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Abstract

We develop spectral theory for the generator of the q-Boson (stochastic) particle system.
Our central result is a Plancherel type isomorphism theorem for this system. This
theorem has various implications. It proves the completeness of the Bethe ansatz for
the q-Boson generator and consequently enables us to solve the Kolmogorov forward
and backward equations for general initial data. Owing to a Markov duality with q-
TASEP (q-deformed totally asymmetric simple exclusion process), this leads to moment
formulas which characterize the fixed time distribution of q-TASEP started from general
initial conditions. The theorem also implies the biorthogonality of the left and right
eigenfunctions. We consider limits of our q-Boson results to a discrete delta Bose gas
considered previously by van Diejen, as well as to another discrete delta Bose gas
that describes the evolution of moments of the semi-discrete stochastic heat equation
(or equivalently, the O’Connell–Yor semi-discrete directed polymer partition function).
A further limit takes us to the delta Bose gas which arises in studying moments of the
stochastic heat equation/Kardar–Parisi–Zhang equation.
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1. Introduction

In this work we develop spectral theory for the q-Boson (stochastic) particle system.1 This is an

interacting particle system whose generator is a stochastic representation of the generalization

of the q-Boson Hamiltonian introduced by Sasamoto and Wadati in 1998 [SW98] (see § 1.2.4 for

more details). The system (in fact, a totally asymmetric zero range process) consists of k > 1

particles on Z with locations labeled by ~n= (n1 > · · ·> nk) ∈ Zk. In continuous time, each cluster

of particles with the same location transfers one particle to the left by one at rate (1−qc), where

c is the size of the cluster and q is a parameter fixed between 0 and 1. In order to preserve the

ordering of ~n, the highest index particle in a cluster is always the one which moves left.

This particle system can be understood as being a discrete space, q-deformation of the

continuum delta Bose gas on R with attractive coupling constant (see §A.1). This delta Bose

gas has a rich history, going back to the foundational work of Lieb–Liniger in 1963 [LL63],

and it has recently played an important role in the physics literature [McG64, Kar87, Dot10,

CLR10, CL11, PS11a, PS11b, CQ11, PS11c, IS11, IS12, CL12, IS13, Dot12, Dot13a, Dot13b,

Dot13c, ISS13] surrounding the Kardar–Parisi–Zhang (KPZ) equation and universality class

(which includes random growth models, interacting particle systems and directed polymers; see

the review [Cor12]). More exactly the moments (for a fixed time t but possibly different spatial

locations x1, . . . , xk ∈ R) of the solution to the stochastic heat equation (whose logarithm is the

KPZ equation that models a randomly growing interface) satisfy the delta Bose gas with initial

data corresponding to the initial data of the stochastic heat equation. For more details see §A.1.

The moment problem for the solution to the stochastic heat equation is not well posed since

its moments, though all finite, grow too fast to characterize the distribution of the solution.

Despite this mathematical limitation, there has been a significant amount of non-rigorous work

using these moment formulas to extract distributional information about the solutions to the

KPZ equation; this sometimes goes by the name of the polymer replica method. In the instances

for which rigorous results were available via other means [ACQ11, CQ13, BCF14, BCFV14]

it has been checked that these computations have yielded the correct answer. There are now

many non-rigorous KPZ distribution computations, such as those involving different types of

1 In [SW98] this particle system was referred to as the q-Boson totally asymmetric diffusion model while in
[BC14, BCS12, KL13] it was also referred to as q-TAZRP. The term ‘stochastic’ is included here to differentiate
this with the non-stochastic quantum particle system considered in earlier work [BBT94, BIK98] under the name
q-Bosons. That earlier studied system is a special limit of the more general system presently considered (see § 6.2).
Despite this, in what follows we will generally suppress the term ‘stochastic’, though still always referring to the
stochastic particle system.
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initial data (flat/half-flat [CL11, CL12], stationary [IS11, IS12, IS13], or more general [CQ11])
or different times [Dot13b], which are based on this technique and which do not yet have
rigorous counterparts. Such computations involve some level of guessing (as to how to sum
certain divergent series) which varies problem to problem, hence it is hard to be confident (let
alone prove) whether the outcome of each additional computation will yield the correct answer.

One way to put this line of work on a firm, even rigorous, footing is to find discrete
regularizations of the KPZ equation which are integrable and well posed in the sense that formulas
for moments characterize the distribution. One such system is the q-deformed totally asymmetric
simple exclusion process (q-TASEP) which was introduced by Borodin and Corwin [BC14] in
2011 via the framework of Macdonald processes. It was later observed by Borodin et al. [BCS12]
that moments of q-TASEP solve the q-Boson particle system with initial data corresponding
to the initial condition of q-TASEP. Drawing on [BC14], in [BCS12] this system was explicitly
solved for one family of initial data (corresponding to q-TASEP started from half-stationary
initial condition). Until now, it was not clear how to analyze this system for general initial data,
as would be necessary to rigorously approach the many problems studied via the polymer replica
method in the past few years.

The reason why the delta Bose gas can be solved for general initial data is that it is known
how to diagonalize the Hamiltonian. Though the eigenfunctions for this Hamiltonian have been
known via coordinate Bethe ansatz [Bet31] since the work of Lieb and Liniger [LL63], alone they
do not suffice to solve the time evolution equation. Ultimately this requires a Plancherel formula
which shows how to decompose general initial data onto a subset of the algebraic eigenfunctions
(and hence shows completeness of the Bethe ansatz as well). Various forms of such a result have
been proved in [Oxf79, HO97, PS11c] for the delta Bose gas.

In this present work we prove a Plancherel formula for the q-Boson particle system. This
allows us to explicitly compute the moments of q-TASEP for general initial data, which will
hopefully serve as the basis for further rigorous asymptotic work confirming the results of the
previously made non-rigorous calculations about the KPZ equation. Our proof of the Plancherel
formula is fairly simple, relying in part on the contour shift argument used in Heckman–Opdam’s
proof of the delta Bose gas Plancherel formula [HO97] (see § 3 for more history on this argument).
In that previous work, the Hermiticity of the Hamiltonian played an important rule. In our work
we consider a non-Hermitian Hamiltonian, however we find that a symmetry (known sometimes
as PT-invariance or joint space-reflection and time-reversal symmetry) between our Hamiltonian
and its adjoint is a suitable replacement for Hermiticity, see Remark 2.3.

A large part of the paper is devoted to modifications, implications and degenerations of this
core result. For example, the Plancherel formula immediately implies a (spatial) orthogonality
of the left and right eigenfunctions and suggests a second (spectral) orthogonality which we
prove separately by ultimately appealing to the Cauchy–Littlewood formula for Hall–Littlewood
(multivariate symmetric) polynomials (though we should emphasize that our eigenfunctions are
not Hall–Littlewood polynomials and only degenerate to them in a certain limit). With minor
modifications all results (though not necessarily the probabilistic interpretations) apply for more
general parameter q ∈ C. Such q (especially on the complex unit circle) arise naturally from a
quantum physics perspective (see § 5).

It is possible to take a limit of the q-Boson particle system so as to recover the continuum delta
Bose gas and its Plancherel formula. There are also two discrete space limits we study; one leads
to a delta Bose gas and Plancherel formula previously studied by van Diejen [vDi04] and another
leads to the delta Bose gas and Plancherel formula related to the semi-discrete stochastic heat
equation (or equivalently the O’Connell–Yor semi-discrete directed polymer partition function).
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There exist other integrable discrete regularizations of the KPZ equation (and delta Bose

gas) such as the asymmetric simple exclusion process (ASEP) or q-PushASEP [BP14, CP13]. In

a companion paper [BCPS14] we prove (in a similar manner as here) a Plancherel formula for

ASEP and the Heisenberg XXZ quantum spin chain on Z (thus recovering the XXZ results of

[BT77, BG90, Gut00] in a different manner).

1.1 Main results

Let Wk = {~n = (n1, . . . , nk) ∈ Zk | n1 > · · · > nk}. The backward generator for the q-Boson

particle system is written Hbwd and defined via its action on functions f : Wk
→ C as

(Hbwdf)(~n) =
M∑
i=1

(1− qci)(f(~n−c1+···+ci)− f(~n)).

Here M denotes the number of clusters of ~n ∈ Wk and (c1, . . . , cM ) denote the sizes of these

clusters (so that n1 = · · · = nc1 > nc1+1 = · · · = nc1+c2 > · · · > nc1+···+cM−1+1 = · · · = nc1+···+cM )

and ~n−i = (n1, . . . , ni−1, . . . , nk). The forward generator of the q-Boson particle system is written

Hfwd and given by the matrix transpose of Hbwd (see Definition 2.1 for its explicit action).

We will be concerned with eigenfunctions ofHbwd andHfwd. Define the function Cq : Wk
→ R

by

Cq(~n) = (−1)kq−k(k−1)/2
M∏
i=1

(ci)!q,

where (c1, . . . , cM ) are as above, and (c)!q =
∏c
j=1 (1− qj)/(1− q) is the q-factorial. This is an

invariant measure for the q-Boson particle system and the backward and forward generators are

related by

Hbwd = (RCq)Hfwd(RCq)
−1 (1.1.1)

where (Rf)(n1, . . . , nk) = f(−nk, . . . ,−n1) and Cq is the multiplication operator (Cqf)(~n) =

Cq(~n)f(~n). This relationship is sometimes called PT-invariance, see Remark 2.3.
For all z1, . . . , zk ∈ C\{1}, set

Ψbwd
~z (~n) =

∑
σ∈Sk

∏
16B<A6k

zσ(A) − qzσ(B)

zσ(A) − zσ(B)

k∏
j=1

(1− zσ(j))
−nj ,

Ψfwd
~z (~n) = C−1

q (~n)
∑
σ∈Sk

∏
16B<A6k

zσ(A) − q−1zσ(B)

zσ(A) − zσ(B)

k∏
j=1

(1− zσ(j))
nj .

Our first result is that these are the right eigenfunctions of Hbwd and Hfwd (respectively).

Proposition 1.1 (Proposition 2.10 below). For all z1, . . . , zk ∈ C\{1}, we have

(HbwdΨbwd
~z )(~n) = (q−1)(z1 + · · ·+zk)Ψ

bwd
~z (~n), (HfwdΨfwd

~z )(~n) = (q−1)(z1 + · · ·+zk)Ψ
fwd
~z (~n).

The proof of this result is based on the fact that the backward and (Cq-conjugated) forward

generators can be rewritten as free generators subject to (k− 1) two-body boundary conditions.

The coordinate Bethe ansatz then readily implies the result. Since we are working on Z (as

opposed to a finite or periodic interval) there are no Bethe equations to be solved.
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Since Ψfwd
~z (~n) is a right eigenfunction for the forward generator Hfwd, and Hfwd is the matrix

transpose of Hbwd, it follows that Ψbwd
~z (~n) is also a left eigenfunction for Hfwd. Thus, we use the

alternative notation
Ψ`
~z(~n) = Ψbwd

~z (~n), Ψr
~z(~n) = Ψfwd

~z (~n).

We now proceed to our main result, a Plancherel type isomorphism theorem.

Definition 1.2. Let Wk be the space of functions f : Wk
→ C of compact support, and let Ck

be the space of symmetric Laurent polynomials G : Ck → C in the variables 1 − z1, . . . , 1 − zk.
Let γ1, . . . , γk be positively oriented, closed contours chosen so that they all contain 1, so that
the γA contour contains the image of q times the γB contour for all B > A, and so that γk is a
small enough circle around 1 that does not contain q (see Figure 2 in § 3 below).

Define the (symmetric) bilinear pairing 〈· , ·〉W on functions f, g ∈ Wk via

〈f, g〉W =
∑
~n∈Wk

f(~n)g(~n),

and the (symmetric) bilinear pairing 〈· , ·〉C on functions F,G ∈ Ck via

〈F,G〉C =
∑
λ`k

∮
γk

· · ·
∮
γk

dµλ(~w)

`(λ)∏
j=1

1

(wj ; q)λj
F (~w ◦ λ)G(~w ◦ λ).

Here λ = (λ1 > λ2 > · · · > 0) ` k is a partition of size k (i.e.
∑
λi = k) and

dµλ(~w) =
(1− q)k(−1)kq−k

2/2

m1!m2! · · ·
det

[
1

wiqλi − wj

]`(λ)

i,j=1

`(λ)∏
j=1

w
λj
j q

λ2j/2
dwj
2πi

, (1.1.2)

where mi = |{j : λj = i}|, the q-Pochhammer symbol is (a; q)n = (1− a)(1− qa) · · · (1− qn−1a)
and we use the notation

~w ◦ λ = (w1, qw1, . . . , q
λ1−1w1, w2, qw2, . . . , q

λ2−1w2, . . . , wλ` , qwλ` , . . . , q
λ`−1wλ`).

Remark 1.3. The pairing 〈· , ·〉C on Ck has a simpler alternative definition

〈F,G〉C =

∮
γ
· · ·
∮
γ
dµ(1)k(~w)

k∏
j=1

1

1− wj
F (~w)G(~w),

where γ can be chosen to be a circle containing both 1 and 0 and (1)k is the partition with k
ones. However, it turns out that the more involved definition above is more useful for our present
purposes (in particular when taking various limits).

The q-Boson transform Fq-Boson takes functions f ∈ Wk into functions Fq-Bosonf ∈ Ck via

(Fq-Bosonf)(~z) = 〈f,Ψr
~z〉W .

The (candidate) q-Boson inverse transform J q-Boson takes functions G ∈ Ck into functions
J q-BosonG ∈ Wk via

(J q-BosonG)(~n) =

∮
γ1

dz1

2πi
· · ·
∮
γk

dzk
2πi

∏
16A<B6k

zA − zB
zA − qzB

k∏
j=1

(1− zj)−nj−1G(~z).

5
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By shrinking the nested contours so that they all lie upon γk (cf. Lemma 3.4) this can also be
written as

(J q-BosonG)(~n) = 〈Ψ`(~n), G〉C , (1.1.3)

where Ψ`(~n) is the function which maps ~z 7→ Ψ`
~z(~n).

Theorem 1.4 (Theorem 3.11 below). The q-Boson transform Fq-Boson induces an isomorphism
between Wk and Ck with inverse given by J q-Boson. Moreover, for any f, g ∈ Wk

〈f, g〉W = 〈Fq-Boson(Pf),Fq-Bosong〉C ,

and for any F,G ∈ Ck
〈P−1(J q-BosonF ),J q-BosonG〉W = 〈F,G〉C .

Here P :Wk
→Wk is defined via its action (Pg)(~n) = (−1)kCq(~n)(Rg)(~n) and is the operator

which maps right eigenfunctions to left eigenfunctions.

One immediate corollary of this Plancherel isomorphism theorem is the completeness of the
coordinate Bethe ansatz.

Corollary 1.5 (Corollary 3.12 below). For all f ∈ Wk,

f(~n) = (J q-BosonFq-Bosonf)(~n) =
∑
λ`k

∮
γk

· · ·
∮
γk

dµλ(~w)

`(λ)∏
j=1

1

(wj ; q)λj
Ψ`
~w◦λ(~n)〈f,Ψr

~w◦λ〉W .

This shows that the spaceWk is decomposed onto left (and right) eigenfunctions with spectral
variables ~w◦λ over all λ ` k and ~w of length `(λ), with respect to the (complex-valued) Plancherel
measure given above in (1.1.2). The lack of positivity of this measure should be compared to the
case of Hermitian Hamiltonians such as the Heisenberg XXZ quantum spin chain on Z or delta
Bose gas on R. Thus our Plancherel isomorphism theorem is not an isomorphism between L2

spaces. There are some degenerations of this system which admit L2 space isomorphisms, namely
the system considered in §§ 6.2 and A.1. The system considered in § 6.3 involves a complex-valued
Plancherel measure, and likewise does not admit an L2 isomorphism.

In applying a contour shift argument (used, for instance, in Heckman–Opdam’s proof of
the delta Bose gas Plancherel formula [HO97]) in this proof of the Plancherel formula, the
non-Hermitian nature of our Hamiltonian introduces some additional non-triviality. However,
the symmetry given earlier in (1.1.1) between Hbwd and Hfwd (see also Remark 2.3) is a suitable
replacement for Hermiticity.

The Plancherel isomorphism theorem also contains within it the biorthogonality (with respect
to the spatial variable ~n and spectral variable ~w) of the left and right eigenfunctions (see
Corollary 3.13 and Proposition 3.14 below).

The completeness result above, along with the fact that Ψ`
~z(~n) is a right eigenfunction for

Hbwd, enables us to explicitly solve the Kolmogorov backward equation for the q-Boson particle
system with general initial data in Wk.

The q-Boson particle system plays an analogous role to q-TASEP, as the continuum delta
Bose gas plays to the Kardar–Parisi–Zhang equation (cf. §A.1). More precisely, due to a Markov
duality (see § 4.3 or [BCS12]), if we write the trajectory of q-TASEP as ~x(t), then

h(t;~n) := E
[ k∏
i=1

qxni (t)+ni
]

6
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solves the q-Boson particle system Kolmogorov backward equation

d

dt
h(t;~n) = (Hbwdh)(t;~n)

with initial data depending on the initial condition ~x(0) for q-TASEP.
Since we know how to solve the backward equation (via the spectral decomposition above),

this gives us access to exact formulas for moments of q-TASEP started from any initial data.
However, such an exact formula does involve evaluating (Fq-Bosonh0)(~z), where h0(~n) = h(0;~n).
For certain types of initial data this summation can be explicitly calculated (see for instance
Corollary 4.6 and Lemma 4.7). This is due to the fact that if h0(~n) = (J q-BosonG)(~n) for some
function G(~z), then the Plancherel isomorphism theorem implies that (Fq-Bosonh0)(~z) = G(~z).
This provides a systematic way to discover and prove many new combinatorial formulas.

In particular, for q-TASEP with step initial condition (i.e. xi(0) = −i for i > 1), this approach
leads to (see Proposition 4.9 below)

E
[ k∏
i=1

qxni (t)+ni
]

= (−1)kqk(k−1)/2

∮
γ1

dz1

2πi
· · ·
∮
γk

dzk
2πi

∏
16A<B6k

zA − zB
zA − qzB

k∏
j=1

(1− zj)−nj
e(q−1)tzj

zj
,

(1.1.4)
where γ1, . . . , γk are as above, with the additional condition that they do not include 0. Proving
this formula requires us to go beyond the functional spaces Ck and Wk, which in this case is
readily doable.

This moment formula for step initial data has appeared previously (though not via this
spectral approach). With all ni ≡ n it was first proved in [BC14, § 3.3] using the theory of
Macdonald processes. The general ~n result was then proved in [BCS12, Theorem 2.11] by simply
guessing the above formula and checking that it satisfied the backward equation and initial
data. The Macdonald process approach was then extended in [BCGS13] to also cover general ~n.
Extending from step to general initial data was unclear until the present work.

Since q ∈ (0, 1), the above moment formula completely characterizes the distribution of
q-TASEP at time t. So far, this has been used to write a Fredholm determinant formula for
the location of a particle xn(t) (cf. [BC14, Theorem 3.2.11] or [BCS12, Theorem 3.12]). In turn,
this formula has served as effective starting point for asymptotic analysis of a variety of models
related to q-TASEP (cf. [BC14, BCS12, BCF14, BCFV14], and related work [BCR13]). The
direct asymptotics (for instance to the Tracy–Widom GUE distribution and KPZ universality
class) of q-TASEP has not yet been performed, though it would seem that the above mentioned
Fredholm determinant formula is well suited for that.

Thus, as pointed out earlier, q-TASEP and the q-Boson particle process serve as discrete
regularizations of the Kardar–Parisi–Zhang equation and the continuum delta Bose gas, for
which the physics replica method can be put on firm mathematical ground.

1.2 Motivations
There are three related motivations which led to the present work: the polymer replica method
from physics, Tracy–Widom’s ASEP transition probability formulas, and measures on partitions
and Gelfand–Tsetlin patterns (sequences of interlacing partitions) such as Schur, Whittaker and
Macdonald processes.

1.2.1 Polymer replica method. We have already discussed much of our motivation coming
from the polymer replica method. Let us just add that the connection between the moments of
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the stochastic heat equation and the delta Bose gas does not seem to be firmly established in the
mathematical literature and some of the types of initial data one wishes to study for the KPZ
equation (such as narrow wedge) fall outside of the realm of the presently proved Plancherel
formulas. Thus, by working with a discrete regularization, one may hope to avoid such issues as
well.

1.2.2 Tracy–Widom’s ASEP transition probability formulas. In 2008, Tracy and Widom
[TW08] computed an exact formula for the transition probability of the k-particle ASEP. Though
the coordinate Bethe ansatz was central to their work, they did not diagonalize the k-particle
ASEP Hamiltonian. We address this diagonalization in the companion paper [BCPS14] as well as
the relationship between Tracy–Widom’s work and the ASEP Plancherel formula. Tracy–Widom
have recorded further progress in computing transition probabilities for variants of ASEP on Z
(such as on Z>0 [TW13]). Lee [Lee11] has further developed Tracy–Widom’s methods. Indeed,
soon after the first posting of the present work, Korhonen and Lee [KL13] demonstrated how the
Tracy–Widom approach can be employed to find transition probabilities for the q-Boson particle
system (see also § 4.2 below). It would be reasonable to try to develop analogous results to ours
in all of these other settings.

