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Abstract

The Boom Clay is being investigated as a host rock for disposal purposes of radioactive wastes. Although the formation is relatively uniform and

homogeneous, there are embedded septaria bodies (carbonates) or layers of septaria that may constitute a problem regarding the integrity of the

clay. It is therefore essential to locate these geobodies, particularly with seismic experiments. Since the medium shows strong attenuation it is

necessary to correct for this amplitude loss if true amplitudes of the reflections are required when imaging these bodies after the stack. To achieve

this task, we implement a reverse-time migration algorithm based on a dispersionless anelastic rheology, that is, the phase velocity and attenuation

factor are frequency independent, and back-propagation is performed with a negative quality factor, Q. The algorithm is tested on synthetic data.

For this we assume that the septaria are diffractors generating waves synchronously to simulate a stacked seismic section, that is, the result of an

exploding-reflector experiment. In this case, back-propagation is stopped when all the diffraction points are imaged at the same time. The examples

consider layers of septaria and isolated septaria embedded in homogeneous and inhomogeneous Boom Clay with zones of low Q. The amplitude of

the geobodies is recovered and the resolution is improved, even in the presence of noise.
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Introduction

The Boom Clay in Belgium is composed of clays and generally has
embedded boulders and/or thin layers of septaria (according to
the Merriam Webster dictionary, a septarium is ‘a concretionary
nodule usually of limestone or clay ironstone intersected within
by cracks filled with calcite, barite, or other minerals’). The
formation of these concretions (lithification) started early in
the diagenesis process near the sediment–water interface and
before compaction occurred (De Craen et al., 2004). The septaria
generally are made of ellipsoidal-shaped carbonate concretions,
whose sizes range from a few decimetres up to a couple of
metres (see Fig. 1). The seismic response of these thin layers
is characterised by a set of parallel reflection events, which,
depending on the frequency bandwidth, look like continuous

horizontal events or alignments of diffraction events (Fig. 2)
(see Hemerijckx et al., 1983; his Fig. 2).

The septaria may constitute a problem regarding the in-
tegrity of the Boom Clay and therefore it is essential to locate
these geobodies, preferably with seismic waves. However, the
fact is that the presence of high attenuation often degrades the
seismic images, resulting in a low resolution of targets. In this
case the conventional migration may not image the geobodies
properly.

Recently, this problem has been reconciled with an advanced
migration with attenuation compensation. For example, Wang
& Guo (2004) presented a migration algorithm incorporating
inverse Q filtering to improve the imaging resolution, although
the imaging technique is limited to 1D velocity and attenuation
models. Zhang et al. (2010) proposed a reverse-time migration
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Fig. 1. A calcareous septarium embedded in Boom Clay. The width is approx-

imately 60 cm (from Vis & Verweij, 2014).

Fig. 2. A. In-line section showing a septaria level; B. Close-up with single diffraction events; C Horizon slice at 0.2 ms below that level; the green arrows

refer to events identified in B; D. Enlarged section showing typical blotchy pattern possibly suggesting concretion distribution (from Missiaen et al., 2002).

(RTM) scheme for compensating attenuation and phase dis-
persion effects. Their viscoacoustic wave equation is based on
a constant-Q model, that is, attenuation is considered to be
approximately linear with frequency. Dutta & Schuster (2014)
used a linearized 2D viscoacoustic wave equation based on the
Zener model, written in the particle velocity–stress formula-
tion. The method is adapted from conventional least-squares
migration and reconstructs the Earth’s reflectivity image from
the recorded wavefield under the Born approximation. Zhu
(2014) implemented a time-reverse modelling approach (or
reverse-time focusing) based on a viscoacoustic wave equation
which explicitly separates attenuation and dispersion following
a constant-Q model based on fractional derivatives (Carcione,
2010). Later this idea was formulated in an RTM algorithm (Zhu
et al., 2014). Because of possible instability problems, atten-
uation compensation is necessary to stabilise the migration.

