ 3, 5] The examples given there take A to be a finite
set but we shall use A=[-1,1] The fact that A 1s then connected 1s essential for
our construction

From now on T and d will have the meanings assigned to them in the previous
paragraph We intend to deduce Theorem 1 1 from the following lemma which 1s
not yet completely combinatorial since 1t mentions metric closure

LEMMA 2 1 There exists a subset X of [—1,1]% and a sequence n(1)<n(2)<
with the following properties

(1) Ifx, ye X thengwenk =1 and £ > 0 we can find anm = 1 such that |y,.,, — x,| <
e forall [r|<k

(1) For each m # 0 there exists an x € X such that |x,, — x| = 1

(m) If xe X and p=k+1 then, for each 1€ Z,

lx, _x1+n(p)[ > = lxl —xl+n(l)| =2

forallp—1=Il=k

(tv) If xe X then Tx, T 'xe X

(v) X 1s closed in ([—1,1]%, d)

Proof of Theorem 11 from Lemma 2 1 Condition (v) tells us that (X, d) 1s complete
and compact and condition (1v) shows us that T (restricted to X) 1s a homeomorph-
ism Conditions (1), (1) and (1) yield the corresponding conditions of the theorem
Thus 1if x, ye X and &> 0 then, choosing k=1 with 2> ¢!, condition (1) tells us
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that we can find an m =1 such that |y,,., — x,| < ¢ for all |r|< k and so
d(T™y, x)=sup 2 "y, —x|<e
reZ

Thus the orbit of each point y 1s dense and (1) holds Similarly condition (1) tells
us that for each m there exists an xe X with |x,,—xo|=1 and so d(T™x, x) =1
Finally we observe that if x € X condition (11) implies that |, — X, () = 2°7" for at
most one value of p=r+1 and s0 X,~ X4, >0 as p> for each 1eZ Thus
d(T"Px, x)>0 as p->oo for each x€ X as required [l
The reader should observe that, although condition (1) of the lemma forces
d(T"?x, x) >0, the convergence can have hiccups These hiccups enable us to
evade the conclusion of Lemma 12 From a more combinatorial point of view our
problem has been to find a condition which 1s weak enough to be compatible with
condition (1) and (u1) and yet strong enough to force pointwise convergence

3 Reduction to a purely combinatonal problem
The next step 1s in an obvious direction We show how Lemma 2 1 can be deduced
from a purely combinatorial lemma

LEMMA 3 1 There exists a sequence of integers m(3) =5 and a collection of subsets
U())<c[-1,1]1"7, where n(j) = m(1)m(2) m(j), with the followng properties (we
adopt the convention that if ue U(j) then up,(,y.,=u, forallleZ, 1=r=n(y))
(1),«1 IfueU(y)andve U(j+1) thenwecanfindanl 1=<1=m(j+1), such that
[, = Vi yar|=277" for all 1<r=n(y)

(1), If 1=[m|=n(j)—1 we can find a ue U(j) and 1=<r, s=2n(j) such that
s—r=mand |u,—u]|=1

(), IfueU(y) then, for eachj—1=p=k+1 and each 1€ Z

|u, - ul+n(p)' > 2%k = ,ur - ul+n(l)l = 22_'a

Jorallp—1=z=l=k

(V),er IfveU(y+1) and 1=<1=<m(j) then wnting u, = vy, (1< r=n(y)) we
have ue U(y)

(v);«1 There exists an e(y)e U(y) such that, if veU(j+1) then v, =
Unyn)-nip+r = €(J), for all 1=r=n(y)

Thus the ‘sentences’ of U(j+2) are composed of ‘words’ from U{j+1) and these
words 1n turn are composed of ‘letters’ from U(y) Notice that each ‘sentence’ 1n
U(y+2) begins and ends with the same ‘buffer word’ e(y+1) Thus if we study a
short sequence of ‘letters’ in some ‘paragraph’ or ‘chapter’ we know that the sequence
either lies well within a single sentence or falls within two successive copies of the
same ‘buffer word’