1.2.3 Measures on partitions and Gelfand–Tsetlin patterns. Measures on partitions and
Gelfand–Tsetlin patterns have played an important role in a wide variety of probabilistic
systems including random matrix theory, random growth processes, interacting particle systems,
directed polymer models, and random tilings (see, for example, the recent review [BG12] and
references therein). During the last 15 years there has been significant activity in the analysis
of determinantal measures, in particular the so-called Schur processes [Oko01, OR03], which are
written in terms of Schur symmetric functions. It is possible to define generalizations of the
Schur processes by replacing Schur symmetric functions with Macdonald symmetric functions
(their two-parameter (q, t)-generalizations). Until recently, little was done with respect to these
generalizations, owing largely to the fact that they are no longer determinantal.

In 2009, O’Connell [O’Co12] introduced the Whittaker process and related it to the
O’Connell–Yor semi-discrete directed polymer partition function. Furthermore, he utilized a
Whittaker function integral identity to compute an exact formula for the Laplace transform of
the partition function. As Whittaker functions are limits (for t = 0 and q → 1) of Macdonald
symmetric functions [GLO12], this development was a source of motivation for Borodin–Corwin’s
[BC14] subsequent 2011 work on Macdonald processes.

The work of Borodin and Corwin [BC14] gives answers to two basic questions about
Macdonald processes (and their various degenerations): what is their probabilistic content and
how can one compute meaningful information and asymptotics. In order to endow the Macdonald
processes with probabilistic content, [BC14] showed how to construct Markov dynamics which
map Macdonald processes to other Macdonald processes (with evolved sets of parameters).
The construction in [BC14] is an adaption of one from the Schur process context due to
Borodin–Ferrari [BF14, Bor11] (and based on an idea of Diaconis and Fill [DF90]). There are
other Markov dynamics (at various levels of degeneration of Macdonald processes) besides those
considered in [BC14], see [BP14, OP13, O’Co12, COSZ14]. The q-TASEP was discovered as
a one-dimensional marginal of the Markov dynamics corresponding to setting the Macdonald
parameters t = 0, and q ∈ (0, 1). When q → 0, q-TASEP becomes the usual TASEP, and the
above Macdonald process turns into a Schur process.

The second challenge in studying Macdonald processes was to compute meaningful
information and asymptotics. In [BC14] this was accomplished by directly appealing to the
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integrable structure of the Macdonald symmetric polynomials, in particular their explicit

eigenfunction relationships with the Macdonald difference operators. This structure naturally

led to nested contour integral formulas for expectations of various observables of the Macdonald

processes. With regards to q-TASEP, this provided formulas for the expectation h(t;~n) =

E[
∏k
j=1 q

xnj (t)+nj ] like (1.1.4) above.

As a stochastic process, q-TASEP has a scaling limit to the logarithm of the semi-discrete

stochastic heat equation (or free energy of the O’Connell–Yor semi-discrete directed polymer)

and further to the KPZ equation (logarithm of continuum stochastic heat equation). The limits

of the observables studied for q-TASEP correspond to products of values of the solution to these

stochastic heat equations at fixed time and varying spatial location, and thus [BC14] found similar

nested contour integral formulas for these limits. As explained earlier, for the stochastic heat

equation, these observables satisfy the delta Bose gas and a significant literature surrounds them.

The nested contour integral formulas for the delta Bose gas seem to have first appeared in 1985

physics work of Yudson [Yud85] and reemerged independently in 1997 work of Heckman–Opdam

[HO97], proving the Plancherel formula for the delta Bose gas.

A limitation of the Macdonald process approach to studying q-TASEP is that it only works

for initial conditions of q-TASEP which arise as marginals of Macdonald processes. There

are certainly many examples of such initial conditions (an infinite-dimensional family that, in

particular, includes the step initial condition). Generic initial conditions, and certain important

‘examples’ of initial conditions (such as flat or half-flat), do not arise in this manner and hence

cannot be treated via this method.

Inspired by the connection between the nested contour integral formulas and the delta Bose

gas, Borodin et al. [BCS12] discovered that it was possible to implement the ideas of the polymer

replica method at the level of q-TASEP (and ASEP). In particular, they showed that for any

initial conditions, the expectations h(t;~n) solve a discrete q-deformed (or regularized) version

of the delta Bose gas in which the q-Boson particle system generator replaces the delta Bose

gas Hamiltonian. The initial data for the q-Boson particle system backward equation directly

corresponds with the initial condition for q-TASEP, and [BCS12] showed that for step and half-

stationary q-TASEP initial conditions the solution h(t;~n) was given by nested contour integral

formulas. The step solution came directly from [BC14] while the half-stationary did not (though

should correspond to a two-sided generalization of Macdonald processes such as developed in the

Schur context in [Bor11]).

The question of how to solve the q-Boson particle system for general initial data (and hence

solve for h(t;~n) for q-TASEP with general initial conditions) is the central motivation of the

present work. The Plancherel formula and its various consequences provide a solution to this

question.

1.2.4 Algebraic motivations. A fortiori, this work provides some motivation to better

understand the relationship between various algebraic structures. One question which was

answered in [BC13] was that of how the theory of Macdonald processes implies the fact that

h(t;~n) solves the q-Boson particle system. This relationship turned out to be a consequence of a

commutation relation satisfied by the Macdonald first order difference operators. However, there

remain a few algebraic mysteries which we now touch upon.

The q-Boson particle system on a periodic lattice arises as a stochastic representation of the

q-Boson Hamiltonian considered in [SW98]. This Hamiltonian is a generalization of an earlier

version considered by Bogoliubov et al. [BBT94] and Bogoliubov et al. [BIK98]. The algebraic
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q-Boson Hamiltonian from [SW98] is written as

Hq-Boson = −
M∑
j=1

(B†j−1 + γB†j )Bj .

Here {Bj}Mj=1, {B†j}Mj=1 and another set {Nj}Mj=1 belong to the q-Boson algebra generated by the
relations

[Nj , B
†
k] = B†j1j=k, [Nj , Bk] = −Bj1j=k, [Bj , B

†
k] = qNj1j=k.

One imposes periodic (of length M) boundary conditions by defining B†0 = BM .
A periodic version of the q-Boson particle system backward generator corresponds to a

particular representation of −(1 − q)Hq-Boson in which the operators act on functions f :
(Z>0)M → C as

(B†jf)(~ν) = f(~ν+
j ), (Bjf)(~ν) =

1− qνj
1− q

f(~ν−j ), (Nf)(~ν) = νjf(~ν).

One checks that these operators satisfy the q-Boson algebra. The operator −(1− q)Hq-Boson acts
on functions f : (Z>0)M → C as

(−(1− q)Hq-Bosonf)(~ν) =
M∑
j=1

(1− qνj )(f(~νj,j−1)− f(~ν))

where ~νj,j−1 = (ν1, . . . , νj−1 + 1, νj − 1, . . . , νM ), and where ~ν1,0 = (ν1 − 1, . . . , νM + 1). This is
the backward generator of the q-Boson particle system (see § 2.1) on a periodic portion of Z.

This algebraic q-Boson Hamiltonian arises from the L-matrix given in (5.1) of [SW98] and
its integrability (in the sense of satisfying the Yang–Baxter equations) was shown there as well.
The version studied earlier in [BBT94, BIK98] corresponds to γ = 0 and is only stochastic2

in the limit when q → 1. Due to our probabilistic motivations, we primarily consider γ = −1
here, though in § 6.1 we consider the general γ Hamiltonian (under the identification of γ = −ε)
and show how our results extend. The spectral theory for the periodic γ = 0 case has received
attention recently in [Tsi06, vDi06, Kor13], and likewise for the infinite lattice (as considered
herein) γ = 0 case in [vDi04, vDE14a, vDE14b]. In these cases, Hall–Littlewood polynomials
play the role of left and right eigenfunctions.

Another algebraic mystery has to do with two sets of symmetric functions. The Macdonald
process related to q-TASEP is defined in terms of Macdonald polynomials at t = 0 and q ∈ (0, 1)
(these are sometimes called q-Whittaker functions [GLO10]). Via the connection to the q-Boson
particle system we naturally arrive at another set of symmetric polynomials, the eigenfunctions
for the q-Boson particle system, which appear to be quite remarkable and (though not the same)
are close relatives of Hall–Littlewood symmetric polynomials (and degenerate to them in the
limit corresponding to γ = 0 above). We do not presently have an algebraic explanation for this
transition from one type of symmetric polynomial to another. Perhaps a further investigation into

2 By a stochastic Hamiltonian, we mean a linear operator in the space of functions on the (discrete) state space
that, when viewed as a matrix with rows and columns indexed by the states of the system, has non-negative
off-diagonal matrix elements, and that maps the constant functions to zero. Under certain regularity assumptions
(which we do not check here), such a Hamiltonian generates a continuous time Markov jump process on the state
space, see e.g. [Lig05].

10

https://doi.org/10.1112/S0010437X14007532 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007532


Spectral theory for the q-Boson particle system

the relation of q-Bosons to degenerations of the double affine Hecke algebra might shed light on
this (see developments in this direction in [HO97, vDi04, Kor13, Tak12] and references therein).

The work of [BC14, BCS12] showed that for the particular step and half-stationary initial
conditions, the relationship between q-TASEP and the q-Boson particle system persists when
inhomogeneous particle jumping rate parameters ai are introduced. These a-parameters have
an important meaning from the Macdonald perspective as the variables of the Macdonald
polynomials. From the perspective of the q-Boson particle system, [BCS12] showed that the
backward generator (similar holds true for the conjugated forward generator) was equivalent to
a free generator with inhomogeneous rates depending on the parameters a and the same two-body
boundary condition as occurs when all ai ≡ 1. Despite this evidence, we do not presently know
how to develop a general a-parameter version of the eigenfunctions and Plancherel formula. One
reason why a general a-version of our present result could be quite enlightening is that we do not
have an analog of Macdonald processes or a-parameters in relation to ASEP and the Heisenberg
XXZ quantum spin chain, and this may help guide that investigation.

In [BC13] two discrete-time versions of q-TASEP were introduced and studied. Their
moments solve discrete variants of the q-Boson particle system evolution equations. It would be
interesting to develop the parallel of the results of this paper in the discrete-time context. There
is another generalization of q-TASEP which is called q-PushASEP (cf. [BP14, CP13]). It seems
likely that the analog of the q-Boson particle system for these variants of q-TASEP should have
the eigenfunctions as above (with different eigenvalues). As explained in [SW98], this should also
hold true for any operator which arises out of specializing the spectral parameter of the q-Boson
transfer matrix τ(u) (since transfer matrices commute for different spectral parameters). It is
reasonable, then, to hope to show that these discrete systems arise from the transfer matrix.

At the same time as the present work was posted, Povolotsky [Pov13] has posted a work
in which he introduces a class of models solvable via coordinate Bethe ansatz which includes
the q-Boson particle system (and also those of [BC13]) as special cases (see also earlier related
work [PPH03, Pov04]). Similarly to here, he computes the eigenfunctions via coordinate Bethe
ansatz. He also conjectures their completeness and orthogonality. Section 4 below shows exactly
how our Plancherel theorem proves completeness and biorthogonality for the q-Boson particle
system. We hope our methods will extend to the full class of models discussed above.

1.3 Notation
We collect many of the definitions and much of the notation used throughout the paper (including
some already discussed earlier in the introduction).

Define
Wk = {~n = (n1, . . . , nk) ∈ Zk | n1 > · · · > nk}.

For ~n ∈ Zk set
~n±i = (n1, . . . , ni ± 1, . . . , nk).

The backward difference operator ∇bwd and forward difference operator ∇fwd act on functions
f : Z → C as

(∇bwdf)(n) = f(n− 1)− f(n), (∇fwdf)(n) = f(n+ 1)− f(n).

For a function f : Zk → C, and 1 6 i 6 k, we write ∇bwd
i and ∇fwd

i as the application of the
respective operator in the variable ni.

The space-reflection operator R acts on functions f : Z → C as

(Rf)(n1, . . . , nk) = f(−nk, . . . ,−n1).
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Define a symmetric bilinear pairing 〈· , ·〉W on functions f, g : Wk
→ C via

〈f, g〉W =
∑
~n∈Wk

f(~n)g(~n)

(assuming the series converges) and note that 〈f, g〉W = 〈fh, gh−1〉W for any function h 6= 0,
and that

〈Rf,Rg〉W = 〈f, g〉W . (1.3.1)

To ~n ∈Wk of the form

n1 = · · · = nc1 > nc1+1 = · · · = nc1+c2 > · · · > nc1+···+cM−1+1 = · · · = nc1+···cM

we associate the list of ordered cluster sizes ~c = (c1, . . . , cM ) (where M is the number of clusters).
We also associate to ~n the ordered list ~g = (g1, . . . , gM ) of gaps between the clusters of ~n. Thus
for 2 6 i 6 M , gi = nci−1 − nci and by convention g1 = +∞. We write these functions of ~n as
~c(~n), M(~n) and ~g(~n). To illustrate, for ~n = (2, 1,−2,−2,−2), c(~n) = (1, 1, 3), M(~n) = 3 and
g(~n) = (+∞, 1, 3). The pair (~c,~g) identifies ~n modulo a global shift.

A partition λ = (λ1 > λ2 > · · · > 0) is a weakly decreasing set of non-negative integers with
finitely many non-zero entries. The size of λ is |λ| =

∑
i λi and the length of λ is `(λ) = |{i : λi

6= 0}|. If |λ| = k we write λ ` k. To a partition we associate its multiplicities mi = |{j : λj = i}|
and sometimes write λ = 1m12m2 · · · . For a partition λ ` k of length ` and a set of variables
~w = w1, . . . , w` we define

~w ◦ λ = (w1, qw1, . . . , q
λ1−1w1, w2, qw2, . . . , q

λ2−1w2, . . . , wλ` , qwλ` , . . . , q
λ`−1wλ`). (1.3.2)

We will also use an additive version of ~w ◦ λ defined as

~w ◦̃λ= (w1, w1 +1, . . . , w1 +λ1−1, w2, w2 +1, . . . , w2 +λ2−1, . . . , wλ` , wλ` +1, . . . , wλ` +λ`−1).
(1.3.3)

In general, an arrow over a variable (such as ~z) denotes a vector ~z = (z1, . . . , zk) whose length is
generally k (or else explicitly stated).

We define the space Wk of compactly supported functions f : Wk
→ C. We also define the

space Ck of symmetric Laurent polynomials in 1− z1, . . . , 1− zk. In particular, any G ∈ Ck can
be written as ∑

~n∈Wk

∑
σ∈Sk

a~n

k∏
i=1

(1− zσ(i))
ni

or as

1

∆(~z)

∑
~n∈Wk

∑
σ∈Sk

sgn(σ)b~n

k∏
i=1

(1− zσ(i))
ni

with all but finitely many coefficients a~n, b~n ∈ C fixed to be zero, and ∆(~z) =
∏
A<B(zA− zB) is

the Vandermonde determinant.
Throughout we assume that the parameter q ∈ (0, 1), though in § 5 we explain how our

results (or modifications of them) hold for more general q ∈ C. The q-Pochhammer symbol and
q-factorial are defined as

(a; q)n =

n−1∏
i=0

(1− qia), n!q =
(q; q)n

(1− q)n
.

The q → 1 limit of (a; q)n is written (a)n = a(a+ 1) · · · (a+ n− 1).
The symmetric group on k elements is denoted by Sk, the indicator function for an event E

by 1E , and the identity operator by Id.
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1.4 Outline
In § 2 we use the coordinate Bethe ansatz to determine algebraic eigenfunctions for the forward
and backward generators of the q-Boson particle system. The main result of this paper, the
Plancherel isomorphism theorem involving these eigenfunctions, is proved in § 3. That section also
contains results about the completeness and biorthogonality of these eigenfunctions. Section 4
applies the Plancherel formula in order to solve the Kolmogorov forward and backward equations,
and as an application compute moments of the q-TASEP. Section 5 records how the earlier
results persist when q is complex. Section 6 describes two limits of the q-Boson particle system,
one of which relates to earlier work of van Diejen [vDi04] and the other of which relates to the
semi-discrete stochastic heat equation. Finally, in Appendix A we briefly touch on the continuum
limit of the work of this paper (as relates to the continuum delta Bose gas and stochastic heat
equation), prove a proposition related to the expansion of nested contour integrals, and provide
a direct combinatorial proof of Lemma 4.7.

2. Coordinate Bethe ansatz

In this section we introduce the q-Boson particle system and use the Bethe ansatz to write
down algebraic eigenfunctions for its forward and backward generators. The main idea here
is that it is possible (and straightforward) to rewrite the generator of the system in terms of a
constant-coefficient, separable free generator with (k−1) two-body boundary conditions imposed.
The coordinate Bethe ansatz is then readily applied to provide the desired eigenfunctions. It is
worth recalling that since we work on Z (as opposed to a finite or periodic interval) there are no
Bethe equations which must be solved in computing the algebraic eigenfunctions. The usefulness
of this approach for interacting particle systems goes back to the work of [Sch97, AKK98].

2.1 The q-Boson particle system
The q-Boson particle system is a stochastic interacting particle system ~ν(t) (in fact, a certain
totally asymmetric zero range process) with state space ~ν(t) ∈ (Z>0)Z (see [Lig05] for general
background). Here νi(t) represents the non-negative number of particles at a given site i ∈ Z. In
continuous time, independently for each i ∈ Z, one particle may move from site i to site i− 1 at
rate 1 − qνi(t) (i.e. according to an exponential waiting time of that rate). This corresponds to
changing (νi−1(t), νi(t)) to (νi−1(t) + 1, νi(t)− 1).

We will focus on the restriction of this process to a finite number k > 1 of particles. Since
the dynamics conserve the number of particles, this restriction is itself a stochastic interacting
particle system (see Figure 1 for an illustration of k = 9).

To any ~ν ∈ (Z>0)Z such that
∑

i∈Z νi = k we may associate a (weakly) ordered list of particle
locations ~n = (n1 > · · · > nk) ∈Wk. We write ~n(~ν) to denote this function. For example, if k = 5
and νi ≡ 0 except for ν−2 = 3, ν1 = 1 and ν2 = 1, then ~n(~ν) = (2, 1,−2,−2,−2). Thus, we may
write ~n(t) = ~n(ν(t)) as the q-Boson particle system at time t in these coordinates.

We may write, in these ~n-coordinates, the backward and forward generators for the k particle
restriction of the q-Boson particle system (see also § 4). In what follows we write ~c = ~c(~n),
M = M(~n), and ~g = ~g(~n) (recall from § 1.3) thus suppressing the ~n dependence.

Definition 2.1. The q-Boson backward generator acts on functions f : Wk
→ C as

(Hbwdf)(~n) =
M∑
i=1

(1− qci)(f(~n−c1+···+ci)− f(~n))

where ~n−j is defined in § 1.3.
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Figure 1. Three states of the q-Boson particle system with nine particles. In the left-most state,
ν3 = 4, ν2 = 0, ν1 = 2, ν0 = 0, ν−1 = 1 and ν−2 = 2. The value of ~n associated to this state is given
by reading off the location of the labels n1, . . . , n9. In the middle state, the particle corresponding
with n6 has decreased location by 1 (as occurs at rate 1 − q2), and in the right-most state the
particle corresponding with n7 has decreased location by 1 (as occurs at rate 1− q).

The q-Boson forward generator (the matrix transpose of Hbwd) acts on function f : Wk
→ C

as

(Hfwdf)(~n) =

M∑
i=1

(((1− qci−1+1)1gi=1 + (1− q)1gi>1)f(~n+
c1+···+ci−1+1)− (1− qci)f(~n)) (2.1.1)

where by convention, for i = 1 we set ci−1 + 1 = c1 + · · ·+ ci−1 + 1 = 1.
The function Cq : Wk

→ R depends only on the list ~c(~n) = (c1, . . . , cM ) of cluster sizes for ~n
via

Cq(~n) = (−1)kq−k(k−1)/2
M∏
i=1

(ci)!q. (2.1.2)

Let C−1
q (~n) denote (Cq(~n))−1. We will also write Cq and C−1

q as (diagonal) multiplication
operators defined so that (Cqf)(~n) = Cq(~n)f(~n) and (C−1

q f)(~n) = C−1
q (~n)f(~n). One readily

sees that Cq and the space-reflection operator R commute.
The q-Boson conjugated forward generator is defined as

Hcfwd = CqHfwdC−1
q .

Lemma 2.2. We have that

(Hcfwdf)(~n) =
M∑
i=1

(1− qci)(f(~n+
c1+···+ci−1+1)− f(~n)). (2.1.3)

Proof. Since Hcfwd is defined via conjugation of Hfwd by the diagonal matrix Cq, it suffices to
check the coincidence of the off-diagonal matrix elements of Hcfwd with those of the right-hand
side of (2.1.3).

Observe that if gi = 1 then ~c(~n+
c1+···+ci−1+1) = (c1, . . . , ci−2, ci−1 + 1, ci − 1, ci+1, . . .). From

the definition of Cq it then follows that

Cq(~n)

Cq(~n
+
c1+···+ci−1+1)

=
1− qci

1− qci−1+1
.

Similarly, if gi > 2 then ~c(~n+
c1+···+ci−1+1) = (c1, . . . , ci−2, ci−1, 1, ci − 1, ci+1, . . .). Then

Cq(~n)

Cq(~n
+
c1+···+ci−1+1)

=
1− qci
1− q

.