Sena et al. (2006) introduced a plane-wave approximation in
the split-step Fourier technique in the frequency domain to
stabilise the algorithm in the presence of attenuation. Zhu et
al. (2014) and Sun et al. (2015) adapted a low-pass filter to
suppress the high-frequency noise during the compensation.

In this work, we propose to use a post-stack RTM (e.g. Baysal
et al., 1983) taking into account the attenuation effects to re-
cover the migration amplitude of septaria geobodies. We use
the simple exploding-reflector concept to back-propagate the
seismic waves. To extrapolate source and receiver wavefields
with attenuation compensation, the equation used for back-
propagation of the signals has the same velocity but a negative
Q factor. We solve a lossy wave equation that is dispersion-
less. In the migration process, the recorded seismogram is used
as a time-dependent boundary condition. The seismic trace is
applied at each receiver in reversed time and the propagation
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Fig. 3. Septaria bodies and layers embedded in homogeneous Boom Clay.

The upper layer is composed of septaria bodies of 1 m size separated with

a period of 4 m. The period is 10 m for the lower layer. Moreover, there are

isolated septaria at different depths. The Q factor of the Boom Clay at the

left-hand side is 20 (surrounded by a box with dashed grey lines), while the

right-hand zone is lossless.
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Fig. 4. Synthetic seismogram computed with

the exploding-reflector method, corresponding

to the model shown in Fig. 3.

goes back in time until the origin time, where the best focusing
occurs. The reflectors are thus imaged. We also apply a low-pass
filter to suppress the high-frequency noise.

The dispersionless wave equation

Wave motion (P waves) in the (x, z) plane of an acoustic medium
is governed by the following equation:

∂x (ρ−1∂x p) + ∂z(ρ−1∂z p) = (ρc2)−1∂tt p + s(x , z, t) (1)

(e.g. Carcione 2015, Chapter 9), where p is the pressure field,
ρ is the mass density, c is the wave velocity, s is a source term,
∂i is the partial derivative with respect to the spatial variable

xi (x or z) and ∂tt is the second-order partial derivative with
respect to the time variable t. This equation can be rewritten
as

∂t

(
p
ṗ

)
=

(
−γ 1

ρc2[∂x (ρ−1∂x ) + ∂z(ρ−1∂z)] −γ

)(
p
ṗ

)
+

(
0
s ′

)
,

(2)

where ṗ = ∂t p (if γ = 0), s ′ = ρc2s and γ = 0 yields equation
(1). The introduction of γ implies wave attenuation, as we shall
see below.

Eliminating the variable ṗ in equation (2), we obtain

∂tt p = ρc2[∂x (ρ−1∂x p) + ∂z(ρ−1∂z p)] − 2γ ∂t p − γ 2 p + s ′.
(3)
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Fig. 5. Imaging by RTM without (A) and with (B) Q compensation, corresponding to the data shown in Fig. 4.

We analyse the anelastic properties related to equation (3) in
Appendix A. As shown here, a negative quality factor (implicit
in equation (3)) is required to back propagate the wavefield for
recovering the amplitudes in reverse-time imaging (Zhu, 2014).
Thus, the reverse-time imaging equation is written as

∂tt p = ρc2[∂x (ρ−1∂x p) + ∂z(ρ−1∂z p)] + 2γ ∂t p − γ 2 p + s ′.

(4)

In Appendix B we derive finite-difference versions of these
equations to perform forward and backward propagation.

An exploding-reflector version of equation (3) can be ob-
tained by assuming the impedance ρc constant in the whole
space. In this way, multiples are avoided. An approximation
to a stacked section is obtained in a single experiment by
halving the velocities and by initiating the sources at time
zero on all the reflecting boundaries. With this model, the
recorded surface time section approximates the stacked or
zero-offset section (Carcione et al., 1994, 2002). In a for-
ward simulation, the strength of each source at the inter-
faces is proportional to the normal-incidence reflection co-
efficient. Equation (3), for the exploding-reflector approach,

286

https://doi.org/10.1017/njg.2016.2 Published online by Cambridge University Press

https://doi.org/10.1017/njg.2016.2


Netherlands Journal of Geosciences — Geologie en Mijnbouw

0 100 200

Distance (m)