Using Lemma 3 1 1t 1s very easy to prove a lemma from which Lemma 2 1 follows
almost immediately

LEMMA 3 2 There exists a sequence n(1) <n(2) < and a collection of subsets X ()
of [—1, 117 wath the following properties

(1) IfxeX(j+1)andye X(j+2) then given 1 < k= we can find an m =1 such
that |x, =y, m|=2772 for all |r| =}
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(n) If 1=|m|=n(y)—1 we can find an x € X(j) such that |x,, — xo| = 1
(1) If xe X(J) then, for eachj—1=p=k+1 and each 1€ Z

Ixx_xl+n(p)|>22_k = |xx_xx+n(l)‘S22_I

forallp—-1=l=k

(w) If xe X(j), then Tx, T 'xe X(J)

(v) X(j) s closed in ([—1,11,d)

(vi) X())2X(+1)
Proof of Lemma 3 2 from Lemma 3 1 If we replace the U(j) of Lemma 3 1 by therr
closures (with respect to the usual topology on [—1, 1]""") the conditions of that
lemma still apply We may therefore take the U(}) to be closed We then define
X () to be the collection of all infinite strings of words from U(j) More precisely,
let us say that x € X (g, 7) 1f and only if whenever I € Z and u, = Xy, )4+, (1 = r=n(y))
it follows that ue U(y) We set X(7)=\J7"" X(q,7) We note that

(v) X(q,7)=X(g+n(y),y) forall geZ, and

(vi) X(q,7)= X(q,7+1) forallgeZ
Conditions (1v) and (v1) follow at once Since we have taken U(j) closedin[—1, 1]
it follows easily that X (g, j) 1s closed in ([—1, 1]%, d) and condition (v) follows

To prove (1) we observe that x€ X(q,7+1) and ye X (p, j+2) where (using (1v)’)
we may suppose |g|<n(yj+1)/2+1 and p=n(y+2)+1 Two cases arise according
as |q|>j or |q| =y If |g|>; then, writing Q=g 1f g<0and Q=q—n(j+1)1f =0,
we know that if u;=xo., [1=s5=n(y+1)] and v,=y,., [1=t=n(y+2)] then
ue U(yj+1) and ve V(j+2) By condition (1) of Lemma 3 1 we can find an 1<I=<
m(j+2) such that Ius - v,,,(JH)H[S 277% for 1=s=n(yj+1) Thus taking m=
p+in(j+1)~Q we have m=1 and

|ym+r _xrl = |L‘m+p+r - uerl = |U1n¢,+1)+r—o - “r—o| <2772

for |r|=y

If |g|=J then, observing that ye X(j+2, p)=< X(j+1, p), and using condition
(v) of Lemma 32, we know that, writing u, = x,.,, U, =¥, [|s|=21 we have
u,=e(y)s=vo, forl=s=2yand u,=e(j),)-s=v, for -2y=5s=0 Thus x, = u,_, =
Ur_q =Yp_q—, fOr [r|=<j and, setting m = p — g we have m=1and |y,,_,_|=0=<27"?
for |r{=<j; Thus (1) holds

The proof of (11) involves a similar sphitting into cases Using (1v)’, we know that
xeX(q,7) with g+1si=q+n(y) If i+n(p)<q+n(y) weset u,=x,,, (I=r=
n(7)) sothat u e U(7) Then |x, — X,sn(p|> 2275 1mplies (U, g — s n(p)_q| > 2% which
by Lemma 3 1(1n) mmphies Ju,_, — 1 ney-o| =227" and so |x,— x,, | =2°" for all
p—1=I=k If, on the other hand, :+n(p)> g+ n{y) we know from Lemma 3 1(v)
that

Xgen(y-ni-n+r = €(J—1),  for1=r=2n(j—-1)
(where, by convention e(j—1),-n+s=e(j—1); 1=s=n(;—1)) It follows that
x,=e(j— 1)l~q*n(1)+n(r1) =e(y— l)lfq*n(JHZn(rl) = Xitniy—1)