These are exactly the ratios of the off-diagonal matrix elements of (2.1.1) and (2.1.3). 2
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Let us note that in the above proof the constant (−1)kq−k(k−1)/2 in the definition of Cq
played no role. This choice of constant is fixed in the proof of Theorem 3.7 below, by (3.2.5) and
the computation following it. Another choice of constant would result in proving that Kq-Boson

acts as a constant (not equal to one) times the identity operator.

Remark 2.3. Lemma 2.2 implies that R−1HbwdR = Hcfwd = CqHfwdC−1
q or equivalently

Hbwd = (RCq)Hfwd(RCq)
−1

showing thatHbwd andHfwd are related via a similarity transform. Up to a constant, the function
Cq(~n) is the invariant measure for the q-Boson particle process (see [BC14, Corollary 3.3.12]). In
the study of interacting particle systems, the conjugated forward generator Hcfwd is sometimes
known as the adjoint or time-reversed generator. The above relationship shows that our present
model is PT-invariant, i.e. invariant under joint space-reflection and time-reversal. This type of
invariance is of fundamental significance in many areas of physics and features prominently in
some papers on interacting particle systems such as [GJL99, TS06]. It may be possible to extend
the present approach to similarly study and develop spectral theory for other PT-invariant Bethe
ansatz solvable models. We are grateful to Gunter Schütz for noting that the above relation is
equivalent to the PT-invariance of the model.

PT-invariance is a property which holds true for all spatially homogeneous nearest neighbor
asymmetric zero range processes, so long as Cq is replaced by the product invariant measure for
the process. The proof of this general fact follows the same lines as that of Lemma 2.2.

2.2 Free generators with two-body boundary conditions
The key to finding the eigenfunctions for the backward and conjugated forward generators is
to re-express them in terms of constant-coefficient, separable free generators subject to (k − 1)
two-body boundary conditions. It is certainly not typical that the generators of an interacting
particle system can be re-expressed in this manner (see however [TW08, BCS12] for ASEP).
This is the hallmark of integrable systems of Bethe ansatz type.

Recall the definitions of ∇bwd
i and ∇fwd

i from § 1.3.

Definition 2.4. The q-Boson backward free generator Lbwd acts on functions u : Zk → C as

(Lbwdu)(~n) = (1− q)
k∑
i=1

(∇bwd
i u)(~n). (2.2.1)

We say that the function u : Zk → C satisfies the (k− 1) q-Boson backward two-body boundary
conditions if

for all 1 6 i 6 k − 1 (∇bwd
i − q∇bwd

i+1 )u|~n:ni=ni+1
≡ 0. (2.2.2)

The q-Boson forward free generator Lfwd acts on functions u : Zk → C as

(Lfwdu)(~n) = (1− q)
k∑
i=1

(∇fwd
i u)(~n). (2.2.3)

We say that the function u : Zk → C satisfies the (k − 1) q-Boson forward two-body boundary
conditions

for all 1 6 i 6 k − 1 (q∇fwd
i −∇fwd

i+1)u|~n:ni=ni+1
≡ 0. (2.2.4)
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Proposition 2.5. If u : Zk → C satisfies the (k − 1) q-Boson backward (respectively, forward)
two-body boundary conditions, then for ~n ∈Wk,

(Lbwdu)(~n) = (Hbwdu)(~n) (respectively, (Lfwdu)(~n) = (Hcfwdu)(~n)).

Proof. Assume that u satisfies (2.2.2). If ~n has n1 = · · · = nc1 , then

(1− q)
c1∑
i=1

(∇bwd
i u)(~n) = (1− q)

c1∑
i=1

qi−1(∇bwd
c1 u)(~n) = (1− qc1)(∇bwd

c1 u)(~n).

The same reasoning applies to the other clusters of ~n, readily implying that (Lbwdu)(~n) =
(Hbwdu)(~n).

Likewise assume that u satisfies (2.2.4). If ~n has n1 = · · · = nc1 , then it follows that

(1− q)
c1∑
i=1

(∇fwd
i u)(~n) = (1− q)

c1∑
i=1

qc1−i(∇fwd
1 u)(~n) = (1− qc1)(∇fwd

1 u)(~n).

The same reasoning applies to the other clusters of ~n, readily implying (we have also appealed
here to Lemma 2.2) that (Lfwdu)(~n) = (Hcfwdu)(~n). 2

Definition 2.6. A function Ψbwd : Zk → C is called an eigenfunction of the q-Boson backward
free generator with (k − 1) two-body boundary conditions if Ψbwd is an eigenfunction for the
q-Boson backward free generator and it satisfies the (k−1) q-Boson backward two-body boundary
conditions (2.2.2). We likewise define what it means for a function Ψcfwd : Zk → C to be an
eigenfunction of the q-Boson forward free generator with (k − 1) two-body boundary conditions
(2.2.4).

The following is a corollary of Proposition 2.5.

Corollary 2.7. Any eigenfunction Ψbwd : Zk → C for the q-Boson backward free generator
with (k − 1) two-body boundary conditions is, when restricted to ~n ∈Wk, an eigenfunction for
the q-Boson backward generator Hbwd with the same eigenvalue.

Similarly any eigenfunction Ψcfwd : Zk → C for the q-Boson forward free evolution equation
with (k − 1) two-body boundary conditions is, when restricted to ~n ∈Wk, an eigenfunction for
the q-Boson conjugated forward generator Hcfwd with the same eigenvalue. In turn, C−1

q Ψcfwd is

an eigenfunction for the q-Boson forward generator Hfwd with the same eigenvalue.

2.3 Coordinate Bethe ansatz
2.3.1 General review. We briefly review the coordinate Bethe ansatz [Bet31]. Given an

operator L acting on functions from X → C (where X is an arbitrary space) we form the
k-particle operator L which acts on functions f : Xk

→ C as

(Lf)(~x) =

k∑
i=1

(Lif)(~x) (2.3.1)

where Li acts as L on the coordinate xi. Write ψz to denote any eigenfunction with eigenvalue
z ∈ C such that Lψz = zψz (we are not assuming all z correspond to an eigenfunction or that
all eigenvalues are simple). Then it follows that

Ψ~z(~x) =
∑
σ∈Sk

Aσ(~z)
k∏
j=1

ψzσ(j)(xj) (2.3.2)

is an eigenfunction of L with eigenvalue (z1 + · · ·+ zk). Presently Aσ(~z) ∈ C can be arbitrary.
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Consider an operator B which acts on functions g : X2
→ C. We say that g satisfies the

two-body boundary condition corresponding to B if for all x ∈ X, (Bg)(x, x) = 0. Let Bi,i+1 act
as B in the variables xi and xi+1 and as the identity for all other variables. We wish to find Ψ
such that

for all 1 6 i 6 k − 1 Bi,i+1Ψ|~x:xi=xi+1
≡ 0. (2.3.3)

This can be accomplished by choosing Aσ(~z) suitably. Define the function

S(z1, z2) =
(B(ψz1 ⊗ ψz2))(x, x)

(ψz1 ⊗ ψz2)(x, x)
,

where B(f1 ⊗ f2) is defined as B applied to the function which takes (x1, x2) 7→ f1(x1)f2(x2).

Lemma 2.8. If

Aσ(~z) = sgn(σ)
∏

16B<A6k

S(zσ(A), zσ(B))

S(zA, zB)

then Ψ~z(~x) from (2.3.2) is an eigenfunction of the operator L from (2.3.1) with eigenvalue
(z1 + · · ·+ zk), for which the (k − 1) two-body boundary conditions in (2.3.3) hold.

Proof. For any σ ∈ Sk consider the pair of terms in (2.3.2) corresponding to σ and τiσ where τi
represents the transposition of i and i+ 1. We will show that Bi,i+1 applied to this pair

Aσ(~z)
k∏
j=1

ψzσ(j)(xj) + Aτiσ(~z)
k∏
j=1

ψz(τiσ)(j)(xj)

is identically zero if xi = xi+1. If this holds for all pairs, this implies the same holds true for
Ψ~z(~x). Call the first term above T and the second Tτ . Then it follows from the definition of the
function S that

(Bi,i+1T )(~x) = S(zσ(i), zσ(i+1))T (~x), (Bi,i+1Tτ )(~x) = S(zσ(i+1), zσ(i))Tτ (~x).

For ~x such that xi = xi+1

Tτ (~x) = −
S(zσ(i), zσ(i+1))

S(zσ(i+1), zσ(i))
T (~x)

and thus

(Bi,i+1(T + Tτ ))(~x) = S(zσ(i), zσ(i+1))T (~x) + S(zσ(i+1), zσ(i))Tτ (~x)

= S(zσ(i), zσ(i+1))T (~x)− S(zσ(i+1), zσ(i))
S(zσ(i), zσ(i+1))

S(zσ(i+1), zσ(i))
T = 0. 2

2.3.2 Application to q-Boson particle system generators. We may apply the coordinate
Bethe ansatz of § 2.3.1 to the q-Boson backward and forward free generators with (k−1) two-body
boundary conditions of § 2.2. One should take care to notice that the eigenfunction associated to
~z has eigenvalue (q−1)(z1 + · · ·+zk) and not (z1 + · · ·+zk) as in the above general construction.

Definition 2.9. For all z1, . . . , zk ∈ C\{1}, set

Ψbwd
~z (~n) =

∑
σ∈Sk

∏
16B<A6k

zσ(A) − qzσ(B)

zσ(A) − zσ(B)

k∏
j=1

(1− zσ(j))
−nj
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Ψcfwd
~z (~n) =

∑
σ∈Sk

∏
16B<A6k

zσ(A) − q−1zσ(B)

zσ(A) − zσ(B)

k∏
j=1

(1− zσ(j))
nj

Ψfwd
~z (~n) = C−1

q (~n)Ψcfwd
~z (~n).

Observe that for any fixed ~n ∈ Wk these are symmetric Laurent polynomials in (1 − z1), . . . ,
(1− zk), and thus elements of Ck.
Proposition 2.10. For all z1, . . . , zk ∈ C\{1}, Ψbwd

~z (~n) is an eigenfunction for the q-Boson
backward free generator with (k − 1) two-body boundary conditions (Definition 2.6) with
eigenvalue (q − 1)(z1 + · · · + zk). The restriction of Ψbwd

~z (~n) to ~n ∈ Wk is consequently an
eigenfunction for the q-Boson backward generator Hbwd with the same eigenvalue.

Similarly, for all z1, . . . , zk ∈ C\{1}, Ψcfwd
~z (~n) is an eigenfunction for the q-Boson forward

free generator with (k−1) two-body boundary conditions (Definition 2.6) with eigenvalue (q−1)
(z1 + · · · + zk). The restriction of Ψcfwd

~z (~n) to ~n ∈ Wk is consequently an eigenfunction for the
q-Boson conjugated forward generatorHcfwd with the same eigenvalue. The restriction of Ψfwd

~z (~n)
to ~n ∈ Wk is likewise an eigenfunction for the q-Boson forward generator Hfwd with the same
eigenvalue.

Proof. Let us focus on the backward case first. We can observe that (1 − z)−n is an
eigenfunction for (1−q)∇bwd with eigenvalue (q−1)z. We may apply Lemma 2.8 to construct an
eigenfunction for the backward free generator which satisfies the two-body boundary conditions
of Definition 2.4. In this application of Lemma 2.8 we find that S(z1, z2) = z1 − qz2. Comparing
the outcome of the lemma to the expression above for Ψbwd we see that they differ by an overall
multiplicative factor ∏

16B<A6k

zA − qzB
zA − zB

.

However, since the z-variables are fixed, this factor is just a constant, and hence the desired
result follows. The implication for the backward generator Hbwd follows from Corollary 2.7.

Similar reasoning applies in the forward case. Observe that (1 − z)n is an eigenfunction for
(1−q)∇fwd with eigenvalue (q−1)z. The forward two-body boundary condition can be multiplied
by q−1 yielding

(∇fwd
i − q−1∇fwd

i+1)u = 0.

We may apply Lemma 2.8 to construct an eigenfunction for the forward free generator which
satisfies the above two-body boundary conditions. In this application of Lemma 2.8 we find
that S(z1, z2) = z1 − q−1z2. Just as in the backward case, this differs from Ψcfwd by an overall
multiplicative constant (that depends only on the z-variables) hence the desired result follows.
The implication for the conjugated forward generator Hcfwd and the forward generator Hfwd

follows from Corollary 2.7. 2

Remark 2.11. We may extend the eigenfunctions of Definition 2.9 so as to be defined for all
of Zk (rather than Wk) by fixing that the value for a general ~n ∈ Zk is the same as the value
of σ~n ∈Wk (where σ ∈ Sk is a permutation of the elements of ~n taking it into Wk). It is possible
to write down an operator on all of Zk for which these extensions (which we write with the
same notation) are still eigenfunctions. For instance (cf. [BCS12, Proposition 2.7, C]) one readily
observes that

(1− q)
[ k∑
i=1

∇bwd
i + (1− q−1)

∑
16i<j6k

1ni=njq
j−i∇bwd

i

]
Ψbwd
~z (~n) = (1− q)(z1 + · · ·+ zk) Ψbwd

~z (~n).
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The extension of Ψbwd
~z (~n) to Zk is through symmetric extension and it is not clear how to modify

the formula for the eigenfunction so that the ~n coordinates do not require permuting. For the
case of the delta Bose gas (a particular limit of the present system considered later in §A.1) such
a formula can be seen in [Dot10, (A.12)].

2.4 Left and right eigenfunctions
Proposition 2.10 along with the fact that Hfwd is the transpose of Hbwd implies that

(HfwdΨfwd
~z )(~n) =

(
(1− q)

k∑
i=1

zi

)
Ψfwd
~z (~n), (Ψbwd

~z Hfwd)(~n) = Ψbwd
~z (~n)

(
(1− q)

k∑
i=1

zi

)
(2.4.1)

showing the Ψfwd
~z (~n) and Ψbwd

~z (~n) are (respectively) right and left eigenfunctions for Hfwd with
eigenvalue (q − 1)(z1 + · · ·+ zk). This motivates the following definition.

Definition 2.12. For any ~z = (z1, . . . , zk) ∈ (C\{1})k define

Ψr
~z(~n) = Ψfwd

~z (~n) = C−1
q (~n)

∑
σ∈Sk

∏
16B<A6k

zσ(A) − q−1zσ(B)

zσ(A) − zσ(B)

k∏
j=1

(1− zσ(j))
nj ,

where Cq(~n) is given in (2.1.2). Likewise define

Ψ`
~z(~n) = Ψbwd

~z (~n) =
∑
σ∈Sk

∏
16B<A6k

zσ(A) − qzσ(B)

zσ(A) − zσ(B)

k∏
j=1

(1− zσ(j))
−nj .

We could have just as well defined the right and left eigenfunctions with respect to the
operator Hbwd (see Remark 3.8 for the implications of this). Finally, observe the symmetry of
Ψ` and Ψr with respect to the space-reflection operator

(RΨ`
~z)(~n) = qk(k−1)/2Cq(~n)Ψr

~z(~n), (RΨr
~z)(~n) = q−k(k−1)/2C−1

q (~n)Ψ`
~z(~n). (2.4.2)

3. Plancherel formulas

In this section we prove a Plancherel formula (Theorem 3.7) related to the q-Boson particle
system. We define the transform Fq-Boson in which functions are paired with right eigenfunctions.
The (candidate) inverse J q-Boson is defined in terms of nested contour integrals, though
can also be expressed via a (different) pairing with left eigenfunctions with respect to a
(complex) Plancherel measure. The composition of these transforms is written as Kq-Boson :=
J q-BosonFq-Boson. Theorem 3.7 shows that on Wk, Kq-Boson acts as the identity operator. The
proof of this theorem is quite simple and relies on two steps. In the first step we demonstrate a
certain symmetry of Kq-Boson and in the second step we use elementary residue considerations
and this symmetry to prove that Kq-Boson acts as the identity.

A key step in our proof has a history and is sometimes called the contour shift argument. In
the related continuum delta Bose gas (cf. §A.1), Heckman and Opdam [HO97] used a similar
approach to prove a Plancherel formula for that system. They, in turn, attribute it to van den
Ban and Schlichtkrull [vDS97] and ultimately to Helgason, Gangolli and Rozenberg’s argument
in the proof of the Plancherel theorem for a Riemannian symmetric space G/K [Hel84, GV88].
It seems, in fact, that the original instance of this argument goes back to Helgason’s 1966 work
[Hel66].

19

https://doi.org/10.1112/S0010437X14007532 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007532


A. Borodin et al.

1qq2

Figure 2. For k = 3 and q ∈ (0, 1), a possible set of contours γ1, γ2, γ3, as well as possible
contours for γ and γ′ (see Definition 3.1).

The other result we prove in this section is a dual Plancherel formula (Theorem 3.9) which

shows that on Ck, Mq-Boson := Fq-BosonJ q-Boson acts as the identity operator. The proof of this

dual Plancherel formula goes through a spectral orthogonality of the eigenfunctions Ψr and Ψ`,

which is given in Proposition 3.14.

Combining the Plancherel formula and the dual Plancherel formula leads to the Plancherel

isomorphism given in Theorem 3.11.

3.1 The q-Boson transform and inverse transform

We introduce the q-Boson transform and the q-Boson inverse transform, as well as the contours

γ1, . . . , γk, and γ, γ′. Recall the definitions of the function spaces Wk and Ck from § 1.3.

Definition 3.1. The q-Boson transform Fq-Boson takes functions f ∈ Wk into functions

Fq-Bosonf ∈ Ck via

(Fq-Bosonf)(~z) = 〈f,Ψr
~z〉W .

Fix any set of positively oriented, closed contours γ1, . . . , γk chosen so that they all contain 1,

so that the γA contour contains the image of q times the γB contour for all B > A, and also

so that γk is a small enough circle around 1 so as not to contain q. Let us also fix contours γ

and γ′ where γ is a positively oriented closed contour which contains 1 and its own image under

multiplication by q, and γ′ contains γ and is such that for all z ∈ γ and w ∈ γ′, |1−w| > |1− z|.
See Figure 2 for an illustration of a possible set of such contours.

The (candidate) q-Boson inverse transform J q-Boson takes functions G ∈ Ck into functions

J q-BosonG ∈ Wk via

(J q-BosonG)(~n) =

∮
γ1

dz1

2πi
· · ·
∮
γk

dzk
2πi

∏
16A<B6k

zA − zB
zA − qzB

k∏
j=1

(1− zj)−nj−1G(~z). (3.1.1)
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The composition of the transform and (candidate) inverse transform takes functions f ∈ Wk

into functions Kq-Bosonf ∈ Wk via

(Kq-Bosonf)(~n) = (J q-BosonFq-Bosonf)(~n)

=

∮
γ1

dz1

2πi
· · ·
∮
γk

dzk
2πi

∏
16A<B6k

zA − zB
zA − qzB

k∏
j=1

(1− zj)−nj−1 〈f,Ψr
~z〉W . (3.1.2)

The composition of the (candidate) inverse transform and the transform takes functions
G ∈ Ck into functions Mq-BosonG ∈ Ck via

(Mq-BosonG)(~n) = (Fq-BosonJ q-BosonF )(~z)

=
∑
~n∈Wk

Ψr
~z(~n)

∮
γ1

dz1

2πi
· · ·
∮
γk

dzk
2πi

∏
16A<B6k

zA − zB
zA − qzB

k∏
j=1

(1− zj)−nj−1G(~z). (3.1.3)

Remark 3.2. It is an easy residue calculation to check that Fq-Boson maps Wk into Ck and
J q-Boson maps Ck into Wk. It is convenient to work with these function spaces since it avoids
certain issues such as showing convergence of the summation defining Fq-Boson. We expect
(though do not attempt to prove) that the results which we now develop can be shown to
hold true with respect to larger function spaces.

The operator J q-Boson can be written in terms of Ψ`
~z(~n) in two ways.

Lemma 3.3. Consider a symmetric function G : Ck → C and positively oriented, closed contours
γ1, . . . , γk and γ such that:
• the contour γ is a circle around 1 and 0 which contains the image of γ multiplied by q;
• for all 1 6 A < B 6 k, the interior of γA contains 1 and the image of γB multiplied by q;
• for all 1 6 j 6 k, there exist deformations Dj of γj to γ so that for all z1, . . . , zj−1,

zj+1, . . . , zk with zi ∈ γ for 1 6 i < j, and zi ∈ γi for j < i 6 k, the function zj 7→ ∆(~z)G(z1,
. . . , zj , . . . , zk) is analytic in a neighborhood of the area swept out by the deformation Dj .

Then,

(J q-BosonG)(~n) =

∮
γ
· · ·
∮
γ
dµ(1)k(~w)

k∏
j=1

1

1− wj
Ψ`
~w(~n)G(~w),

where (1)k is the partition with k ones and dµλ is defined in (1.1.2).

Proof. Due to the hypothesis on G and the contours, the nested contours in (3.1.1) can be
sequentially (starting with γ1 to γk) deformed to the single contour γ without changing the
value of the integral. Since all contours are now the same, we may symmetrize the integrand.
Towards this end we rewrite the product∏

16A<B6k

zA − zB
zA − qzB

=
∏

16A 6=B6k

zA − zB
zA − qzB

∏
16B 6=A6k

zA − qzB
zA − zB

where the first product on the right-hand side is symmetric. The eigenfunction Ψ`
~z(~n) comes

from this symmetrization, and the Cauchy determinant identity yields the term dµ(1)k(~z), thus
completing the proof. 2

It is useful (especially for later asymptotic purposes) to also record how the operator J q-Boson

can be expressed in terms of contour integrals along the single contour γk. The proof of this result
is more involved than that above, and given in the appendix.

