COMMENT ON A NOTE BY J. MARICA AND J. SCHÖNHEIM

By

CHARLES C. LINDNER

In [2] it is shown that an $n \times n$ partial latin square with $n-1$ cells occupied on the main diagonal can be completed to a latin square. We can use the technique in [2] to prove the following result.

An $n \times n$ partial latin square with $n-1$ cells occupied with $n-1$ distinct symbols can be completed to a latin square if the occupied cells are in different rows or different columns.

Let P be an $n \times n$ partial latin square based on $0,1,2, \ldots, n-1$ satisfying the above conditions, and let $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-2}, y_{n-2}\right)$ be the occupied cells where $y_{0}, y_{1}, \ldots, y_{n-2}$ are distinct. In Z_{n} let $x_{n-1}=x_{0}+x_{1}+\cdots+x_{n-2}$. Then $\left(-x_{0}\right)+\left(-x_{1}\right)+\cdots+\left(-x_{n-2}\right)+x_{n-1}=0$ and so by a result due to M. Hall [1] there exists a permutation $\left(\begin{array}{llll}a_{0} & a_{1} & \ldots & a_{n-1} \\ c_{0} & c_{1} & \ldots & c_{n-1}\end{array}\right)$ of the elements of Z_{n} such that

$$
c_{i}-a_{i}=-x_{i} \quad(i=0,1,2, \ldots, n-2) \quad \text { and } \quad c_{n-1}-a_{n-1}=x_{n-1}
$$

This gives

$$
c_{i}+x_{i}=a_{i} \quad(i=0,1,2, \ldots, n-2) \quad \text { and } \quad c_{n-1}-x_{n-1}=a_{n-1}
$$

Now define a latin square $\left(b_{i j}\right)$ by $b_{i j}=i+c_{j} ; i, j=0,1,2, \ldots, n-1$. Then in $\left(b_{i j}\right)$ the cells $\left(x_{0}, c_{0}\right),\left(x_{1}, c_{1}\right), \ldots,\left(x_{n-2}, c_{n-2}\right)$ are occupied by distinct symbols. Since $c_{0}, c_{1}, \ldots, c_{n-2}$ are distinct, a suitable permutation of the columns of $\left(b_{i j}\right)$ places distinct symbols in the cells $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-2}, y_{n-2}\right)$. Hence a permutation on the elements $0,1,2, \ldots, n-1$ places the required symbols in these cells giving a completion of P.

References

1. M. Hall, Jr., A combinatorial problem on abelian groups, Proc. Amer. Math. Soc. 3 (1952), 584-587.
2. J. Marica and J. Schönheim, Incomplete diagonals of latin squares, Canad. Math. Bull. 12 (1969), p. 235.
[^0]
[^0]: Auburn University,
 Auburn, Alabama