D
ep

th
 (m

)

0

 90

150

30

200

Q0 = 70c =1.8 km/s

c =1.8 km/s

c =1.6 km/s

Q0 = 70

Q0 = 20

Fig. 6. Septaria bodies embedded in inhomogeneous Boom Clay.
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Fig. 7. Synthetic seismograms computed with the exploding-reflector method, corresponding to the model shown in Fig. 6. A. Lossless; B. Lossy; C. Lossy

with noise (S/N = 10 dB); D. Lossy with noise (S/N = 5 dB).

287

https://doi.org/10.1017/njg.2016.2 Published online by Cambridge University Press

https://doi.org/10.1017/njg.2016.2


Netherlands Journal of Geosciences — Geologie en Mijnbouw

D
ep

th
 (

m
)

Distance (m)

 

 
0 50 100 150 200

0

50

100

150

200

D
ep

th
 (

m
)

Distance (m)

 

 
0 50 100 150 200

0

50

100

150

200

D
ep

th
 (

m
)

Distance (m)

 

 
0 50 100 150 200

0

50

100

150

200

BA

C

Fig. 8. RTM of the seismograms shown in Fig. 7B, without (A) and with (B) Q compensation; C. RTM of the seismogram shown in Fig. 7a (lossless case).

becomes

∂tt p = c[∂x (c∂x p) + ∂z(c∂z p)] − 2γ ∂t p − γ 2 p + s ′. (5)

Examples

First, we consider the model displayed in Fig. 3, where septaria
layers and boulders are embedded in homogeneous Boom Clay.
The upper thin layer is composed of septaria bodies of 1 m size
separated with a period of 4 m. The period is 10 m for the lower
layer. Moreover, there are isolated septaria at different depths.
The seismic velocity of the Boom Clay (homogeneous) is c =
1.8 km/s and the attenuation parameter is Q 0 = 20 on the left-
hand side of the model (x < 100 m) and Q 0 = ∞ on the right-
hand side. We perform an exploding-reflector simulation based
on equation (4) using a Ricker wavelet with a peak frequency
fp = 200 Hz. The waveform is

w(t) =
(

u − 1
2

)
exp(−u), u =

[
π(t − ts)

T

]2

, (6)

where T = 1/ fp is the period of the wave and we take ts =
1.4T .

We consider a numerical mesh with nx = nz = 231 grid points
and a grid spacing dx = dz = 1 m. Absorbing boundaries of size
24 grid points are implemented at the sides of the mesh. The
algorithm for forward modelling, based on the Fourier pseu-
dospectral method, uses a time step of 0.1 ms to propagate the
wavefield 2000 steps. Fig. 4 shows the synthetic seismogram,
where it is clear that the signal has been highly attenuated on
the left-hand side. On the right-hand side the response of the
layered sets of septaria is continuous and single geobodies can-
not be distinguished. This is a Fresnel-zone effect (see Appendix
C). According to the equations reported in Appendix C and the
properties used here, the Fresnel radii before and after migra-
tion at the peak frequency are R = 2.12

√
z and R = 2.25 m,

respectively. The first and second layers of septaria have z =
70 m and 115 m, implying that before migration the Fresnel
radii are 18 m and 23 m, respectively. The geobodies therefore
cannot be discriminated in the unmigrated section, since their
separations are 4 and 10 m, respectively. The migration without

288

https://doi.org/10.1017/njg.2016.2 Published online by Cambridge University Press

https://doi.org/10.1017/njg.2016.2


Netherlands Journal of Geosciences — Geologie en Mijnbouw

(a) and with (b) Q compensation is displayed in Fig. 5, where it
is clear that the amplitude has been recovered (the narrow left
vertical zone is within the absorbing boundary, implemented to
avoid wraparound). Moreover, the imaging collapses the energy
such that the single septaria in the layers can be discriminated,
since the horizontal Fresnel radius after migration is 2.25 m,
as we have seen above. The two septaria at the left-hand side
at a depth of 150 m have been recovered, even if the seismic
responses of these geobodies cannot be seen in Fig. 4. A gain
compensation could in principle recover amplitudes, but for
events whose signal-to-noise ratio is high, since this method
enhances the noise and the signal. On the other hand, Q com-
pensation enhances the signal compared to the noise. Examples
with noise are given at the end of this section.