Lemma 3.4. Consider a symmetric function G : Ck → C and positively oriented, closed contours
γ1, . . . , γk such that:
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• the contour γk is a circle around 1 and small enough so as not to contain q;
• for all 1 6 A < B 6 k, the interior of γA contains 1 and the image of γB multiplied by q;
• for all 1 6 j 6 k, there exist deformations Dj of γj to γk so that for all z1, . . . , zj−1,

zj+1, . . . , zk with zi ∈ γi for 1 6 i < j, and zi ∈ γk for j < i 6 k, the function zj 7→ ∆(~z)G(z1,
. . . , zj , . . . , zk) is analytic in a neighborhood of the area swept out by the deformation Dj .

Then,

(J q-BosonG)(~n) =
∑
λ`k

∮
γk

· · ·
∮
γk

dµλ(~w)

`(λ)∏
j=1

1

(wj ; q)λj
Ψ`
~w◦λ(~n)G(~w ◦ λ),

where the definition of the notation ~w ◦λ, and (wj ; q)λj is given in § 1.3 and where dµλ is defined
in (1.1.2).

Proof. This lemma follows immediately from Proposition A.4. 2

It follows from Lemma 3.3 that for f ∈ Wk

(Kq-Bosonf)(~n) =

∮
γ
· · ·
∮
γ
dµ(1)k(~w)

k∏
j=1

1

1− wj
Ψ`
~w(~n)〈f,Ψr

~w〉W , (3.1.4)

and likewise it follows from Lemma 3.4 that

(Kq-Bosonf)(~n) =
∑
λ`k

∮
γk

· · ·
∮
γk

dµλ(~w)

`(λ)∏
j=1

1

(wj ; q)λj
Ψ`
~w◦λ(~n)〈f,Ψr

~w◦λ〉W . (3.1.5)

Definition 3.5. Define the (symmetric) bilinear pairing 〈· , ·〉C on functions F,G ∈ Ck via

〈F,G〉C =

∮
γ
· · ·
∮
γ
dµ(1)k(~w)

k∏
j=1

1

1− wj
F (~w)G(~w)

=
∑
λ`k

∮
γk

· · ·
∮
γk

dµλ(~w)

`(λ)∏
j=1

1

(wj ; q)λj
F (~w ◦ λ)G(~w ◦ λ).

The equivalence of the two expressions on the right-hand sides above is due to Lemmas 3.3
and 3.4. Furthermore they imply that we can write

(J q-BosonG)(~n) = 〈Ψ`(~n), G〉C ,

where Ψ`(~n) is the function which maps ~z 7→ Ψ`
~z(~n).

Remark 3.6. The operator J q-Boson applied to G amounts to integrating Ψ`
~z(~n)G(~z) against

a measure which is supported on a disjoint sum of subspaces (or contours and strings of
specializations) indexed by λ ` k. This measure may be called the Plancherel measure, though it
is most certainly complex valued. This should be compared to the case of the Heisenberg XXZ
quantum spin chain on Z [BT77, BG90, Gut00], or the continuum delta Bose gas [Oxf79, HO97]
in which the underlying Hamiltonian is Hermitian and the Plancherel measure is positive, and
where one can hope to prove L2 isometries with respect to this measure.

3.2 Main results
We may now state and prove the main results of this work.

Theorem 3.7. The q-Boson transform Fq-Boson induces an isomorphism between the space Wk

and its image with inverse given by J q-Boson. Equivalently, Kq-Boson acts as the identity operator
on Wk.
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Proof. In order to prove this theorem we must show that on functions in Wk the operator
Kq-Boson = Id. Before proving that we show the following property (which follows from the
PT-invariance of the eigenfunctions, cf. Remark 2.3) of Kq-Boson: For any functions f, g ∈ Wk,

〈Kq-Bosonf, g〉W = 〈f, (CqR)−1Kq-Boson(CqRg)〉W . (3.2.1)

In order to prove this claim we utilize the formula (3.1.4) for (Kq-Bosonf)(~z) (we could just as
well use (3.1.5 instead with immediate modifications to the next set of equations). From this,
as well as (1.3.1) and (2.4.2), it follows that

〈Kq-Bosonf, g〉W

=

∮
γ
· · ·
∮
γ
dµ(1)k(~w)

k∏
j=1

1

1− wj
〈Ψ`

~w, g〉W 〈f,Ψ
r
~w〉W

=

∮
γ
· · ·
∮
γ
dµ(1)k(~w)

k∏
j=1

1

1− wj
〈qk(k−1)/2CqΨ

r
~w, Rg〉W 〈Rf, q

−k(k−1)/2C−1
q Ψ`

~w〉W

=

∮
γ
· · ·
∮
γ
dµ(1)k(~w)

k∏
j=1

1

1− wj
〈Ψ`

~w, C
−1
q Rf〉W 〈CqRg,Ψr

~w〉W

= 〈C−1
q Rf,Kq-Boson(CqRg)〉W .

Moving the C−1
q R operator to the right-hand side and using the fact that R = R−1, yields (3.2.1).

We now show that for any ~x ∈Wk, if f(~n) = 1~n=~x then for ~y ∈Wk

(Kq-Bosonf)(~y) = 1~y=~x.

This claim (which by linearity of Kq-Boson completes the proof of the theorem) is shown in two
parts. First we show that (Kq-Bosonf)(~y) is zero unless ~y = ~x, and then we compute the value of
(Kq-Bosonf)(~x).

Let g(~n) = 1~n=~y. Then showing the first part is equivalent to showing that 〈Kq-Bosonf, g〉W
may only be non-zero if ~y = ~x. With these choices for f and g we have that

〈Kq-Bosonf, g〉W =

∮
γ1

dz1

2πi
· · ·
∮
γk

dzk
2πi

∏
16A<B6k

zA − zB
zA − qzB

k∏
j=1

(1− zj)−yj−1Ψr
~z(~x). (3.2.2)

Since we may (without crossing poles) expand the γ1 contour to infinity, the integral in z1 can
be evaluated by taking the residue at z1 = ∞. From this and the definition of Ψr we find that
this integral may be non-zero only if y1 6 x1. On the other hand, by (3.2.1),

〈Kq-Bosonf, g〉W = 〈f, (CqR)−1Kq-Boson(CqRg)〉W

=
Cq(~y)

Cq(~x)

∮
γ1

dz1

2πi
· · ·
∮
γk

dzk
2πi

×
∏

16A<B6k

zA − zB
zA − qzB

k∏
j=1

(1− zj)xk−j+1−1Ψr
~z(−yk, . . . ,−y1). (3.2.3)

Since we may (without crossing poles) shrink the γk contour to 1, the integral in zk can be
evaluated by taking the residue at zk = 1. From this and the definition of Ψr we find that this
integral may be non-zero only if x1 6 y1.
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Combining the above two observations, we find that for 〈Kq-Bosonf, g〉W to be non-zero, we
must have x1 = y1. Now assuming that x1 = y1, we may evaluate the residue at z1 =∞ in (3.2.2)
and proceed to expand (without crossing poles) the γ2 contour to infinity. From this we find that
this integral may be non-zero only if y2 6 x2. Likewise, we may evaluate the residue at zk = 1
in (3.2.3) and proceed to shrink the γk−1 contour to 1. From this we find that this integral may
be non-zero only if x2 6 y2. Thus x2 = y2. Proceeding in this manner we arrive at the first part
of the claim, that (Kq-Bosonf)(~y) is zero unless ~y = ~x.

Now we evaluate (Kq-Bosonf)(~x). Observe that by sequentially deforming the contours γ1

through γk to infinity, we find that

(Kq-Bosonf)(~x) = C−1
q (~x)(−1)k

× Res
zk=∞

· · · Res
z1=∞

∏
16A<B6k

zA − zB
zA − qzB

∑
σ∈Sk

∏
16B<A6k

zσ(A) − q−1zσ(B)

zσ(A) − zσ(B)

k∏
j=1

(1− zj)−xj+xσ−1(j)−1
.

The residue will be non-zero only for those terms in the summation over Sk in which σ only
permutes within the clusters of ~x (i.e. if k = 5 and x1 = x2 = x3 > x4 = x5, then σ should
stabilize the set (1, 2, 3) and the set (4, 5)). Let ~c = (c1, . . . , cM ) record the cluster sizes of ~x
(see § 1.3), and define the set C(~c, i) = {c1 + · · · + ci−1 + 1, . . . , c1 + · · · + ci}. We may write
such a σ ∈ Sk as a product σ1 · · ·σM where each σi permutes the elements of C(~c, i) and fixes
{1, . . . , k}\C(~c, i). We denote the set of all such permutations σi ∈ S(~c, i).

Owing to this decomposition (and the fact that for such σ, xj = xσ−1(j)) we may rewrite

∑
σ∈Sk

∏
16B<A6k

zσ(A) − q−1zσ(B)

zσ(A) − zσ(B)

k∏
j=1

(1− zj)−xj+xσ−1(j)−1

=
k∏
j=1

1

1− zj

( M∏
i=1

∑
σi∈S(~c,i)

∏
16B6A6k
A,B∈C(~c,i)

zσi(A) − q−1zσi(B)

zσi(A) − zσi(B)

)( ∏
16j<i6M

∏
A∈C(~c,i)
B∈C(~c,j)

zA − q−1zB
zA − zB

)
.

Note the identity [Mac99, III.1(1.4)] that for any m > 1,∑
σ∈Sm

∏
16B6A6m

zσ(A) − q−1zσ(B)

zσ(A) − zσ(B)
= m!q. (3.2.4)

It follows from the above identity that

(Kq-Bosonf)(~x) = C−1
q (~x)(−1)k

M∏
i=1

(ci)!q−1 Res
zk=∞

· · · Res
z1=∞

∏
16A<B6k

zA − zB
zA − qzB

×
k∏
j=1

1

1− zj

∏
16j<i6M

∏
A∈C(~c,i)
B∈C(~c,j)

zA − q−1zB
zA − zB

. (3.2.5)

The residue is now easily computed since the expression has simple poles at ∞ coming from the
(1− zj)−1 terms; it equals

(−1)k lim
zk=∞

· · · lim
z1=∞

∏
16A<B6k

zA − zB
zA − qzB

∏
16j<i6M

∏
A∈C(~c,i)
B∈C(~c,j)

zA − q−1zB
zA − zB

. (3.2.6)
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The limit of the first product is 1 due to the order in which the limits are taken. For the second
multiplicative term, since j < i it implies that B < A, each factor of (zA − q−1zB)/(zA − zB)
limits to q−1. For each j < i there are a total of cicj such factors. Thus (3.2.6) is equal to

(−1)k
M∏
i=1

(ci)!q−1

∏
16j<i6M

q−cicj .

Note that (c)!q−1 = q−c(c−1)/2(c)!q and, since k =
∑M

i=1 ci, that

M∏
i=1

q−ci(ci−1)/2
∏

16j<i6M

q−cicj = q−k(k−1)/2.

Combining these observations with (3.2.5) shows that (Kq-Bosonf)(~x) = 1, and thus completes
the proof of the theorem. 2

Remark 3.8. The fact that Kq-Boson = Id obviously implies that

(CqR)−1Kq-BosonCqR = Id (3.2.7)

as well. This alternative form of the Plancherel formula effectively switches the roles of Ψ` and Ψr.

We turn now to a dual Plancherel formula.

Theorem 3.9. The inverse q-Boson transform J q-Boson induces an isomorphism between the
space Ck and its image with inverse given by Fq-Boson. Equivalently,Mq-Boson acts as the identity
operator on Ck.

Proof. Observe that for any G ∈ Ck, (Mq-BosonG)(~z) can be written (due to Lemma 3.3) as

(Mq-BosonG)(~z) =
∑
~n∈Wk

Ψr
~z(~n)

∮
γ

dw1

2πi
· · ·
∮
γ

dwk
2πi

dµ(1)k(~w)
k∏
j=1

1

1− wj
Ψ`
~w(~n)G(~w). (3.2.8)

Thus it suffices to prove that the right-hand side above is equal to G(~z).
Towards this aim, consider any complex-valued Laurent polynomial F (~z) in the variables

1 − z1, . . . , 1 − zk. In order to finish the proof of the lemma it suffices to show the following
integrated version holds for all such F :∮
γ

dz1

2πi
· · ·
∮
γ

dzk
2πi

F (~z)G(~z)

=

∮
γ

dz1

2πi
· · ·
∮
γ

dzk
2πi

F (~z)
∑
~n∈Wk

Ψr
~z(~n)

∮
γ

dw1

2πi
· · ·
∮
γ

dwk
2πi

dµ(1)k(~w)

k∏
j=1

1

1− wj
Ψ`
~w(~n)G(~w).

(3.2.9)

From the Cauchy determinant identity

dµ(1)k(~w) = (−1)(k(k−1)/2) 1

k!

∆(~w)2∏
A 6=B(wA − qwB)

k∏
j=1

dwj
2πi

. (3.2.10)
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Interchanging the ~z integration and ~n summation, the right-hand side of (3.2.9) can be brought
to

(−1)k(k−1)/2 1

k!

∑
~n∈Wk

∮
γ

dz1

2πi
· · ·
∮
γ

dzk
2πi

∮
γ

dw1

2πi
· · ·
∮
γ

dwk
2πi

∆(~w)∆(~w)∏
A 6=B(wA − qwB)

×
k∏
j=1

1

1− wj
Ψr
~z(~n)Ψ`

~w(~n)F (~z)G(~w)

=

∮
γ

dw1

2πi
· · ·
∮
γ

dwk
2πi

F (~w)
1

k!

∑
σ∈Sk

G(σ ~w) =

∮
γ

dw1

2πi
· · ·
∮
γ

dwk
2πi

F (~w)G(~w).

The equality between the first and second lines is an application of Proposition 3.14 (given below
and proved independently in § 6). This matches the left-hand side of (3.2.9) and completes the
proof of this theorem. 2

Remark 3.10. It should be possible to extend the dual Plancherel formula to more degenerate
classes of functions such as those of the form G(~z ′ ◦λ) where λ ` k and ~z ′ has `(λ) variables. In
this direction we conjecture that

G(~z ′ ◦ λ) =
∑
~n∈Wk

Ψr
~z ′◦λ(~n)

∮
γ

dw′1
2πi
· · ·
∮
γ

dw′`(λ)

2πi
dµλ(~w ′)

∏̀
j=1

1

(w′j , q)λj
Ψ`
~w ′◦λ(~n)G(~w ′ ◦ λ).

holds when the contour γ and class of functions is chosen suitably. This result is related to the
conjectured spectral orthogonality given in Remark 3.15.

We may combine Theorems 3.7 and 3.9 to arrive at the following result.

Theorem 3.11. The q-Boson transform Fq-Boson induces an isomorphism between Wk and Ck
with inverse given by J q-Boson. Moreover, for any f, g ∈ Wk

〈f, g〉W = 〈Fq-Boson(Pf),Fq-Bosong〉C , (3.2.11)

and for any F,G ∈ Ck

〈P−1(J q-BosonF ),J q-BosonG〉W = 〈F,G〉C . (3.2.12)

Here P :Wk
→Wk is defined via its action (Pg)(~n) = (−1)kCq(~n)(Rg)(~n) and is the operator

which maps right eigenfunctions to left eigenfunctions.

Proof. The isomorphism follows immediately by combining Theorems 3.7 and 3.9. To show
(3.2.11) and (3.2.12) consider an arbitrary g ∈ Wk, and let 1~m ∈ Wk (for ~m ∈ Wk) be the
function 1~m(~n) = 1~m=~n. Also, let Ψ`(~n) ∈ Ck be the function Ψ`(~n)(~z) = Ψ`

~z(~n). Then,

〈Ψ`(~m), (Fq-Bosong)〉C = (J q-BosonFq-Bosong)(~m) = g(~m) = 〈1~m, g〉W .

The first equality follows from Definition 3.5 as well as Lemma 3.4. The second equality follows
from Theorem 3.7 and the final equality follows immediately from the definition of the bilinear
pairing. Any function f ∈ Wk is a (finite) linear combination of the functions 1~m (over ~m ∈Wk),
hence the desired result (3.2.11) follows by linearity of the bilinear pairings and the fact that
PΨr(~m) = Ψ`(~m).

The result (3.2.12) follows due to an application of Theorem 3.9. 2
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Theorem 3.7 has two immediate corollaries. The first (Corollary 3.12) is the completeness of
the coordinate Bethe ansatz for the q-Boson particle system (with respect to a certain complex
Plancherel measure), and the second (Corollary 3.13) is the orthogonality of Ψr

~z(~n) and Ψ`
~z(~m)

when integrated against the Plancherel measure. We call this a spatial orthogonality since it
corresponds to an orthogonality in the variables ~n.

There is a second orthogonality which we call spectral as it is in the variables ~z. The spectral
orthogonality (given as Proposition 3.14 below) is not a consequence of Theorem 3.7 and, as we
have just seen, is the main input in the proof of the dual Plancherel formula of Theorem 3.9. It
follows by taking ε = 1 in Proposition 6.2, which, in turn, is proved by ultimately appealing to
the Cauchy–Littlewood identity for Hall–Littlewood symmetric polynomials.

For what follows, recall the contours γ1, . . . , γk, γ, γ
′ from Definition 3.1.

3.3 Completeness
Corollary 3.12. Any function f ∈ Wk can be expanded as

f(~n) =
∑
λ`k

∮
γk

· · ·
∮
γk

dµλ(~w)

`(λ)∏
j=1

1

(wj ; q)λj
Ψ`
~w◦λ(~n)〈f,Ψr

~w◦λ〉W , (3.3.1)

and also as

f(~n) =
∑
λ`k

∮
γk

· · ·
∮
γk

dµλ(~w)

`(λ)∏
j=1

1

(wj ; q)λj
Ψr
~w◦λ(~n)〈Ψ`

~w◦λ, f〉W . (3.3.2)

Proof. The expansion in (3.3.1) follows from applying Kq-Boson to the function f . On the one
hand, Theorem 3.7 shows that this returns f , while (3.1.5) provides the above expansion.

The expression in (3.3.2) comes from the previous expansion as well as the relations (2.4.2).
Equivalently, it is related to the expansion of the nested contour integral corresponding to the
left-hand side of (3.2.7). 2

Due to Lemma 3.3 we also have the expansion

f(~n) =

∮
γ
· · ·
∮
γ
dµ(1)k(~w)

k∏
j=1

1

1− wj
Ψ`
~w(~n)〈f,Ψr

~w〉W ,

and similarly when r and ` are switched.

3.4 Biorthogonality
The following spatial orthogonality is also an immediate consequence of the Plancherel formula.

Corollary 3.13. For ~n, ~m ∈Wk, regarding Ψ`(~n) and Ψ`(~m) as functions (Ψ`(~n))(~z) = Ψ`
~z(~n)

and (Ψr(~m))(~z) = Ψr
~z(~m), we have that

〈Ψ`(~n),Ψr(~m)〉C = 1~n=~m.

Proof. This follows by applying (3.3.1) to the function f(~n) = 1~n=~m. 2

The following spectral orthogonality does not seem to follow from the Plancherel formula
(Theorem 3.7). It is, in fact, the key input in proving the dual Plancherel formula (Theorem 3.9),
so we provide an independent proof of it. The spaces of functions with which we deal are more
general than necessary for the dual Plancherel formula.

Proposition 3.14. Consider a function F (~z) such that for M large enough,
∏k
i=1(1 − zi)−M

∆(~z)F (~z) is analytic in the closed exterior of γ, and consider another function G(~w) such
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that ∆(~w)G(~w) is analytic in the closed region between γ and γ′. Then we have that∑
~n∈Wk

(∮
γ

dz1

2πi
· · ·
∮
γ

dzk
2πi

Ψr
~z(~n)∆(~z)F (~z)

)(∮
γ

dw1

2πi
· · ·
∮
γ

dwk
2πi

Ψ`
~w(~n)∆(~w)G(~w)

)

=

∮
γ

dw1

2πi
· · ·
∮
γ

dwk
2πi

(−1)k(k−1)/2
k∏
j=1

(1− wj)
∏
A 6=B

(wA − qwB)
∑
σ∈Sk

sgn(σ)F (σ ~w)G(~w).

Proof. This is the ε = 1 case of Proposition 6.2. 2

Remark 3.15. The above identity may be formally rewritten as

〈Ψ`
~w,Ψ

r
~z〉W∆(~z)∆(~w) = (−1)k(k−1)/2

k∏
j=1

(1− zj)
∏
A 6=B

(zA − qzB) det[δzi,wj ]
k
i,j=1 (3.4.1)

where δz,w is the Dirac delta function for z = w. Owing to (3.2.10), this can be further (even
more formally) rewritten as

〈Ψ`
~w,Ψ

r
~z〉W = det[δzi,wj ]

k
i,j=1

∏k
i=1 (1/(1− zi))dzi

dµ(1)k(~z)
.