Thus 1f |x, = X, ny| > 2°7% we have j—2=p and

—k
Ie(_] - 1)1—q—n(;)+n(j-—l) - e(.] - l)xqun(])+n(171)+n(p)‘ > 22 ’
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whence, by Lemma 3 1(1m),

e(J=1)igontni-n— € = 1 ignipn-nennl =277

and so |x, — X, ,y| =2%7' for all p—1=1=k Thus (1) holds

Finally, to prove (1) observe that by condition (1) of Lemma 3 1 we can find
ue U(y)and 1=r,s=<2n(y)suchthats—r=mand |u, — u,|=1 Setting Xjn(,)+:—, = U,
(1=t=n(y),leZ) we have xe X(J) and |x,—x,,|=1 0
Proof of Lemma 2 1 from Lemma 32 Set X =|_};2, X(7) Then conditions (1), (1),
(1v) and (v) of Lemma 2 1 follow at once from conditions (1), (11), (1v) and (v) of
Lemma 3 2 To prove Lemma 2 1(11) we observe that by Lemma 3 2(u1) we can find,
for each j=1, an x(j) € X(7) such that |x(}),,—x(j)o|=1 Since ([—1,1]%d) 1s
compact the sequence of x(7) must have a limit point x, say By Lemma 3 2(v1)
x(7)€ X(k) for ali j=k and so, since X (k) 1s closed, xe€ X (k) for all k=1 Thus
xe X and, since d(x(}), x)=>0, X, —Xo| =1 (]
Remark. In fact, our construction will be sufficiently explicit to allow us to write
down a specific x without appealing to general results

4 The induction

Although Lemma 3 1 has an inductive form 1t does not, as it stands, lend 1tself to
an inductive proof The key step in the paper consists 1n replacing 1t with a narrower,
more specific, result which can be obtained by induction

LEMMA 4 1 There exists a sequence of integers m(j) = 5 and three sequences of functions

a(y, ) [0,1]»[-1,1]"”
b(s ) [0,1]-[-1,1]"
¢y ) [0,1]>[~1,1]"”
where n(j)=m(1)m(2) m(y) with the following properties (we write U(j) =
{fa(y,t) te[0,11}u{b{y,t) te[0,11} u{c(y, t) te[0,1]} and adopt the convention
that if ue U(y) then uy, ., =u, forall leZ, 1=r=n(y))
(1,41 IfueU(y) andve U(j+1) then we can find an ], 1<1<m(j+1), such
that
Uy = Oy =277 forall 1=r=n(y)
(), If1t=m=n(y)—1wecanfindue{a(y1),b(s,1),c(3, 1)}, 1=r, s=2n(y)
such that s—r=m and |u, —u]=1
(1), Ifue U(y) then for each j—1=p=k+1 and each 1€ Z
lul—lx+n(p)|>22hk = 'ul—u‘+n(l)|S22_l
forallp—1=l=k
(v),.n IfveU(y+1) and 1=1=m(j) then writing u, = vj,y+, (1=r=n(y))
we have u e U(J)
(V)j+l vae U(.]+l) then v, = Un(j+l)—n(})+r= C(_], O)rfor al 1=r= n(])
(v1), a(},0)=>5(;,0)=1¢(,,0)
(vi1), There exists an N(j), 1=N(@)=n(y), such that a(j, t)n(y=1t and
b(j, hne,y=—t
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(vin), If1<sk=<j—1,1=<1=n(y) and t€[0, 1] then
la(s, ). =b(, > = |a(, D —a(y, 0,|=2*"
forallj—1=l=k
Thus conditions (1),.,, (1), and (1v), come over from Lemma 3 1 unchanged,
conditions (1), and (v),,; are strengthened whilst conditions (1v),, (vi1), and (vin),

are new A proof of Lemma 4 1 will thus give a proof of Lemma 3 1 The first step
in the inductive proof of Lemma 4 1 1s simple

LEMMA 42 Let n(1)=m(1)=5, N(1)=3 and
a(1,1)=(0,0,¢0,0) (0=t=1)
b(1,1)=(0,0,—1¢0,0) 0=1=<1)
c(1,t)=1(0,0,0,0,0) 0=t=1)

Then conditions (1), (11),, (v1),, (vnn), and (1x), of Lemma 4 1 are satisfied

Proof Direct inspection (Condition (1x), 1s vacuously satisfied ) .