Fig. 6 shows a model where the medium is inhomogeneous,
with a high-loss layer embedded in the Boom Clay. The septaria
geobodies are denoted by black-diamond shapes. The simulation
parameters are the same as in the previous example. The Ricker
wavelet is used as a source, with a peak frequency of 200 Hz,
and the time step is 0.08 ms. The synthetic seismograms are
displayed in Fig. 7, where it can be observed that the septaria
below the layer are attenuated with respect to those above the
layer (Fig. 7B). The migration without (a) and with (b) Q com-
pensation is displayed in Fig. 8. It can be seen that the septaria
geobodies located below the high-loss layer are not well imaged
in Fig. 8A, while they have been recovered using compensated
RTM imaging in Figure 8B. Compared to the reference image in
Fig. 8C, all the diffractors are clearly delineated.

In order to validate the robustness of the algorithm with
random noise, we corrupted the seismograms with strong ran-
dom noise (see Figs 7C and 7D). The diffractions from septaria
bodies are not easy to identify. During compensation, a low-
pass Tukey filter with a cut-off frequency of 350 Hz and taper
ratio 0.1 is applied. The cut-off frequency has been determined
by identifying the noise level in the seismic data spectrum.
The imaging results are presented in Figs 9A and 9B. The back-
ground appears noisy but both migrated sections clearly show
the septaria geobodies.

Conclusions

Conventional seismic processing is designed to restore ampli-
tudes by a time-dependent scaling, but this procedure intro-
duces amplitude and phase errors to the reconstruction of re-
flectors since it is not based on the geological model. Moreover,
this simple scaling cannot recover the correct location of the
interfaces, therefore seismic migration with loss compensation
is the correct method to recover a true amplitude wavefield.
Here, we have presented a seismic migration methodology to
compensate for attenuation loss effects in the post-stacked do-
main. The approach is based on the exploding-reflector con-
cept, where back-propagation is performed by taking a negative
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Fig. 9. RTM corresponding to the seismograms shown in Figs 7C (A) and

7D (B).

quality factor. The viscoacoustic equation used for the propaga-
tion is dispersionless, that is, the phase velocity is frequency-
independent.

The imaging method was applied to image septaria bodies
and thin layers present in the Boom Clay in Belgium. The first
example considers a homogeneous medium in terms of veloc-
ity but inhomogeneous regarding the attenuation properties.
The amplitudes of the septaria embedded in a high-loss zone
are fully recovered and an analysis based on the Fresnel-zone
concept indicates that the resolution is greatly improved after
migration. The second example considers a fully inhomoge-
neous medium and isolated septaria at random locations. It can
be seen that the amplitudes of the septaria geobodies located
below a high-loss thick layer have been recovered and the geo-
bodies correctly imaged, even in the presence of different levels
of noise.
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The results indicate that this approach can effectively im-
prove the resolution and quality of images, particularly at and
beneath high-attenuation zones.
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Appendix A: Phase velocity and attenuation and
quality factors

A plane-wave analysis of equation (3) in the homogeneous case,
without the source term, implies [∂x (ρ−1∂x p) + ∂z(ρ−1∂z p)] =
ρ−1�p → −ρ−1k2 p, ∂tt p → −ω2 p and ∂t p → iωp, where � is
the Laplacian, k is the wavenumber, ω is the angular frequency
and i = √−1. With this substitution, we obtain

c2k2 = ω2 − γ 2 − 2iγω. (7)

Then, the complex velocity is

v = ω

k
= ωc

ω − iγ
(8)

(Carcione, 2015). From this quantity, the phase velocity and
attenuation factor are

vp =
[
Re

(
1
v

)]−1

= c (9)

and

α = −ωIm
(

1
v

)
= γ

c
, (10)

respectively (e.g. Carcione, 2015) Both properties are frequency
independent, meaning that there is no velocity dispersion.