It is natural to try to extend the above spectral orthogonality to all eigenfunctions which
arise in the completeness results of Corollary 3.12. This prompts the conjecture that for any two
partitions λ, µ ` k, if ~z = ~z ′ ◦ λ and ~w = ~w ′ ◦ µ (for ~z ′ of length `(λ) and ~w ′ of length `(µ))
then

〈Ψ`
~w,Ψ

r
~z〉W∆(~z)∆(~w) = 1λ,µ(−1)k(k−1)/2

k∏
j=1

(1− zj)
∼∏

A 6=B
(zA − qzB) det[δzi,wj ]

k
i,j=1, (3.4.2)

where the product
∏∼
A 6=B(zA − qzB) means that we omit factors that are zero (by virtue of the

definitions of ~z and ~w). Presumably, the above formal identity should be understood in a similar
manner as Proposition 3.14. Note that the above may be expressed via dµλ(~w) owing to the fact
that

dµλ(~w ′) = (−1)k(k−1)/2 1

m1!m2! . . .

∆(~w ′ ◦ λ)2∏∼
A 6=B((~w ′ ◦ λ)A − q(~w ′ ◦ λ)B)

`(λ)∏
j=1

dw′j
2πi

. (3.4.3)

In particular, for k = 2, we expect that∑
n1>n2

Ψr
z′,qz′(n1, n2)Ψ`

w′,qw′(n1, n2)(z′ − qz′)(w′ − qw′) = −(1− z′)(1− qz′)(z′ − q2z′)δz′,w′ .

Note that in the determinant det[δzi,wj ]
2
i,j=1, only one summand survives, namely, δz′,w′δqz′,qw′ =

δz′,w′ . We have checked the above k = 2 version of the conjecture for test functions of the form

F (z1, z2) =
∏2
i=1(1− zi)mi and G(w1, w2) =

∏2
i=1(1−wi)ri . For such functions, any integration

contours which enclose 1 suffice (since there is only a pole at 1 to consider).

4. Applications of Plancherel formulas

In this section we show how the Plancherel formula (in particular the completeness result of
Corollary 3.12) provides means to solve the Kolmogorov backward and forward equations for the
q-Boson particle system. In the case of the backward equation in § 4.3 we explain how, through a
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duality with another particle system called q-TASEP, this enables us to calculate exact formulas
for expectations of certain observables of q-TASEP with general initial data (thus extending
special cases of initial data studied earlier in [BC14, BCS12]). This should be thought as parallel
to the work of Dotsenko [Dot10] and Calabrese, Le Doussal and Rosso [CLR10] in which they
use the eigenfunction decomposition of the delta Bose gas to calculate exact formulas for joint
moments of the solution of the stochastic heat equation (cf. §A.1).

4.1 Solving the backward and forward equations
The Kolmogorov backward and forward equations can be readily solved when the initial data is
expressed as a sum over eigenfunctions. The Plancherel formula (specifically the completeness
result of Corollary 3.12) provides such a decomposition. For the forward generator Ψr

~z(~n) is the
right eigenfunction, whereas for the backward generator Ψ`

~z(~n) is the right eigenfunction. The
following solutions of the backward and forward equations for general (compactly supported)
initial data are consequences of Corollary 3.12.

Corollary 4.1. For any f0 ∈ Wk the backward equation

d

dt
f(t;~n) = (Hbwdf)(t;~n)

with f(0;~n) = f0(~n) is uniquely solved by

f(t;~n) = (etH
bwd
f0)(~n) =

∑
λ`k

∮
γk

· · ·
∮
γk

dµλ(~w)

`(λ)∏
j=1

1

(wj ; q)λj
etE(~w◦λ)Ψ`

~w◦λ(~n)〈f0,Ψ
r
~w◦λ〉W

=

∮
γ1

dz1

2πi
· · ·
∮
γk

dzk
2πi

∏
16A<B6k

zA − zB
zA − qzB

k∏
j=1

(1− zj)−nj−1 etE(~z) 〈f0,Ψ
r
~z〉W (4.1.1)

where E(~z) = (q − 1)(z1 + · · ·+ zk) and where the contours γ1, . . . , γk are as in Definition 3.1.

Proof. The uniqueness of solutions to the backward equation with initial data in Wk is
evident because of the triangular nature of the generator Hbwd. From Definition 2.12 and
Proposition 2.10, Ψ`

~w◦λ is a right eigenfunction for Hbwd with eigenvalue E(~w ◦ λ). This implies
that the right-hand side of the first line of (4.1.1) solves the desired backward equation. The fact
that it satisfies the initial data follows from Corollary 3.12, (3.3.1). The equivalence of the first
and second lines of (4.1.1) is a consequence of Proposition A.4 (see also Lemma 3.4). 2

Corollary 4.2. For any f0 ∈ Wk the forward equation

d

dt
f(t;~n) = (Hfwdf)(t;~n)

with f(0;~n) = f0(~n) is uniquely solved by

f(t;~n) = (etH
fwd
f0)(~n) =

∑
λ`k

∮
γk

· · ·
∮
γk

dµλ(~w)

`(λ)∏
j=1

1

(wj ; q)λj
etE(~w◦λ)Ψr

~w◦λ(~n)〈Ψ`
~w◦λ, f0〉W

= q−k(k−1)/2C−1
q (~n)

∮
γ1

dz1

2πi
· · ·
∮
γk

dzk
2πi

×
∏

16A<B6k

zA − zB
zA − qzB

k∏
j=1

(1− zj)nk−j+1−1etE(~z) 〈Ψ`
~z, f0〉W (4.1.2)

where E(~z) = (q − 1)(z1 + · · ·+ zk) and the contours γ1, . . . , γk are as in Definition 3.1.
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Proof. This is proved in the same manner as Corollary 4.1 with the replacements of Hbwd with
Hfwd and Ψ`

~w◦λ with Ψr
~w◦λ. The initial data is satisfied by virtue of Corollary 3.12, (3.3.2). 2

4.2 Transition probabilities
The Kolmogorov forward equation governs the evolution of the transition probabilities of a
Markov process. In particular, for the q-Boson particle system ~n(t) (recall from § 2.1) define

P~y(t; ~x) = P(~n(t) = ~x | ~n(0) = ~y),

for ~x, ~y ∈Wk and t > 0. Then P~y(t; ~x) solves the Kolmogorov forward equation

d

dt
P~y(t; ~x) = (HfwdP~y)(t; ~x), P~y(0; ~x) = 1~x=~y,

where Hfwd (Definition 2.1) acts in the ~x variables.
We may directly utilize Corollary 4.2 to show the following corollary.

Corollary 4.3. The q-Boson particle system transition probability P~y(t; ~x) from initial state
~y ∈Wk to terminal state ~x ∈Wk in time t > 0 is given by both the right-hand sides of the first
and second line of (4.1.2) with f0(~n) = 1~n=~y.

This result may be compared to Tracy–Widom’s ASEP transition probability formulas
[TW08]. Those formulas involve k!, k-fold contour integrals. With some additional work, the
above result (which is a single k-fold nested contour integral) can be brought closer to this form.
In fact, in work of Korhonen and Lee [KL13] posted soon after the present work was first posted,
the authors utilize the Tracy–Widom approach to arrive directly at such a formula, as indicated
above. In a companion paper [BCPS14] we develop parallel results for ASEP and the Heisenberg
XXZ quantum spin chain and remark on the relationship to Tracy–Widom’s work on ASEP.

4.3 Nested contour integral formulas for q-TASEP
The Kolmogorov backward equation governs the evolution of the expectation of functions of a
Markov process. In particular, for the q-Boson particle system ~n(t) and a function f0 : Wk

→ R,
we define

h(t;~n) = E[f0(~n(t)) | ~n(0) = ~n],

which always stays well defined (at least for bounded functions f0). Then h(t;~n) solves the
Kolmogorov backward equation

d

dt
h(t;~n) = Hbwdh(t;~n), h(0;~n) = f0(~n),

where Hbwd (Definition 2.1) acts in the ~n variables.
We may directly utilize Corollary 4.1 to show the following corollary.

Corollary 4.4. For f0 ∈ Wk, the expectation h(t;~n) is given by the right-hand side of the first
and the second line of (4.1.1).

In [BCS12, § 2] it is shown that there exists a Markov duality between the q-Boson particle
system and q-TASEP. As a result, expectations of certain observables of q-TASEP can be
computed by solving the above backward equation.

The q-deformed totally asymmetric simple exclusion process (q-TASEP) is a continuous time,
discrete space interacting particle system ~x(t). It was first introduced and studied by Borodin
and Corwin [BC14] (see also [BCS12, BC13, OP13, BP14, CP13] for subsequent developments).
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Particles occupy sites of Z with at most one particle at any site at a given time. The location
of particle i at time t is written as xi(t). Particles are ordered so that xi(t) > xj(t) for i < j.
The rate at which the value of xi(t) increases by one (i.e. the particle jumps right by one) is
1− qxi−1(t)−xi(t)−1 (here xi−1(t)− xi(t)− 1 is the size of the gap between particle xi and xi−1 at
time t). All jumps occur independently of each other according to exponential clocks.

We will focus on q-TASEP with only N > 1 particles, though since particles only depend
on those to their right (i.e. smaller index) this restriction can be weakened to include systems
with a right-most particle (though possible infinite particles in total). Define Wk,N as the set of
all ~n ∈Wk such that N > n1 > · · · > nk > 1. For some possibly random initial data ~x(0) for N
particle q-TASEP define h0 : Wk

→ R as 0 outside of the compact set Wk,N and otherwise

h0(~n) := E
[ k∏
i=1

qxni (0)+ni

]
, (4.3.1)

where the expectation is over the possibly random initial data x(0). Then it follows from
Proposition 2.7 (and Definition 2.6) of [BCS12] that,

h(t;~n) := E
[ k∏
i=1

qxni (t)+ni
]

(4.3.2)

solves the q-Boson particle system backward equation with initial data h0. Here the expectation is
over both the possibly random initial data and the random evolution of q-TASEP. In particular,
this, along with Corollary 4.1 implies the following.

Corollary 4.5. For q-TASEP with N particles and initial data ~x(0), h(t;~n) is given by the
right-hand side of the first and the second lines of (4.1.1) with f0(~n) = h0(~n).

In order to apply Corollary 4.5 it is necessary to compute (Fq-Bosonh0)(~z) = 〈h0,Ψ
r
~z〉W . For

purposes of asymptotics it is desirable to concisely sum the series given by this bilinear pairing.
The dual Plancherel formula given in Theorem 3.9 shows how this can be achieved for a certain
class of functions.

Corollary 4.6. Consider any function G ∈ Ck; if f(~n) = (J q-BosonG)(~n), then (Fq-Bosonf)(~z) =
G(~z).

Proof. The follows immediately from the application of Theorem 3.9. 2

To illustrate, let us apply this corollary to the two types of q-TASEP initial data studied
previously in [BC14] and [BCS12]. Step initial data for q-TASEP is when ~xi(0) =−i for 1 6 i6N .
Half-stationary initial data with parameter α ∈ [0, 1) is when x1(0) = −1 − X1 and, for i > 1,
xi = xi−1 − 1−Xi. Here the Xi are independent random variables with common distribution

P(X = k) = (α; q)∞
αk

(q; q)k
.

See [BC14, § 3.3] for a justification of why this is half-stationary initial data. When α = 0,
half-stationary reduces to step initial data.

For step initial data it is immediate to see that the corresponding initial data h0 is given
by
∏k
i=1 10<ni6N . Due to the fact that the operator Hbwd is triangular, the solution h(t;~n)
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for ~n ∈ Wk,N does not depend on the initial data h0(~n) for ~n such that nk > N . Therefore in

order to solve for h(t;~n) we may just as well work with initial data

hstep
0 (~n) :=

k∏
i=1

1ni>0,

although observe that this function is no longer compactly supported.

For half-stationary initial data, finding h0 requires a calculation involving the above common

distribution of the Xi. This is done in equation (12) of [BCS12] and gives (after similar

considerations involving the indicator functions) the (non-compactly supported) initial data

hhalf
0 (~n) :=

k∏
i=1

1ni>0

i∏
j=1

(
1

1− α/qj

)ni−ni+1

=
k∏
j=1

1ni>0

(
1− α

qj

)−nj
, (4.3.3)

with the convention above that nk+1 = 0.

A particular instance of Corollary 4.6 (in fact, an immediate extension in the function space

to allow for non-compact support) implies the following.

Lemma 4.7. Consider any 0 6 α < qk. Assume that there exist positively oriented closed contours

γ1, . . . , γk and γ̃1, . . . , γ̃k which both satisfy the conditions of Definition 3.1 but also do not include

α/q and are such that for all z ∈ γi and w ∈ γ̃i, |1 − z| < |1 − w|. Then, for ~z with zi ∈ γi for

1 6 i 6 k,

(Fq-Bosonhhalf
0 )(~z) = (−1)kqk(k−1)/2

k∏
j=1

1− zj
zj − α/q

. (4.3.4)

Proof. Define G(~z) =
∏k
i=1(zi − α/q)−1. We claim that hhalf

0 (~n) = (J q-BosonG)(~n), where the

definition of J q-Boson is extended to this function G (which is not in Ck) by assuming that

the contours γ1, . . . , γk have the additional condition that they do not include α/q. Checking

this is easily achieved through residue considerations. Indeed, when nk 6 0, the zk integral in

(J q-BosonG)(~n) has no residue at 1 and hence evaluates to 0, enforcing the condition ni > 0, for

1 6 i 6 k. Otherwise, we find the desired equality by sequentially deforming the γ1 through γk
contours to infinity and evaluating the integral (J q-BosonG)(~n) via its residue at infinity.

If Corollary 4.6 were valid for G as above, then the proof of the lemma would be complete.

Though we have not proved that this is the case, we may still complete the proof via an

approximation argument. It is possible to find a sequence of functions Gm ∈ Ck so that as

m →∞, Gm(~z) converges uniformly over ~z with zi ∈ γi for 1 6 i 6 k, to G(~z).

In order to extend the result of Corollary 4.6, we must show that (Fq-BosonJ q-BosonG)(~z) =

G(~z) for all ~z with zi ∈ γi for 1 6 i 6 k. Theorem 3.9 implies that this holds for all Gm.

Consider the ~n term arising in the summation when Fq-Boson is applied to (J q-BosonGm)(~n).

Call ~w the integration variables involved in the formula for (J q-BosonGm)(~n). We can choose the

integration contours for J q-Boson to be γ̃1, . . . , γ̃k. In that case, the ~n term we are considering can

be uniformly (in m) bounded by a constant times δn1+···+nk for some δ < 1 (which is the maximal

ratio of |1− zi|/|1− wi| over zi ∈ γi, wi ∈ γ̃i and 1 6 i 6 k). Since G does not have a pole at 1,

(J q-BosonGm)(~n) is supported on the non-negative ~n. The above bound, along with uniformity

in the convergence of Gm to G, implies that we can take the m → ∞ limit inside the dual

Plancherel formula relation and conclude that (Fq-BosonJ q-BosonG)(~z) = G(~z) as desired. 2
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The method of the above proof shows one way to try to extend the Plancherel and dual
Plancherel formulas to apply to larger classes of functions.

Remark 4.8. Corollary 4.6 (in fact Theorem 3.9) immediately yields many combinatorial
formulas like the one in Lemma 4.7 above. We provide, in addition to the above proof, a direct
inductive proof of Lemma 4.7 in §A.3. The particular identity of Lemma 4.7 is akin to one which
arises as [IS11, Lemma 5] in considering the half-Brownian KPZ equation, as well as bearing
similarity to the identity in [TW09b, § III].

In applying Corollary 4.6, it is not a priori so clear, if given f , how to find G such that
f(~n) = (J q-BosonG)(~n). One strategy is to try to explicitly compute (Fq-Bosonf)(~z) for k = 1, 2
and then guess G for general k. In order to check such a guess, one need only compute the
integrals in applying J q-Boson to G (as opposed to implementing an inductive proof).

There is a class of initial data for q-TASEP which arises as marginal distributions of
Macdonald processes for which G is clear (the notation and concepts below are explained in
detail in [BC14], see also [BCGS13, BC13]). Consider q-TASEP initialized according to xi(0) =

λ
(i)
i − i where λ is a Gelfand–Tsetlin pattern distributed according to an ascending (Macdonald

parameter t = 0 and q the same in the q-TASEP) Macdonald process with parameters ai ≡ 1,
and ρ a Macdonald non-negative specialization characterized by (non-negative) parameters {αi},
{βi} and γ. Then

h0(~n) =
Dnk · · ·Dn1Π(a1, . . . , aN ; ρ)

Π(a1, . . . , aN ; ρ)

∣∣∣∣
ai≡1

where the Dj are Macdonald first difference operators and Π is the normalizing constant for
the Macdonald process. These difference operators are naturally encoded via nested contour
integrals, from which one readily identifies h0(~n) = (J q-BosonG)(~n) where

G(~z) = (−1)kqk(k−1)/2
k∏
i=1

Π(qzi; ρ)

Π(zi; ρ)

1− zi
zi

.

This implies that (Fq-Bosonh0)(~z) = G(~z).
Step initial data for q-TASEP is a special case of a marginal of a Macdonald process (in which

all αi = βi = γ = 0). Half-stationary should arise from a ‘two-sided’ generalization of Macdonald
processes (cf. [Bor11] for the Schur version) which has yet to be fully developed. Flat or half-flat
initial data for q-TASEP do not seem likely to arise from Macdonald processes. However, as they
have been (non-rigorously) treated at the KPZ equation level, one might hope to explicitly sum
the associated series (Fq-Bosonh0)(~z) and proceed to asymptotics for corresponding q-TASEP
initial data.

Proposition 4.9. For step initial data,

E
[ k∏
i=1

qxni (t)+ni
]

= (−1)kqk(k−1)/2

∮
γ1

dz1

2πi
· · ·
∮
γk

dzk
2πi

∏
16A<B6k

zA − zB
zA − qzB

k∏
j=1

(1− zj)−nj
e(q−1)tzj

zj
,

(4.3.5)
where γ1, . . . , γk are as in Definition 3.1, with the additional condition that they do not include 0.

For half-stationary initial data with parameter α > 0 such that α < qk,

E
[ k∏
i=1

qxni (t)+ni
]

= (−1)kqk(k−1)/2

∮
γ1

dz1

2πi
· · ·
∮
γk

dzk
2πi

∏
16A<B6k

zA − zB
zA − qzB

k∏
j=1

(1− zj)−nj
e(q−1)tzj

zj − α/q
,

(4.3.6)
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where γ1, . . . , γk are as in Definition 3.1 with the additional condition that they do not include
α/q (this is possible due to the restriction on the value of α).

Proof. It suffices to prove the half-stationary result. Assume that γ1, . . . , γk are such that there
exist γ̃1, . . . , γ̃k so that the hypotheses of Lemma 4.7 are satisfied. Then, applying Lemma 4.7
and Corollary 4.5 we arrive at the desired result. Observe that the contours in (4.3.6) can be
freely deformed now to any choice of γ1, . . . , γk as in the statement of the proposition. 2

The step initial data version of this result with all ni ≡ n was proved in [BC14, § 3.3] using
the theory of Macdonald processes. The general ~n step and half-stationary result was proved in
[BCS12, Theorem 2.11]. The Macdonald process approach was then extended in [BCGS13] to
also cover general ~n.

5. Complex q

Though we have assumed q ∈ (0, 1) in this paper, many of the results can either be immediately
extended (as well as their proofs) or easily modified to accommodate general q ∈ C′k where we
define

C′k = {z ∈ C\{0} : ∀1 6 j < k, zj 6= 1}.

From the perspective of stochastic processes (like the q-Boson particle system or q-TASEP),
having q outside (−1, 1) does not seem to be meaningful. However, from the perspective of
quantum mechanics such an extension is natural. In fact, a version of the q-Boson Hamiltonian
(corresponding with the ε = 0 limit discussed in § 6.2) with q on the complex unit circle has been
used as an integrable regularization of the real time delta Bose gas in the study of quantum
quenches (cf. [KSCCI13] and references therein). Taking q on the complex unit circle is akin
to taking the ratio τ = p/q in ASEP to be on the complex unit circle or taking the coupling
constant ∆ in the Heisenberg XXZ quantum spin chain (on Z) to be real with |∆| < 1. The
Plancherel formulas and completeness/biorthogonality for ASEP and XXZ will be the subject
of future work [BCPS14] (see also [BT77, BG90, Gut00]).

In § 2, though the probabilistic interpretation for the backward and forward generators is
not valid when q is general, the equivalence of the generators to free generators with (k − 1)
boundary conditions, and the Bethe ansatz eigenfunctions all stay valid. In short, all results,
definitions and formulas hold for general q ∈ C′k.

In § 3, the definitions of Fq-Boson, J q-Boson and Kq-Boson remain valid for general q. Recall the
conditions on the contours γ1, . . . , γk that they be positively oriented, closed contours chosen so
that they all contain 1, so that the γA contour contains the image of q times the γB contour for
all B > A, and so that γk is a small enough circle around 1 that does not contain q. For general
q ∈ C′k, these conditions lead to a rather different picture for the contours than that of Figure 2.
For instance, for q on the complex unit circle (but not a jth root of unity for 1 6 j < k), Figure 3
shows contours which satisfy the conditions.

For what follows, fix γk as a circle around 1, small enough so as not to contain q. For general
q ∈ C′k, it is possible that the image of γk when multiplied by a power of q will intersect itself. This
will affect the way that a nested contour integral (such as in J q-Boson) expands when contours
are deformed to γk. Indeed, certain residues previously encountered may not contribute.