To complete the induction we use the following lemma (1n which an attempt has
been made to simplify the notation)

LEMMA 43 Suppose n(j)=5n(l) for all j—1=1=1 and suppose that the three
functions from [0, 1] to [—1, 1]’ whose values at 0=t =<1, giwen by a(t)=a(y, t),
b(t)=b(y, 1), c(ty=c(y, 1), satisfy conditions (11),, (11),, (v),, (v1},, (vi1), and (1x), of
Lemma 41 Then we can find m(j+1)=5 and three functions from [0,1] to
[-1,1]1"Y*"Y (where n(j+1)=n(j)m(y+1)) whose values at 0<t=1 are given b
A(ty=a(y+1,1), B(t)=b(y+1,1), C(t)=c(y+1,t) and sansfy all the conditions
(1),+1 to (vin),,, of Lemma 41

Proof Since a, b, ¢ are continuous on [0, 1] they are umiformly continuous We can
therefore find an > 0 such that ' 1s an integer and |a(t), — a(7),], |b(¢), — b(7),],
le(t), —c(1),] <277 whenever |t—7|<n and 1=r=n(j) We set M=7n '+1,
m(j+1)=18M +n(y) and define A, B and C as follows

If0=1=15M, 1=r=n(y) we set

A(t)ln(j)+r = B(’)In(jH—r = C(t)ln(})+r = Eln(j)+r

where
Epp+r=a(ln), (0=sl=M)
=a(l), (M+1=I[<4M)
=a((5M-1l)n), (M+1=<[=5M)
=b((I-5M -1)7), (SM+1=I<6M)
=b(1), (6M+1<1<9M)
=b((10M - l)7n), (OM+1=<I1=10M)
=c((I-10M —-1)n), (IOM+1=<i<11M)
=c(1) (1M +1=1=<14M)
=c((15M -1D)n), (14aM+1=<i<15M)
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If15SM+1=<I=<16M, 1=r=n(j) we set
A tniyrr = C(Dimipy+r=al(l=15M = 1)nt),
B(t) i1+, = b((I-15M —1)mt),,
whilst if 16 M +1=<I<17M, 1=r=n(J) we set
A(t) i yer = a((17TM = D)nt),
B(t) tn(y4r = C() jnyyer = D{1TM ~D)nt),

It 1s easy to check that conditions (1v),+,, (v),+; and (v1),,, are satisfied and to see
that condition (vu),,, 1s satisfied 1t suffices to take N(j+1)=16Mn(;)+ N(j) We
check the remaining conditions (1),4,, (11),4+,, (11),4; and (vm),., one by one

Condition (1),,, Suppose uc U(y) and ve U(y+1) Then ue{a(t), b(t), c(t)} for
some fixed 0=t=1 Choose 1 =k=M so that [(k—1)n —t| <7 By the choice of 7
|Einiyyer—a(t),|=la((k=1)n), —a(0),|<277",
| Etsaaiminer—b(),] = (k= 1)), = b(1),| <277,
‘E(10M+k)n(})+r_c(t)r =\C((k*l)n),—C(t)r|<2~’71,
for all 1=r=n(y) It follows that
min - max )IU(SPM+k)n(_,)+r_ur|<2_j_1

Os=p=2l=sr=nly

and condition (1),,, follows

Condition (11),,, We begin with two simplifying remarks Firstly since w41 =4,
the condition 1=r, s=2n(y) may be ignored Secondly if r—s=m then
n(j+1)+s—r=n(yj+1)—m and so we need only consider l=m=n(y+1)/2+1
Even so, we shall disinguish 3 cases according as 1=m= Mn(;) and
m=z0mod n(y), 1=m=Mn(j) and m=0mod n(y), or Mn(j)+1<m