On the other hand, defining the quality factor as the total
energy density divided by the dissipated energy density (see
equations (2.124), (3.131) and (3.132) of Carcione (2015)), we
have

Q = Re2(v)
Im(v2)

= − Re2(k)
Im(k2)

= ω

2γ
. (11)

The value of γ can be obtained from the quality factor Q 0

at a given reference frequency ω0 = 2π f0, as

γ = ω0

2Q 0
. (12)

Appendix B: Finite-difference discretisation

Assuming constant density, we discretise the Laplacian. Space
and time are discretised as x = ih, z = jh and t = ndt, where
h and dt are the respective cell sizes. A suitable fourth-order
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accurate representation is

�pi, j = 1
12h2

[−60pi, j + 16(pi+1, j + pi, j+1 + pi−1, j + pi, j−1)

− (pi+2, j + pi, j+2 + pi−2, j + pi, j−2)] (13)

(e.g., Abramowitz & Stegun, 1964, p. 885), otherwise, the
Fourier pseudospectral method can be used (e.g., Baysal et al.,
1983; Carcione, 2015).

The time discretisation is

∂tt p → pn+1
i, j − 2pn

i, j + pn−1
i, j

dt2
, ∂t p → pn+1

i, j − pn−1
i, j

2dt
. (14)

Forward propagation is performed from equation (3) as

pn+1
i, j = 1

1 + ε

[
(2 − ε2)pn

i, j − (1 − ε)pn−1
i, j

+ c2dt2�pi, j + dt2s ′
]
, (15)

where ε = γ dt.
From equation (15), back-propagation is performed as

pn−1
i, j = 1

1 − ε

[
(2 − ε2)pn

i, j − (1 + ε)pn+1
i, j + c2dt2�pi, j

]
.

(16)

Note that this equation is obtained from equation (15) if
we consider a negative Q0 (or negative ε), therefore back-
propagation with equation (16) implies antidamping and re-
covery of the signal amplitude.

In the case of the exploding-reflector equation (4), the dis-
cretised equations are similar to equations (15) and (16), with
the following substitution:

c2dt2�pi, j → cdt2�c pi, j , �c = ∂x c(x , z)∂x + ∂zc(x , z)∂z p.

(17)

In the migration process, the seismogram is a time-
dependent boundary condition in equation (16). The time step

dt is equal to the sample rate of the data. The seismic trace
is applied at each receiver in reverse time and the propagation
goes back in time until the origin time, where the best focusing
occurs. The reverse modelling sums the energy of all receivers,
enhancing the signal-to-noise ratio. The imaging condition is
that of Gajewski & Tessmer (2005), that is, the origin times
of the events are given by the time where maximum focusing
(maximum amplitude) occurs.

To prevent the growing of high-frequency noise, we use a
low-pass Tukey filter in the wavenumber domain (Tukey, 1967;
Zhu, 2014). The cut-off wavenumber is calculated from the cut-
off frequency based on the maximum phase velocity of the
model. A suitable cut-off frequency is estimated by identifying
the noise in the spectrum of the observed data.

Appendix C: The Fresnel zone before and after
migration

The Fresnel zone is a measure of the horizontal resolution.
Geobodies smaller than the Fresnel zone usually cannot be de-
tected using seismic waves, but migration highly improves the
resolution. Since the vertical resolution is λ/4, where λ is the
wavelength, the horizontal resolution before migration, repre-
sented by the Fresnel radius, is

R =
√(

z2 + λ

4

)2

− z2 ≈
√

λz
2

, (18)

where z is the reflector depth and λ = c/ fp (Elmore & Heald,
1969).

Migration is a downward continuation of the seismic energy
from the receivers to the reflectors such that the theoretical
limit is obtained for z = 0, that is, after migration the Fresnel
radius is

R = λ

4
. (19)
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