With this in mind, define the contour (see Figure 4)

Γ(n)(q) = {z ∈ γk : ∀1 6 j < n, qjz is outside γk}.
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1

q

q2

q3

Figure 3. Possible γ1, . . . , γk contours when k = 4 and q is on the unit complex circle
(approximately q ≈ e(5/8)πi). The contour γ4 is a small circle around 1. The contour γ3 is the
union of the small circle around 1 and the slightly larger circle around q (so that it contains
the image of γ4 when multiplied by q). The contour γ2 is the union of the small circle around
1, the slightly larger circle around q and the yet larger circle around q2 (so that it contains
the image of γ3 and γ4 when multiplied by q). Because the image of γ2 when multiplied by q
intersects the original small circle around 1, when defining γ1 we take it to be the union of the
larger ellipse around 1 and q3, as well as the circles around q and q2.

1

q

q2

q3

Figure 4. For k = 4, q ≈ e(5/8)πi and a fixed circle γ4 around 1, the contours Γ(1)(q),Γ(2)(q) and
Γ(3)(q) are all equal to γ4. However, Γ(4)(q) is only the portion of γ4 which is the complement of

the dark black arc. This arc is the set of z such that q3z lies inside of γ4 (grey arc in the figure).

These contours are similar in nature (and origin, see [BCPS14]) to the so-called Chebyshev circles

considered in [BG90, Gut00] in the context of the XXZ model’s Plancherel formula for |∆| < 1.

We may now state the general q version of Lemma 3.4.

35

https://doi.org/10.1112/S0010437X14007532 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007532


A. Borodin et al.

Lemma 5.1. Fix q ∈ C′k and consider a symmetric function G : Ck → C and positively oriented,
closed contours γ1, . . . , γk such that:
• the contour γk is a circle around 1, small enough so as not to contain q;
• for all 1 6 A < B 6 k, the interior of γA contains 1 and the image of γB multiplied by q;
• for all 1 6 j 6 k, there exist deformations Dj of γj to γk so that for all z1, . . . , zj−1,

zj+1, . . . , zk with zi ∈ γi for 1 6 i < j, and zi ∈ γk for j < i 6 k, the function zj 7→ ∆(~z)G(z1,
. . . , zj , . . . , zk) is analytic in a neighborhood of the area swept out by the deformation Dj .

Then,

(J q-BosonG)(~n) =
∑
λ`k

∮
Γ(λ1)

(q)
· · ·
∮

Γ(λ`(λ))
(q)

dµλ(~w)

`(λ)∏
j=1

1

(wj ; q)λj
Ψ`
~w◦λ(~n)G(~w ◦ λ).

Proof. This follows immediately from a general q version of Proposition A.4, using the symmetry
of G to remove it from the expression for Eq. The general q version of Proposition A.4 has
essentially the same proof. Let us illustrate the only modification which is required. As we
deformed γk−1 through γ1 to γk, we picked strings of residues of the form zi1 = qzi2 , zi2 = qzi3 ,
. . . , ziλ1−1

= qziλ1 where i1 < i2 < · · · < iλ1 . However, if qjziλ1 is contained inside of γk for some
1 6 j 6 λ1− 1, then the deformation will not cross one of the poles which corresponds with this
residue string. Thus, the string will be excluded from the residue expansion. This is the source
of the restriction to the Γ(n)(q) contours in the above result. 2

When q is a root of unity more care must be taken due to the fact that qjz and z may lie
upon the same contour. In the course of proving the above result we encounter denominators
which contain terms like z − qjz. Thus, some additional regularization is needed to deal with
this case. We do not pursue this here.

Just as with (3.1.5), we may use the above lemma to record the analogous general q formula
for Kq-Boson,

(Kq-Bosonf)(~n) =
∑
λ`k

∮
Γ(λ1)

(q)
· · ·
∮

Γ(λ`(λ))
(q)

dµλ(~w)

`(λ)∏
j=1

1

(wj ; q)λj
Ψ`
~w◦λ(~n)〈f,Ψr

~w◦λ〉W . (5.0.7)

Theorem 3.7 holds exactly as stated with Fq-Boson and J q-Boson as above, and q ∈ C′k.
This in turn shows that for general q ∈ C′k, Corollaries 3.12 and 3.13 hold under the one

replacement ∮
γk

· · ·
∮
γk

−→
∮

Γ(λ1)
(q)
· · ·
∮

Γ(λ`(λ))
(q)
.

While we expect that suitable modifications are needed for the spectral orthogonality
(Proposition 3.14), and consequently the dual Plancherel formula (Theorem 3.9) and the
Plancherel isomorphism (Theorem 3.11), we do not pursue this here.

6. Two semi-discrete degenerations

This section deals with two different limits of the results contained in §§ 2–4. For a parameter
ε > 0 define the operator Mε that acts on functions f : Wk

→ C as

(Mεf)(~n) = εn1+···+nkf(~n). (6.0.8)
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The first limit (§§ 6.1 and 6.2) involves keeping q fixed but conjugating Hbwd by the operator
Mε, and then taking ε → 0. The limiting system is equivalent to the delta Bose gas considered
by van Diejen [vDi04] (for root systems of type A). It is also related to the γ = 0 version of
the q-Boson Hamiltonian discussed earlier in § 1.2.4. For this limiting system we show how the
spectral orthogonality of the left and right eigenfunctions follows from the Cauchy–Littlewood
identity for Hall–Littlewood symmetric polynomials. This ε = 0 orthogonality is, in fact, the basis
for a general ε > 0 orthogonality which is proved in Proposition 6.2 and implies Proposition 3.14
when ε = 1.

The second limit (§ 6.3) involves taking q = e−ε → 1 and also performing an ε-dependent
conjugation of Hbwd (involving Mε as well). The limiting system here is equivalent to the discrete
delta Bose gas considered in [BC14, § 6] and [BCS12, § 6]. This system arises naturally from
studying moments of a probabilistic system called the semi-discrete stochastic heat equation or
equivalently the O’Connell–Yor semi-discrete directed polymer partition function (see § 6.3.4).
There is yet a third limit to the continuum delta Bose gas. This is briefly discussed in §A.1.

All other results of this section, with the exception of Propositions 6.2, 6.10 and the lemmas
involved in their proofs, can either be proved via suitable limits of our earlier q-Boson particle
system results, or can be proved directly for the limiting system (via the same methods as our
earlier results). As such, we do no include these proofs.

In what follows we recall notation from § 1.3 and write ~c = ~c(~n), M = M(~n), and ~g = ~g(~n)
(thus suppressing the ~n dependence).

6.1 An ε-deformed q-Boson particle system
We now develop an ε-deformation of the work of §§ 2–4 (which at ε = 1 corresponds to these
earlier results). The main purpose of doing this is to provide a proof of the spectral orthogonality
result of Proposition 3.14. In § 6.1.3 we prove that if the spectral orthogonality holds true for some
ε, then it holds for all ε (by essentially showing the derivative of the relation in ε is zero). It turns
out (cf. § 6.2.1) that the ε → 0 limit of this ε-deformation is implied by the Cauchy–Littlewood
identity for Hall–Littlewood symmetric polynomials. This limit also makes contact with earlier
work of van Diejen [vDi04]. The general ε deformation corresponds (via setting γ = −ε) to the
q-Boson Hamiltonian discussed in § 1.2.4.

6.1.1 Coordinate Bethe ansatz. Fix q ∈ (0, 1) and recall the operator Mε from (6.0.8). For
ε > 0 define the operator Hbwd,ε by

Hbwd,ε := εM−1
ε HbwdMε.

Define Hfwd,ε (the matrix transpose of Hbwd,ε) as Hfwd,ε = εMεHfwdM−1
ε and Hcfwd,ε =

CqHfwd,εC−1
q .

It is straightforward to see that

(Hbwd,εf)(~n) =
M∑
i=1

(1− qci)(f(~n−c1+···+ci)− εf(~n)) (6.1.1)

(Hcfwd,εf)(~n) =

M∑
i=1

(1− qci)(f(~n+
c1+···+ci−1+1)− εf(~n)). (6.1.2)

Define an ε-deformed backward difference operator ∇bwd,ε and forward difference operator
∇fwd,ε which act on functions f : Z → C as

(∇bwd,εf)(n) = f(n− 1)− εf(n), (∇fwd,εf)(n) = f(n+ 1)− εf(n).

37

https://doi.org/10.1112/S0010437X14007532 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007532


A. Borodin et al.

Define the ε-deformed q-Boson backward free generator Lbwd,ε in the same way as in (2.2.1),
with∇bwd replaced by∇bwd,ε. Likewise define the (k−1) ε-deformed q-Boson backward two-body
boundary conditions in the same way as in (2.2.2), with∇bwd replaced by∇bwd,ε. Similarly define
the ε-deformed q-Boson forward free generator Lbwd,ε and the (k−1) ε-deformed q-Boson forward
two-body boundary conditions.

The result of Proposition 2.5 then holds with all terms replaced by their ε-deformations. Our
notation of an eigenfunction remains as in Definition 2.6 and the result of Corollary 2.7 applies
under this ε-deformation.

Using the coordinate Bethe ansatz (cf. § 2.3.1) we construct the eigenfunctions below. For all
z1, . . . , zk ∈ C\{ε}, set

Ψbwd,ε
~z (~n) =

∑
σ∈Sk

∏
16B<A6k

zσ(A) − qzσ(B)

zσ(A) − zσ(B)

k∏
j=1

(ε− zσ(j))
−nj

Ψcfwd,ε
~z (~n) =

∑
σ∈Sk

∏
16B<A6k

zσ(A) − q−1zσ(B)

zσ(A) − zσ(B)

k∏
j=1

(ε− zσ(j))
nj

Ψfwd,ε
~z (~n) = C−1

q (~n)Ψcfwd,ε
~z (~n).

For fixed ~n ∈Wk, these are symmetric Laurent polynomials in the variables ε− z1, . . . , ε− zk.
The result of Proposition 2.10 then holds with all terms replaced by their ε-deformations, and

the same eigenvalues (q− 1)(z1 + · · ·+ zk) as before. We define the right and left eigenfunctions
for the forward generator Hfwd,ε as

Ψr,ε
~z (~n) = Ψfwd,ε

~z (~n) and Ψ`,ε
~z (~n) = Ψbwd,ε

~z (~n).

6.1.2 Plancherel formulas. The Plancherel formulas proved in § 3 are readily adapted to this
ε-deformation. In order to facilitate this, we must suitably modify Definition 3.1.

Definition 6.1. Define the space Ckε of symmetric Laurent polynomials in ε− z1, . . . , ε− zk.
Fix any set of positively oriented, closed contours γ1(ε), . . . , γk(ε) chosen so that the contours

all contain ε, so that the γA(ε) contour contains the image of q times the γB(ε) contour for all
B > A, and so that γk(ε) is a small enough circle around ε so as not to contain qε. For use later,
let us also fix contours γ(ε) and γ′(ε) where γ(ε) is a positively oriented closed contour which
contains ε and its own image under multiplication by q, and γ′(ε) contains γ(ε) and is such that
for all z ∈ γ(ε) and w ∈ γ′(ε), |ε− w| > |ε− z|.

We define Fq-Boson,ε and J q-Boson,ε (as well as their compositions) in the same manner as
Fq-Boson and J q-Boson (see Definition 3.1) by replacing Ψr,Ψ`, γ1, . . . , γk by their ε-deformations,
and replacing 1− zi by ε− zi for 1 6 i 6 k.

The Plancherel formula (Theorem 3.7), the dual Plancherel formula (Theorem 3.9) and the
Plancherel isomorphism (Theorem 3.11) all hold under the above ε-deformation. Defining an
ε-deformed q-Pochhammer symbol (a; q)εn :=

∏n−1
i=0 (ε− qia), we likewise find that Corollary 3.12

holds with (wj ; q)λ also replaced by (wj ; q)
ε
λ. Modifying Definition 3.5 in the same manner, it is

immediate that Corollary 3.13 continues to hold as well.

6.1.3 Spectral orthogonality. We turn here to the ε-deformation of the spectral orthogonality.
We will provide a direct proof of this result here.

Proposition 6.2. Consider a function F (~z) such that for M large enough,
∏k
i=1(ε − zi)

−M

∆(~z)F (~z) is analytic in the closed exterior of γ(ε), and consider another function G(~w) such
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that ∆(~w)G(~w) is analytic in the closed region between γ(ε) and γ′(ε). Then we have that∑
~n∈Wk

(∮
γ(ε)

dz1

2πi
· · ·
∮
γ(ε)

dzk
2πi

Ψr,ε
~z (~n)∆(~z)F (~z)

)(∮
γ(ε)

dw1

2πi
· · ·
∮
γ(ε)

dwk
2πi

Ψ`,ε
~w (~n)∆(~w)G(~w)

)

=

∮
γ(ε)

dw1

2πi
· · ·
∮
γ(ε)

dwk
2πi

(−1)k(k−1)/2
k∏
j=1

(ε− wj)
∏
A 6=B

(wA − qwB)
∑
σ∈Sk

sgn(σ)F (σ ~w)G(~w).

Remark 6.3. The above identity may be formally rewritten as

∑
~n∈Wk

Ψr,ε
~z (~n)Ψ`,ε

~w (~n)∆(~z)∆(~w) = (−1)k(k−1)/2
k∏
j=1

(ε− zj)
∏
A 6=B

(zA − qzB) det[δzi,wj ]
k
i,j=1 (6.1.3)

where δz,w is the Dirac delta function for z = w.

Proof. We start with the simple example of k = 1. The general k proof is more involved and is
given after this example. When k = 1, Ψr,ε

z (n) = −(ε − z)n and Ψ`,ε
z (n) = (ε − z)−n. Thus, the

above orthogonality identity states that

−
∑
n∈Z

(∮
γ(ε)

(ε− z)nF (z) dz

)(∮
γ(ε)

(ε− w)−nG(w) dw

)
=

∮
γ(ε)

(ε− w)F (w)G(w) dw. (6.1.4)

Consider the left-hand side of (6.1.4). Since for M large enough, (ε − z)−MF (z) is analytic
outside γ(ε) if n < −M then there is no residue at infinity and the integral in z vanishes.
Therefore the summation can be restricted to n > −M . By Cauchy’s theorem we can deform
the contour of integration for w so as to lie on the larger contour γ′(ε), so that |ε− z| < |ε− w|
for all z ∈ γ(ε) and w ∈ γ′(ε). The summation and integration can now be interchanged since∑

n>−M (ε − z)n(ε − w)−n is uniformly absolutely convergent. Evaluating this sum shows that
the left-hand side of (6.1.4) equals∮

γ(ε)
dz

∮
γ′(ε)

dw
(ε− w)M+1

(ε− z)M (w − z)
F (z)G(w).

We can apply the residue theorem to evaluate the z integral. Due to the conditions on F (z),
outside γ(ε) there is only a residue at z = w (and no singularity at infinity), hence we immediately
arrive at the right-hand side of (6.1.4).

This method of proof does not appear so well adapted to k > 1. Let us introduce (again for
k = 1) the method which we will employ for the general k > 1 case. In what follows we will
work formally, though all manipulations are easily justified by integrating against test functions.
Rewrite the orthogonality identity (formally) as

Hz,w(ε) := −
∑
n∈Z

(ε− z)n−1(ε− w)−n = δz,w,

so that now the left-hand side depends on ε, whereas the right-hand side does not. Here we have
called the above left-hand side Hz,w(ε). It suffices then to show that Hz,w(0) = δz,w and that
(d/dε)Hz,w(ε) = 0 for all ε > 0. For k = 1 the proof that Hz,w(0) = δz,w is just as above (see
§ 6.2.1 for the k > 1 version of this result). As far as the derivative, due to telescoping

d

dε
Hz,w(ε) = −

∑
n∈Z

((n− 1)(ε− z)n−2(ε− w)−n + (−n)(ε− z)n−1(ε− w)−n−1) = 0.
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The general k > 1 proof splits into two steps. The identity we wish to prove can be rewritten
formally as

H~z, ~w(ε) :=
∑
~n∈Wk

C−1
q (~n)Ψ̂r,ε

~z (~n− 1)Ψ`,ε
~w (~n)∆(~z)∆(~w) = (−1)k(k−1)/2

×
∏
A 6=B

(zA − qzB) det [δzi,wj ]
k
i,j=1, (6.1.5)

where we define Ψ̂r,ε
~z (~n) := CqΨ

r,ε
~z (~n) and ~n± 1 = (n1 ± 1, . . . , nk ± 1). Here we have called the

left-hand side H~z, ~w(ε). The purpose of rewriting the desired identity as above is that ε only arises
on the left-hand side, and not on the right.

The first step is to prove (6.1.5) for ε = 0. This is proved as Proposition 6.10 and follows by

identifying Ψr,0
~z (~n) and Ψ`,0

~z (~n) with Hall–Littlewood polynomials (6.2.1) and (6.2.2) and using
the Cauchy–Littlewood identity (6.2.4).

The second step is to prove that (d/dε)H~z, ~w(ε) ≡ 0. By the Leibnitz rule the derivative applies

to either Ψ̂r,ε or Ψ`,ε. Let us calculate how each of these terms transforms under differentiation.
We will show that the derivatives can be written as

d

dε
Ψ̂r,ε
~z (~n) =

∑
~m∈Wk

Cr(~n, ~m)Ψ̂r,ε
~z (~m)

d

dε
Ψ`,ε
~w (~n) =

∑
~m∈Wk

C`(~n, ~m)Ψ`,ε
~w (~m) (6.1.6)

where Cr and C` are matrices independent of ε (and ~z and ~w) such that for each fixed ~n, there are
only finitely many ~m such that the (~n, ~m) entry is non-zero. Assuming the above decomposition,
we can rewrite

d

dε
H~z, ~w(ε) =

∑
~n,~m∈Wk

Ψ̂r,ε
~z (~m)Ψ`,ε

~w (~n)

(
Cr(~n− 1, ~m)

Cq(~n)
+
C`(~m+ 1, ~n)

Cq(~m+ 1)

)
.

To show that the above is identically zero, it suffices to show that for all ~m,~n ∈Wk

Cr(~n− 1, ~m)

Cq(~n)
= −C

`(~m+ 1, ~n)

Cq(~m+ 1)
. (6.1.7)

Therefore, to complete this proof we must first justify the decomposition (6.1.6) and then
check that the matrices which arise from that decomposition satisfy the relation (6.1.7). We will
explicitly compute the entries of the matrix Cr (and likewise those of C`). Observe that

d

dε
Ψ̂r,ε
~z (~n) =

∑
σ∈Sk

∏
16B<A6k

zσ(A) − q−1zσ(B)

zσ(A) − zσ(B)

×
k∏
j=1

(ε− zσ(j))
nj−1

( k∑
s=1

ns(ε− zσ(1)) · · · ̂(ε− zσ(s)) · · · (ε− zσ(k))

)
, (6.1.8)

where the term ̂(ε− zσ(s)) is excluded from the product.

For ~n such that ni > ni+1 for all 1 6 i 6 k − 1 (i.e. ~n away from the boundary of Wk) the
above expansion can be easily re-expressed through Ψ̂r,ε

~z (~m) with coefficients

Cr(~n, ~m) =

{
ni, ~m = ~n−i for some 1 6 i 6 k − 1,

0, else.
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When there are clusters in ~n of equal values, ~n−i will lie outside of Wk for some i. In order

to express the derivative in terms of Ψ̂r,ε
~z (~m) for ~m inside Wk we will use the following property.

Definition 6.4. For ~n ∈Wk and two functions f, g : Ck → C, we write f
~n
≈ g if

∑
σ∈Sk

∏
16B<A6k

zσ(A) − q−1zσ(B)

zσ(A) − zσ(B)

k∏
j=1

(ε− zσ(j))
nj (f(zσ(1), . . . , zσ(k))− g(zσ(1), . . . , zσ(k))) = 0.

(6.1.9)

Lemma 6.5. If ni = ni+1 then for any constants c, c′ and any function f : Ck → C symmetric in
the i and i+ 1 entries, we have that

(c+ c′zσ(i+1))f(~z)
~n
≈ (c+ qc′zσ(i))f(~z).