Ift=m=Mn(j)and m#0mod n(j) then m= kn(y)+ u forsome integers 1 = k<
M and 1=u=n(y) By condition (u), we know that there exist integers 1= p,
o <2n(y) such that

max (Ja(1), —a(1),], |b(1), —b(1),], |c(1), = c(D),])=1
It follows that

012122(2(iC(l)((5p+1)M+k)n(,)+#_C(l)(5p+1)Mn(J)+a|)21
We note that

((BP+H+ 1M+ Kk)n())+u)—((5P+1)Mn(j)+o)=m,
so our discussion of this case 1s complete

If l=m=Mn(j) and m=0mod n(y) then m=kn(y) for some 1<k=<M Thus
setting r=(16 M + k)n(j)+ N(y) and s=16Mn(j)+ N(j) we have r—s=m and,
using condition (viu),,
’C(l)r_C(l)s|: 16((M—k)n)N(j)_a(1)N(])l
Finally, if Mn(j)+1=m=<n(j+1)/2+1 then taking r=16Mn(y)+ N(j) and s=
r—m we have 1<s=(15M+1)n(y) and so A(1), = C(1), whilst A(1),=1, C(1),=
—1 Thus
|A(), —AQ)[+|C(1), - C(1)] =1 - A1) [+|A(1) +1]=2
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and so max (JA(1),— AQ1),|, |C(1),— C(1),[) =1 Combining the 3 cases discussed
we obtain condition (11),4,

Condition (11),,, Observe first that this condition 1s vacuously satisfied 1f j=1 We
may therefore suppose j=2 We distinguish 2 cases according as p<j—1or p=y
If p<j—1 the argument 1s exactly the same as that used to establish condition (11)
in the proof of Lemma 3 2 from Lemma 3 1 If p=; we argue as follows

By the choice of n and the definitions of A, B and C

|A(8), = A() crnpls [B(2), = B(8) iany <277

forall 1=:1=n(y+1) whlst

|C(8), = C(t) ienipl <277
forall 1=:1=(16 M —1)n(y) and all 16 Mn(j)+1=1=n(y+1) (0=t=<1) Further,
by (v),,

C(t)l6Mn(j)—n()—l)+r = C(] -1,0),= C(t)16Mn(1)+n(_])—n(j-1)+r
forall 1=r=n(;—1) and so
|C (1), = C(1) snp| =0<277"

for all 16Mn(j)—-n(j—1)+1=<1=<16Mn(3) Thus o 1=1=n(y+1) and
|4, = U sn,)|>2°"% we can conclude that u=C(7) for some 0=7=1 and
1=(16M ~1)n(j)+q for some 1=q=n(j)—-n(y—-1)

It follows that u,=C(7),=a(r), and U, =C(7)iin, =b(r), Since
la(),—b(7),|>2"% we see from (vmn), that |a(7),ram|=2""" and so,
since a(7)gsniy=C(T)irn( = Urny, that |u,—u,pn|=2°"" for all j—1=I=k
as required
Condition (vi1),; As we observed above, |A(f), = A(f),1n(y| <277 forall 1=i1=<
n(yj+1)and all0=t=1 Thus we need only check condition (vi1),;, forj—1=I1=k
since the case /=7 1s settled automatically Since when j =1 there are no further
values of ! to consider we may suppose j =2

By construction A(t),= B(t), for all 1s:1=<15Mn(y) and, by condition (v1),,
A(1),= B(1), for all Pn(j)—n(j—1)+1=1= Pn(y) Thus 1f |A(t),— B(t),|>2*"" 1t
follows that 1 = kn(j)+r where I5SM=k=<17TM—-1and l=r=n(y)—-n(y-1), and
so A(t), = a(r),, B(t), = b(r), for some 1= 7=0 We now have |a(7), — b(7),|>2""*
whence, by condition (vin),, |a(7),,.—a(7),|=2*"" for all j~1=1I=k Since
a(7)rrnay= A(t)4ny this yrelds |A() eny— A(1) |=27"" for all j—1=Izk as
required u

Lemmas 4 2 and 4 3 together give Lemma 4 1 and so the proof 1s complete
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