Proof. Consider the summand (for a given σ ∈ Sk) corresponding to the difference in (6.1.9)
between the left and right sides of the above identity. All that differs between these two sides
of the identity is the terms (c + c′zσ(i+1)) and (c + qc′zσ(i)). Taking the difference thus yields
the factor c′q(zσ(i) − q−1zσ(i+1)). Combined with the term (zσ(i+1) − q−1zσ(i)) coming from the
product over A > B, this is symmetric in zσ(i) and zσ(i+1). Since ni = ni+1, and F (zσ(1), . . . , zσ(k))
is symmetric in zσ(i) and zσ(i+1), it follows that everything except for the denominator of the
product over A > B is symmetric in zσ(i) and zσ(i+1). The denominator is antisymmetric, thus,
we conclude that the difference between the left and right sides of the desired identity is equal
to the symmetrization (summation in σ) of a summand which is antisymmetric in two of its
variables. This implies the symmetrization is zero, and thus so is the difference. 2

Lemma 6.6. Consider ~n = (n, . . . , n), then

(ε− z2) · · · (ε− zk)
~n
≈

k−1∑
i=0

cε(k, i)(ε− z1) · · · (ε− zi)

where

cε(k, i) = εk−i−1qi
(q; q)k−1

(q; q)i
. (6.1.10)

Proof. We will proceed by induction on k. For k = 1, the decomposition is clearly true with
cε(1, 0) = 1. Fix that for all k, cε(k,−1) = cε(k, k) = 0. Assume the inductive hypothesis holds
for k − 1. Then

(ε− z2) · · · (ε− zk)
~n
≈

k−2∑
i=0

cε(k − 1, i)(ε− z1) · · · (ε− zi)(ε− zk)

~n
≈

k−2∑
i=0

cε(k − 1, i)(ε− z1) · · · (ε− zi)(ε− qk−i−1zi+1)

~n
≈

k−2∑
i=0

cε(k − 1, i)(ε− z1) · · · (ε− zi)(ε(1− qk−i−1) + qk−i−1(ε− zi+1))

~n
≈

k−1∑
i=0

(cε(k − 1, i− 1)qk−i + cε(k − 1, i)ε(1− qk−i−1))(ε− z1) · · · (ε− zi).
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The equality in the first line is from the inductive hypothesis; the equality between the first
and second line is from a repeated application of Lemma 6.5; the equality between the second
and third line is from rewriting ε − qk−i−1zi+1 = ε(1 − qk−i−1) + qk−i−1(ε − zi+1); and the
equality between the third and fourth line is from gathering terms with the same factor of
(ε− z1) · · · (ε− zi), and using the notational assumption cε(k,−1) = cε(k, k) = 0.

The above reasoning shows that the cε(k, i) are the solutions to the following recurrence
relation:

cε(k, i) = cε(k − 1, i− 1)qk−i + cε(k − 1, i)ε(1− qk−i−1)

with cε(k,−1) = cε(k, k) = 0 and cε(1, 0) = 1. It is immediate to check that the right-hand side
of (6.1.10) uniquely satisfies this relation. 2

These cε(k, i) coefficients combine to form the entries of Cr. Define

Dε(k, p) =

p∑
j=0

cε(k − p+ j, j) = εk−p−1(1− q)k−p−1 (k)!q(k − p− 1)!q
(k − p)!q(p)!q

. (6.1.11)

Then it is immediate from Lemma 6.6 that for ~n = (n, . . . , n)

k∑
`=1

(ε− z1) · · · ̂(ε− zs) · · · (ε− zk)
~n
≈

k−1∑
p=0

Dε(k, p)(ε− z1) · · · (ε− zp).

This shows that for ~n= (n, . . . , n), Cr(~n, ~m) = nDε(k, p) for all ~m= (n, . . . , n, n−1, . . . , n−1)
with exactly 1 6 p 6 k entries equal to n (and the remaining equal to n − 1). For all other ~m,
Cr(~n, ~m) = 0.

To state the general ~n result, define

~n±[a,b] = (n1, . . . , na−1, na ± 1, na+1 ± 1, . . . , nb ± 1, nb+1, . . . , nk).

Lemma 6.7. For ~n ∈Wk, set (c1, . . . , cM ) = ~c(~n) (cf. § 1.3). Then for all 1 6 i 6M and 0 6 p 6
ci − 1, if ~m = ~n−[c1+···+ci−1+p+1,c1+···+ci] then

Cr(~n, ~m) = nc1+···+ciDε(ci, p), (6.1.12)

and for all other ~m, Cr(~n, ~m) = 0.

Proof. The same reasoning as was applied in the ~n = (n, . . . , n) case may be applied to each
cluster of ~n, thus resulting in the statement of the lemma. 2

We likewise have the following lemma.

Lemma 6.8. For ~n ∈Wk, set (c1, . . . , cM ) = ~c(~n) (cf. § 1.3). Then for all 1 6 i6M and 1 6 p6 ci,
if ~m = ~n+

[c1+···+ci−1+1,c1+···+ci−1+p] then

C`(~n, ~m) = −nc1+···+ciDε(ci, ci − p), (6.1.13)

and for all other ~m, C`(~n, ~m) = 0.

Proof. This is completely analogous to the Cr case. Note that the negative sign comes from
differentiation of terms of the type (1− zj)−nj . 2
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Lemma 6.9. The matrices defined in Lemmas 6.7 and 6.8 satisfy (6.1.7).

Proof. Let us consider the example of ~n = (n, . . . , n, n − 1, . . . , n − 1) with a > 0 entries equal
to n and b > 0 entries equal to n− 1 (thus a total length of a+ b). Then, the only ~m for which
Cr(~n− 1, ~m) and C`(~m+ 1, ~n) are non-zero is ~m = (n− 1, . . . , n− 1, n− 2, . . . , n− 2) with p < a
entries of n− 1 and b+ p entries of n− 2. For these ~n and ~m we compute

Cr(~n− 1, ~m) = (n− 1)Dε(a, p), Cq(~n) = (−1)kq−k(k−1)/2(a)!q(b)!q,

C`(~m+ 1, ~n) = −(n− 1)Dε(a+ b− p, b), Cq(~m) = (−1)kq−k(k−1)/2(p)!q(a+ b− c)!q.

From the explicit formula (6.1.11) for the Dε we immediately confirm that (6.1.7) is satisfied.
The general ~n ∈Wk case follows similarly from the above calculation. 2

We return to complete the proof of Proposition 6.2. As we have now justified the
decomposition (6.1.6) and checked that the matrices Cr and C` satisfy the relation (6.1.7), it
follows that (d/dε)H~z, ~w(ε) = 0. Since Proposition 6.10 (yet to be proved below) shows that (6.1.5)
holds in the limit ε → 0, these two facts together complete the proof of this proposition. 2

6.2 van Diejen’s delta Bose gas

We consider the ε → 0 limit of the ε-deformed q-Boson particle system considered in § 6.1. Our
primary purpose is to prove Proposition 6.2 for ε = 0, as well as to make contact with earlier
work of van Diejen [vDi04]. We also briefly remark on the limiting versions of the Plancherel
formula.

The ε → 0 limits of the generators Hbwd,ε, Hcfwd,ε and Hfwd,ε are straightforward (set ε = 0),
and likewise for∇bwd,ε,∇fwd,ε,Lbwd,ε,Lfwd,ε and the boundary conditions. In particular the limits
of the backward and forward generators (Lbwd,ε and Lfwd,ε) applied to a function u(~n) give∑k

i=1 u(~n−i ) and
∑k

i=1 u(~n+
i ) (respectively). The backward two-body boundary conditions limit

to

for all 1 6 i 6 k − 1 (u(~n−i )− qu(~n−i+1))|~n:ni=ni+1
≡ 0,

and the forward two-body boundary conditions limit to

for all 1 6 i 6 k − 1 (qu(~n+
i )− u(~n+

i+1))|~n:ni=ni+1
≡ 0.

This limiting system arose earlier in work of van Diejen [vDi04], where he additionally worked
in the context of general root systems (the above system corresponds with type A). In that
work, van Diejen uses Bethe ansatz to construct eigenfunctions for these systems and proves
a Plancherel formula (for general root systems) by appealing to earlier work of Macdonald
[Mac71, Mac00]. Taking the ε → 0 limit of our results also yields these eigenfunctions and such
a Plancherel formula (for the type A case).

Let us take the ε→ 0 limit of the left and right eigenfunctions of Hfwd,ε and call these Ψ`,0
~z (~n)

and Ψr,0
~z (~n). For all z1, . . . , zk ∈ C\{0}, we then have

Ψ`,0
~z (~n) =

∑
σ∈Sk

∏
16B<A6k

zσ(A) − qzσ(B)

zσ(A) − zσ(B)

k∏
j=1

(−zσ(j))
−nj

Ψr,0
~z (~n) = C−1

q (~n)
∑
σ∈Sk

∏
16B<A6k

zσ(A) − q−1zσ(B)

zσ(A) − zσ(B)

k∏
j=1

(−zσ(j))
nj .
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We identify these with Hall–Littlewood symmetric polynomials Pλ(x; t) and Qλ(y; t) [Mac99,
ch. III]. For ~n such that nk > 1,

Ψ`,0
~z (~n) = (−1)

∑k
i=1 ni(1− q)−kQ~n(z−1

1 , . . . , z−1
k ; q), (6.2.1)

while for ~n such that nk > 0,

Ψr,0
~z (~n) = (−1)

∑k
i=1 ni(−1)kP~n(z1, . . . , zk; q). (6.2.2)

The ε → 0 limits of Fq-Boson,ε and J q-Boson,ε (as well as their compositions) may thus be
expressed in terms of Hall–Littlewood symmetric polynomials. In taking this ε → 0 limit of
J q-Boson,ε, there is no clear way to take the limit of the nested contours γ1(ε), . . . γk(ε). However,
we may just as well take all contours to be γ(ε) and then there is a clear limit of the integrand
and the contour. Indeed, at ε = 0, we may use any contour γ(0) which encloses 0 and its own
image under multiplication by q. In this way we can show ε → 0 limits of the Plancherel formula
(Theorem 3.7), the dual Plancherel formula (Theorem 3.9) and the Plancherel isomorphism
(Theorem 3.11).

6.2.1 Proof of ε = 0 spectral orthogonality. We state and prove the ε = 0 case of
Proposition 6.2 by directly appealing to the Cauchy–Littlewood identity for Hall–Littlewood
symmetric polynomials. This result then serves as the first step in proving the general ε result
of Proposition 6.2, and consequently Proposition 3.14 as well.

Proposition 6.10. Fix a positively oriented circle γ(0) ⊂ C which contains 0 and the image of
γ(0) under multiplication by q, and let γ′(0) be a circle which contains γ(0) and is such that
|z| < |w| for all z ∈ γ(0) and w ∈ γ′(0). Consider a function F (~z) such that for M large enough,∏k
i=1(−zi)−M∆(~z)F (~z) is analytic in the closed exterior of γ(0), and consider another function

G(~w) such that ∆(~w)G(~w) is analytic in the closed region between γ(0) and γ′(0). Then we have
that∑

~n∈Wk

(∮
γ(0)

dz1

2πi
· · ·
∮
γ(0)

dzk
2πi

Ψr,0
~z (~n)∆(~z)F (~z)

)(∮
γ(0)

dw1

2πi
· · ·
∮
γ(0)

dwk
2πi

Ψ`,0
~w (~n)∆(~w)G(~w)

)

=

∮
γ(0)

dw1

2πi
· · ·
∮
γ(0)

dwk
2πi

(−1)k(k+1)/2
k∏
j=1

wj
∏
A 6=B

(wA − qwB)
∑
σ∈Sk

sgn(σ)F (σ ~w)G(~w).

(6.2.3)

Proof. Consider a single term in the left-hand side of (6.2.3) with fixed ~n ∈ Wk. Due to the
analyticity condition on F (~z), if ni < −M then the corresponding term integrates to zero (this
follows from the lack of singularity at infinity). Thus we can restrict the summation to n1 >
· · · > nk > −M . Now we can deform the integration contour for w from γ(0) to γ′(0) and we
may appeal to the Hall–Littlewood polynomial representations for Ψr,0 and Ψ`,0 given in (6.2.1)
and (6.2.2). Using homogeneity of the Hall–Littlewood polynomials, and taking the integration
in z and w outside of the summation, we are left with (for M sufficiently positive) the left-hand
side of (6.2.3) equal to

(1− q)−k(−1)k
∮
γ(0)

dz1

2πi
· · ·
∮
γ(0)

dzk
2πi

∮
γ′(0)

dw1

2πi
· · ·
∮
γ′(0)

dwk
2πi

F (~z)G(~w)(
w1 · · ·wk
z1 · · · zk

)M+1 ∑
n1>···>nk>1

P~n(z1, . . . , zk; q)Q~n(w−1
1 , . . . , w−1

k ; q)∆(~z)∆(~w).
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The fact that the summation and the two integrations may be interchanged follows from the fact
that for zj ∈ γ(0) and wj ∈ γ′(0) the summation is uniformly absolutely convergent. By residue
considerations we may change the summation over n1 > · · · > nk > 1 above to n1 > · · · > nk > 0
without changing the value of the integrals. We now utilize the Cauchy–Littlewood identity for
Hall–Littlewood polynomials [Mac99, III (4.4)] to explicitly evaluate the summation

∑
n1>···>nk>0

P~n(z1, . . . , zk; q)Q~n(w−1
1 , . . . , w−1

k ; q) =

k∏
i,j=1

wj − qzi
wj − zi

. (6.2.4)

Therefore, the left-hand side of (6.2.3) is equal to

(1− q)−k(−1)k
∮
γ(0)

dz1

2πi
· · ·
∮
γ(0)

dzk
2πi

∮
γ′(0)

dw1

2πi
· · ·
∮
γ′(0)

dwk
2πi(

w1 · · ·wk
z1 · · · zk

)M+1 k∏
i,j=1

wj − qzi
wj − zi

∆(~z)∆(~w)F (~z)G(~w).

We now apply the residue theorem to evaluate the z integrals. For each zi there are residues
outside of γ(0) at w1, . . . , wk (there are no singularities at zj = ∞). However, due to the term
∆(~z), no two of these z variables can pick the same w variable (otherwise the Vandermonde
gives zero). Thus, the z integrals expand as a sum over residues from zi = wσ(i) for 1 6 i 6 k
and σ ∈ Sk∮

γ(0)

dz1

2πi
· · ·
∮
γ(0)

dzk
2πi

(
w1 · · ·wk
z1 · · · zk

)M+1 k∏
i,j=1

wj − qzi
wj − zi

∆(~z)∆(~w)F (~z)

= (1− q)k(−1)−k(k−1)/2
k∏
j=1

wj
∏
A 6=B

(wA − qwB)
∑
σ∈Sk

sgn(σ)F (wσ(1), . . . , wσ(k)).

The integral of this expression times (1 − q)−k(−1)kG(~w) is readily matched to the integral of
the right-hand side of (6.2.3). 2

6.3 Another discrete delta Bose gas

Let q = e−ε and recall the operator Mε from (6.0.8). Define the operator H̃bwd
ε by

H̃bwd
ε = ε−2M−1

ε HbwdMε + k(ε−1 − 3
2)Id.

Then, as ε → 0, H̃bwd
ε → H̃bwd where we call this limit the semi-discrete backward generator

(because of the connection with the semi-discrete stochastic heat equation, see below). Below we
record (without proof) scaling limits (under the above scaling) of various results we have proved
earlier in §§ 2–4.

6.3.1 Coordinate Bethe ansatz. The semi-discrete backward generator3 H̃bwd acts on
functions f : Wk

→ C as

(H̃bwdf)(~n) =
M∑
i=1

(
ci(∇bwd

c1+···+cif)(~n) +
ci(ci − 1)

2
f(~n)

)
.

3 This is not a Markov generator since it is not stochastic.
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The semi-discrete forward generator is the matrix transpose of H̃bwd and acts on functions
f : Wk

→ C as

(H̃fwdf)(~n) =
M∑
i=1

(
((ci−1 + 1)1gi=1 + 1gi>1)f(~n+

c1+···+ci−1+1)− cif(~n) +
ci(ci − 1)

2
f(~n)

)
where by convention, for i = 1 we set ci−1 + 1 = c1 + · · ·+ ci−1 + 1 = 1.

The function C : Wk
→ R depends only on the list ~c(~n) = (c1, . . . , cM ) of cluster sizes for ~n

via

C(~n) = (−1)k
M∏
i=1

(ci)!. (6.3.1)

We will use the notation of C and C−1 for multiplication operators by C(~n) and (C(~n))−1. It is
clear that these operators commute with R (see § 1.3).

The semi-discrete conjugated forward generator is defined by

H̃cfwd = CH̃fwdC−1,

and it acts as

(H̃cfwdf)(~n) =
M∑
i=1

(
ci(∇fwd

c1+···+ci−1+1f)(~n) +
ci(ci − 1)

2
f(~n)

)
.

Using the backward and forward difference operators (§ 1.3) we define the semi-discrete
backward free generator L̃bwd which acts on functions u : Zk → C as

(L̃bwdu)(~n) =
k∑
i=1

(∇bwd
i u)(~n)

where ∇bwd
i acts as ∇bwd in the variable ni. We say that the function u : Zk → C satisfies the

(k − 1) semi-discrete backward two-body boundary conditions if

for all 1 6 i 6 k − 1 (∇bwd
i −∇bwd

i+1 − 1)u|~n:ni=ni+1
≡ 0.

Similarly, the semi-discrete forward free generator L̃fwd acts on functions u : Zk → C as

(L̃fwdu)(~n) =

k∑
i=1

∇fwd
i u(~n)

where ∇fwd
i acts as ∇fwd in the variable ni. We say that the function u : Zk → C satisfies the

(k − 1) semi-discrete forward two-body boundary conditions if

for all 1 6 i 6 k − 1 (1 +∇fwd
i −∇fwd

i+1)u|~n:ni=ni+1
≡ 0.

Proposition 6.11. If u : Zk → C satisfies the (k − 1) semi-discrete backward (respectively,
forward) two-body boundary conditions, then for ~n ∈Wk,

(L̃bwdu)(~n) = (H̃bwdu)(~n) (respectively, (L̃fwdu)(~n) = (H̃cfwdu)(~n)).
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Remark 6.12. Proposition 6.11 implies that R−1H̃bwdR = H̃cfwd = CH̃fwdC−1 or equivalently

H̃bwd = (RC)H̃fwd(RC)−1

showing that H̃bwd and H̃fwd are related via a similarity transform.

Definition 6.13. A function Ψ̃bwd : Zk → C is an eigenfunction of the semi-discrete backward

free generator with (k − 1) two-body boundary conditions if Ψ̃bwd is an eigenfunction for the

semi-discrete backward free generator that satisfies the (k−1) semi-discrete backward two-body

boundary conditions. We likewise define what it means for a function Ψ̃cfwd : Zk → C to be

an eigenfunction of the semi-discrete forward free generator with (k − 1) two-body boundary

conditions.

The following is a corollary of Proposition 6.11.

Corollary 6.14. Any eigenfunction Ψ̃bwd : Zk → C for the semi-discrete backward free

generator with (k − 1) two-body boundary conditions is, when restricted to ~n ∈ Wk, an

eigenfunction for the semi-discrete backward generator H̃bwd with the same eigenvalue.

Similarly, any eigenfunction Ψ̃cfwd : Zk → C for the semi-discrete forward free evolution

equation with (k − 1) two-body boundary conditions is, when restricted to ~n ∈ Wk, an

eigenfunction for the semi-discrete conjugated forward generator H̃cfwd with the same eigenvalue.

In turn, C−1Ψ̃cfwd is an eigenfunction for the semi-discrete forward generator H̃fwd with the same

eigenvalue.

We may apply the coordinate Bethe ansatz of § 2.3.1 to the semi-discrete backward and

forward free generators with (k − 1) two-body boundary conditions. The backward generator

eigenfunction Ψ̃bwd
~z (~n) given below arose in earlier work of [Tak12].

Definition 6.15. For all z1, . . . , zk ∈ C\{0}, set

Ψ̃bwd
~z (~n) =

∑
σ∈Sk

∏
16B<A6k

zσ(A) − zσ(B) − 1

zσ(A) − zσ(B)

k∏
j=1

(zσ(j))
−nj

Ψ̃cfwd
~z (~n) =

∑
σ∈Sk

∏
16B<A6k

zσ(A) − zσ(B) + 1

zσ(A) − zσ(B)

k∏
j=1

(zσ(j))
nj

Ψ̃fwd
~z (~n) = C−1(~n)Ψ̃cfwd

~z (~n).

These are symmetric Laurent polynomials in the variables z1, . . . , zk.

Proposition 6.16. For all z1, . . . , zk ∈ C\{0}, Ψ̃bwd
~z (~n) is an eigenfunction for the semi-discrete

backward free generator with (k−1) two-body boundary conditions with eigenvalue
∑k

i=1(zi−1).

The restriction of Ψ̃bwd
~z (~n) to ~n ∈ Wk is consequently an eigenfunction for the semi-discrete

backward generator H̃bwd with the same eigenvalue.

Similarly, for all z1, . . . , zk ∈ C\{0}, Ψ̃cfwd
~z (~n) is an eigenfunction for the semi-discrete

forward free generator with (k− 1) two-body boundary conditions with eigenvalue
∑k

i=1(zi− 1).

The restriction of Ψ̃cfwd
~z (~n) to ~n ∈ Wk is consequently an eigenfunction for the semi-discrete

conjugated forward generator H̃cfwd with the same eigenvalue. The restriction of Ψ̃fwd
~z (~n) to

~n ∈Wk is likewise an eigenfunction for the semi-discrete forward generator H̃fwd with the same

eigenvalue.
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Remark 6.17. We may extend the eigenfunctions of Definition 6.15 so as to be defined for all
of Zk (rather than Wk) by fixing that the value for a general ~n ∈ Zk is the same as the value of
σ~n ∈Wk where σ ∈ Sk is a permutation of the elements of ~n taking it into Wk. It is possible to
write down an operator on all of Zk for which these extensions (which we write with the same
notation) are still eigenfunctions. One finds (cf. [BCS12, Proposition 6.3, (C)]) that[ k∑

i=1

∇bwd
i +

∑
16i<j6k

1ni=nj∇bwd
i

]
Ψ̃bwd
~z (~n) =

( k∑
i=1

(zi − 1)

)
Ψ̃bwd
~z (~n).

This can be thought of as a discrete version of the delta Bose gas considered later in §A.1.

Proposition 6.16, along with the fact that H̃fwd is the transpose of H̃bwd, implies that

H̃fwdΨ̃fwd
~z (~n) =

( k∑
i=1

(zi − 1)

)
Ψ̃fwd
~z (~n), Ψ̃bwd

~z (~n)H̃fwd = Ψ̃bwd
~z (~n)

( k∑
i=1

(zi − 1)

)
, (6.3.2)

showing that Ψ̃fwd
~z (~n) and Ψ̃bwd

~z (~n) are (respectively) right and left eigenfunctions for H̃fwd with

eigenvalue
∑k

i=1(zi − 1). This motivates the following definition.

Definition 6.18. For any ~z = (z1, . . . , zk) ∈ (C\{0})k define

Ψ̃r
~z(~n) = Ψ̃fwd

~z (~n) = C−1(~n)
∑
σ∈Sk

∏
16B<A6k

zσ(A) − zσ(B) + 1

zσ(A) − zσ(B)

k∏
j=1

(zσ(j))
nj .

Likewise define

Ψ̃`
~z(~n) = Ψ̃bwd

~z (~n) =
∑
σ∈Sk

∏
16B<A6k

zσ(A) − zσ(B) − 1

zσ(A) − zσ(B)

k∏
j=1

(zσ(j))
−nj .

These eigenfunctions are limits of Ψ`
~z and Ψr

~z of Definition 2.12 when q = e−ε → 1 and the
zj variables in Definition 2.12 are replaced by qzj .

We could have just as well defined the right and left eigenfunctions with respect to the
operator Hbwd. Finally, we can observe the symmetry of Ψ̃` and Ψ̃r with respect to the space-

reflection operator R

(RΨ̃`
~z)(~n) = C(~n)Ψ̃r

~z(~n), (RΨ̃r
~z)(~n) = C−1(~n)Ψ̃`

~z(~n). (6.3.3)

6.3.2 Plancherel formulas.

Definition 6.19. Define the space C̃k of symmetric Laurent polynomials in the variables

z1, . . . , zk.

The semi-discrete transform FS-D takes functions f ∈ Wk into functions FS-Df ∈ C̃k via

(FS-Df)(~z) = 〈f, Ψ̃r
~z〉W .

Fix any set of positively oriented, closed contours γ̃1, . . . , γ̃k chosen so that they all contain
0, so that the γ̃A contour contains the image of 1 plus the γ̃B contour for all B > A, and so that
γ̃k is a small enough circle around 0 so as not to contain 1.
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The (candidate) semi-discrete inverse transform J S-D takes functions G ∈ C̃k into functions

J S-DG ∈ Wk via

(J S-DG)(~n) = (−1)k
∮
γ̃1

dz1

2πi
· · ·
∮
γ̃k

dzk
2πi

∏
16A<B6k

zA − zB
zA − zB − 1

k∏
j=1

(zj)
−nj−1G(~z). (6.3.4)

The composition of the transform and (candidate) inverse transform takes functions f ∈ Wk

into functions KS-Df ∈ Wk via

(KS-Df)(~n) = (J S-DFS-Df)(~n)

= (−1)k
∮
γ̃1

dz1

2πi
· · ·
∮
γ̃k

dzk
2πi

∏
16A<B6k

zA − zB
zA − zB − 1

k∏
j=1

(zj)
−nj−1 〈f, Ψ̃r

~z〉W . (6.3.5)

The composition of the (candidate) inverse transform and the transform takes functions
G ∈ C̃k into functions MS-DG ∈ C̃k via

(MS-DG)(~n) = (FS-DJ S-DG)(~z)

= (−1)k
∑
~n∈Wk

Ψ̃r
~z(~n)

∮
γ̃1

dz1

2πi
· · ·
∮
γ̃k

dzk
2πi

×
∏

16A<B6k

zA − zB
zA − zB − 1

k∏
j=1

(zj)
−nj−1G(~z). (6.3.6)

Lemma 6.20. Consider a symmetric function F : Ck → C and positively oriented, closed contours

γ̃1, . . . , γ̃k such that:

• the contour γ̃k is a circle around 0, small enough so as not to contain 1;

• for all 1 6 A < B 6 k, the interior of γ̃A contains 0 and the image of γ̃B plus 1;

• for all 1 6 j 6 k, there exist deformations Dj of γ̃j to γ̃k so that for all z1, . . . , zj−1,

zj+1, . . . , zk with zi ∈ γ̃i for 1 6 i < j, and zi ∈ γ̃k for j < i 6 k, the function zj 7→ ∆(~z)F (z1,

. . . , zj , . . . , zk) is analytic in a neighborhood of the area swept out by the deformation Dj .

Then,

(J S-DG)(~n) =
∑
λ`k

∮
γ̃k

· · ·
∮
γ̃k

dµ̃λ(~w)

`(λ)∏
j=1

1

(wj)λj
Ψ̃`
~w◦̃λ(~n)G(~w◦̃λ),

where the definition of the notation ~w◦̃λ and (w)n is given in § 1.3 and where, for a partition

λ = 1m12m2 · · · ,

dµ̃λ(~w) =
1

m1!m2! · · ·
det

[
1

wi + λi − wj

]`(λ)

i,j=1

`(λ)∏
j=1

dwj
2πi

.

We may now record the scaling limits of the Plancherel formula (Theorem 3.7), the dual

Plancherel formula (Theorem 3.9) and the Plancherel isomorphism (Theorem 3.11).

We start with the Plancherel formula.

Theorem 6.21. The semi-discrete transform FS-D induces an isomorphism between the space

Wk and its image with inverse given by J S-D. Equivalently, KS-D acts as the identity operator

on Wk.
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A key fact in the proof of this (which follows in the exact same manner as Theorem 3.7) is
the following property of KS-D. For any functions f, g ∈ Wk,

〈KS-Df, g〉W = 〈f, (CR)−1KS-D(CRg)〉W . (6.3.7)

Lemma 6.20 yields the following expansion

(KS-Df)(~n) =
∑
λ`k

∮
γ̃k

· · ·
∮
γ̃k

dµ̃λ(~w)

`(λ)∏
j=1

1

(wj)λj
Ψ̃`
~w◦̃λ(~n)〈f, Ψ̃r

~w◦̃λ〉W . (6.3.8)

We have shown in Theorem 6.21 that Kq-Boson = Id when restricted to functions in WK .
Similarly,

(CR)−1KS-D(CR) = Id.

Let us turn now to the dual Plancherel formula.

Theorem 6.22. The inverse semi-discrete transform J S-D induces an isomorphism between the
domain C̃k and its image with inverse given by FS-D. Equivalently, MS-D acts as the identity
operator on C̃k.

It should also be possible (as conjectured in Remark 3.10) to extend this dual Plancherel
formula to a more degenerate class of functions than presently considered.

We may combine Theorems 6.21 and 6.22 to arrive at the following result.

Definition 6.23. Define a bilinear pairing acting on two functions F (~z) and G(~z) by

〈F,G〉C̃ =
∑
λ`k

∮
γ̃k

· · ·
∮
γ̃k

dµ̃λ(~w)

`(λ)∏
j=1

1

(wj)λj
F (~w◦̃λ)G(~w◦̃λ).

Theorem 6.24. The semi-discrete transform FS-D induces an isomorphism betweenWk and C̃k
with inverse given by J S-D. Moreover, for any f, g ∈ Wk

〈f, g〉W = 〈FS-Df,FS-Dg〉C̃ , (6.3.9)

and for any F,G ∈ C̃k
〈J S-DF,J S-DG〉W = 〈F,G〉C̃ . (6.3.10)

6.3.3 Completeness and biorthogonality. Corollaries 6.25 and 6.26 are immediate conse-
quences of Theorem 6.21. Proposition 6.27 can either be proved directly (as done for
Proposition 3.14) or derived from Theorem 6.22 (assuming that theorem is proved directly via
a limit transition from Theorem 3.9).

Corollary 6.25. Any function f ∈ Wk can be expanded as

f(~n) =
∑
λ`k

∮
γ̃k

· · ·
∮
γ̃k

dµ̃λ(~w)

`(λ)∏
j=1

1

(wj)λj
Ψ̃`
~w◦̃λ(~n)〈f, Ψ̃r

~w◦̃λ〉W , (6.3.11)

and also as

f(~n) =
∑
λ`k

∮
γ̃k

· · ·
∮
γ̃k

dµ̃λ(~w)

`(λ)∏
j=1

1

(wj)λj
Ψ̃r
~w◦̃λ(~n)〈Ψ̃`

~w◦̃λ, f〉W . (6.3.12)
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Corollary 6.26. For ~n, ~m ∈Wk, regard Ψ̃`(~n) and Ψ̃`(~m) as functions (Ψ̃`(~n))(~z) = Ψ̃`
~z(~n) and

(Ψ̃r(~m))(~z) = Ψ̃r
~z(~m). Then

〈Ψ̃`(~n), Ψ̃r(~m)〉C̃ = 1~n=~m.

Proposition 6.27. Consider functions F,G ∈ C̃k. Then we have that∑
~n∈Wk

(∮
γ̃1

dz1

2πi
· · ·
∮
γ̃k

dzk
2πi

Ψ̃r
~z(~n)∆(~z)F (~z)

)(∮
γ̃1

dw1

2πi
· · ·
∮
γ̃k

dwk
2πi

Ψ̃`
~w(~n)∆(~w)G(~w)

)

=

∮
γ̃1

dw1

2πi
· · ·
∮
γ̃k

dwk
2πi

(−1)k(k+1)/2
k∏
j=1

wj
∏
A 6=B

(wA − wB − 1)
∑
σ∈Sk

sgn(σ)F (σ ~w)G(~w).

6.3.4 Applications to the semi-discrete stochastic heat equation. The following results follow
from Corollary 6.25. We then apply them to the analysis of the semi-discrete stochastic heat
equation.

Corollary 6.28. For f0 ∈ Wk the backward equation

d

dt
f(t;~n) = (H̃bwdf)(t;~n)

with f(0;~n) = f0(~n) is uniquely solved by

f(t;~n) = (etH̃
bwd
f0)(~n) =

∑
λ`k

∮
γ̃k

· · ·
∮
γ̃k

dµ̃λ(~w)

`(λ)∏
j=1

etẼ(~w◦̃λ)

(wj)λj
Ψ̃`
~w◦̃λ(~n)〈f0, Ψ̃

r
~w◦̃λ〉W

=

∮
γ̃1

dz1

2πi
· · ·
∮
γ̃k

dzk
2πi

∏
16A<B6k

zA − zB
zA − zB − 1

k∏
j=1

(zj)
−nj−1etẼ(~z) 〈f0, Ψ̃

r
~z〉W (6.3.13)

where Ẽ(~z) =
∑k

i=1(zi − 1).

Corollary 6.29. For f0 ∈ Wk the forward equation

d

dt
f(t;~n) = (H̃fwdf)(t;~n)

with f(0;~n) = f0(~n) is uniquely solved by

f(t;~n) = (etH̃
fwd
f0)(~n) =

∑
λ`k

∮
γ̃k

· · ·
∮
γ̃k

dµ̃λ(~w)

`(λ)∏
j=1

1

(wj)λj
etẼ(~w◦̃λ)Ψ̃r

~w◦̃λ(~n)〈Ψ̃`
~w◦̃λ, f0〉W

=

∮
γ̃1

dz1

2πi
· · ·
∮
γ̃k

dzk
2πi

∏
16A<B6k

zA − zB
zA − zB − 1

k∏
j=1

(zj)
nk−j+1−1etẼ(~z) 〈Ψ̃`

~z, f0〉W (6.3.14)

where Ẽ(~z) =
∑k

i=1(zi − 1).

We may utilize the above solution to the backward equation to compute integral formulas
for the moments of the probabilistic model we now introduce. Though we phrase it in terms of a
coupled system of stochastic ODEs, it is equivalent to the partition function of the O’Connell–Yor
semi-discrete directed polymer [OY01] (see also [O’Co12] for more recent developments in the
study of this model).
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Definition 6.30. The semi-discrete stochastic heat equation with initial data Z0 is the system
of stochastic ODEs

dZ(t, n) = ∇bwdZ(t, n)dt+ Z(t, n)dBn, Z(0, n) = Z0(n),

where Z : R>0 × Z → R>0 and the Bi are independent standard Brownian motions. We will
assume that Z0(n) is compactly supported.

Remark 6.31. As shown in [BC14, Theorem 4.1.26] (see also [BCS12, Proposition 6.2]) the above
system is a q → 1 scaling limit of q-TASEP with finitely many particles (cf. § 4.3).

Let Z̄(t;~n) = E[
∏k
i=1 Z(t, ni)]. Using the Feynman–Kac representation (and the so-called

replica method) one shows (cf. [BCS12, § 6.2]) that these moments satisfy

d

dt
Z̄(t, ~n) =

[ k∑
i=1

∇bwd
i +

∑
16i<j6k

1ni=nj

]
Z̄(t, ~n).

This can be thought of as a discrete version of the delta Bose gas considered in §A.1.
As in Remark 6.17 (see also [BCS12, Proposition 6.3, (C)]) one sees that for ~n ∈Wk, Z̄(t;~n) =

h(t;~n) where h(t; ~x) solves the backward equation

d

dt
h(t;~n) = H̃bwdh(t;~n), h(0;~n) = E

[ k∏
i=1

Z0(ni)

]
.

It follows from Corollary 6.28 that we may solve the above equation succinctly in terms of
contour integrals.

Corollary 6.32. For f0(~n) = h(0;~n) of compact support, h(t;~n) is given by the right-hand
side of the first and the second lines of (6.3.13).

Let us apply this for the example of the semi-discrete stochastic heat equation with delta
initial data Z0(n) = 1n=1. This is the limit of step initial data for q-TASEP. One should be able
to likewise work out the half-stationary limit, though we do not pursue that here. The following
result previously appeared in [BC14, § 5.2.2].

Proposition 6.33. For delta initial data Z0(n) = 1n=1 we have

E
[ k∏
i=1

Z(t, ni)

]
=

∮
γ̃1

dz1

2πi
· · ·
∮
γ̃k

dzk
2πi

∏
16A<B6k

zA − zB
zA − zB − 1

k∏
j=1

(zj)
−njet(zj−1). (6.3.15)
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Appendix A

A.1 Continuum delta Bose gas
We briefly describe a further scaling limit of the results of § 6.3 (as well as those earlier in
the paper). We are informal here and do not give precise statements (see references for such
statements). The analog (and limit) here of the q-Boson particle system and the discrete delta
Bose gas is the continuum delta Bose gas, and the analog (and limit) of q-TASEP and the
semi-discrete stochastic heat equation is the continuum stochastic heat equation (or equivalently
the Kardar–Parisi–Zhang equation), see [BC14, § 6], [BCF14], or a forthcoming paper by Moreno
Flores, Quastel and Remenik. A rigorous treatment of this sort of limiting procedure (starting
from the system considered in § 6.2) is given in [vDi04].

Definition A.1. The (1 + 1)-dimensional continuum stochastic heat equation with initial data
Z0 is the solution to the stochastic partial differential equation

d

dt
Z =

1

2

d2

dx2
Z + ξZ, Z(0, x) = Z0(x), (A.1.1)

where ξ is space-time Gaussian white noise (see [ACQ11, Cor12] for more details and
background).

In a similar manner as for the semi-discrete stochastic heat equation, the joint moments
(time t fixed, spatial variables xi varying) satisfy simple closed evolution equations. In particular
(cf. [BC95] or [BC14, § 6]) for ~x ∈ Rk, defining Z̄(t, ~x) = E[

∏k
i=1Z(t, xi)]

d

dt
Z̄(t, ~x) =

[ k∑
i=1

1

2

d2

dx2
i

+
∑

16i<j6k

δ(xi − xj)
]
Z̄(t, ~x),

where δ(x) is the Dirac delta function. This is often called the (imaginary time) delta Bose gas
with attractive coupling constant, or the (imaginary time) Lieb–Liniger model with attractive
delta interaction. Uniqueness of solutions to the above equation (within a class of solutions with
suitable control on their growth in ~x) should be attainable, but we are unaware of an exact
reference in the literature.

It is standard in the physics literature (cf. [Dot10, CLR10]) to postulate the following
reduction. Let

W̄k = {~x = (x1, . . . , xk) ∈ Rk | x1 6 · · · 6 xk}.
Then, for ~x ∈ W̄k, Z̄(t; ~x) = u(t; ~x) where u(t; ~x) solves

d

dt
u(t; ~x) =

k∑
i=1

1

2

d2

dx2
i

u(t; ~x)

and satisfies the two-body boundary conditions that

for all 1 6 i 6 k − 1

(
d

dxi
− d

dxi+1
− 1

)
u

∣∣∣∣
~x:xi+0=xi+1

≡ 0.

Here xi + 0 = xi+1 means the limit as xi → xi+1 from below. To our knowledge, this reduction
has not been rigorously justified.

In the work of Heckman and Opdam [HO97], the above system (Laplacian plus two-body
boundary conditions) is called the Yang system [Yan67, Yan68] (see also [Gau71, HO97] for other
root systems) corresponding to the type A root system and an attractive coupling constant (of
magnitude 1 in our setting).
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Definition A.2. For any ~z ∈ Ck define

Ψ̄r
~z(~x) = C̃−1(~x)

∑
σ∈Sk

∏
16B<A6k

zσ(A) − zσ(B) + 1

zσ(A) − zσ(B)

k∏
j=1

e−xjzj .

As in (6.3.1), the function C̄ : W̄k
→ R depends only on the list ~c(~x) = (c1, . . . , cM ) of cluster

sizes for ~x via

C̄(~x) = (−1)k
M∏
i=1

(ci)!. (A.1.2)

Likewise define

Ψ̄`
~z(~x) =

∑
σ∈Sk

∏
16B<A6k

zσ(A) − zσ(B) − 1

zσ(A) − zσ(B)

k∏
j=1

exjzj .

These are right and left eigenfunctions for the Yang system.
Following Heckman and Opdam [HO97], we now define the analogs of Fq-Boson and J q-Boson,

though without carefully specifying the domains on which they act. The Fourier–Yang transform
FF-Y takes functions f : W̄k

→ C into symmetric functions FF-Yf : Ck → C via

(FF-Yf)(~z) =

∫
~x∈W̄k

f(~x)Ψ̄r
~z(~x) d~x.

Note that the C̄−1(~x) factor in defining Ψ̄r plays no role in this integration as it is identically
equal to (−1)k except on a set of measure 0.

The (candidate) Fourier–Yang inverse transform J F-Y takes symmetric functions F : Ck → C
into functions J F-YF : W̄k

→ C via

(J F-YF )(~x) =

∫
α1+iR

dz1

2πi
· · ·
∫
αk+iR

dzk
2πi

∏
16A<B6k

zA − zB
zA − zB − 1

k∏
j=1

exjzj F (~z) (A.1.3)

where α1 > α2 + 1 > α3 + 2 > · · · > αk + k − 1.

Lemma A.3. Consider a symmetric function F : Ck → C and a set of real numbers α1, . . . , αk
which satisfy:

(1) for all 1 6 j 6 k − 1, αj > αj+1 + 1;

(2) for all 1 6 j 6 k and z1, . . . , zk such that zi ∈ αi + iR for 1 6 i < j and zi ∈ αk + iR for
j < i 6 k, the function zj 7→ ∆(~z)F (z1, . . . , zj , . . . , zk) is analytic in the complex domain
{z : αk 6 Re(z) 6 αj} and is bounded in modulus on that domain by c Im(zj)

−δ for some
constants c, δ > 0 (depending on z1, . . . , zj−1, zj+1, . . . , zk but not zj).

Then,

(J F-YF )(~n) =
∑
λ`k

∫
αk+iR

· · ·
∫
αk+iR

dµ̃λ(~w)Ψ̄`
~w◦̃λ(~n)F (~w◦̃λ),

where ~w◦̃λ is as in (1.3.3) and dµ̃λ is as in Lemma 6.20.

Heckman and Opdam [HO97] showed that when restricted to a suitable class of functions,
the Fourier–Yang transform FF-Y is an isomorphism onto its image with inverse J F-Y. Or,
equivalently, on this set of functions KF-Y = Id. This is the analog of Theorem 3.7 and the
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method of proof we employed herein is adapted from their work. Just as before, from this
Plancherel formula and Lemma A.3, one proves completeness of the Bethe ansatz (see [BC14,
Remark 6.2.5] for a detailed history of this question).

There should be an analog of the dual Plancherel formula (Theorem 3.9) and the Plancherel
isomorphism (Theorem 3.11) in this setting, though we have not seen this in the mathematics
literature. The physics literature contains some work in the direction of spectral orthogonality
in this context [CC07, Dot10].

In the past few years there have been many works in the physics literature using the above
delta Bose gas to study the moments of the stochastic heat equation with various types of initial
data (flat/half-flat [CL11, CL12], stationary [IS11, IS12, IS13], or more general [CQ11]) or at
different times [Dot13b]. These calculations are counterparts to the q-Boson Plancherel theorem
discussed in § 4.3.

A.2 Shrinking nested contours
The following proposition is a variant of Proposition 3.2.1 of [BC14]. The proof therein is a
verification type inductive proof. The proof we present below is direct and inspired by [HO97].

Proposition A.4. Given a set of positively oriented, closed contours γ1, . . . , γk and a function
F (z1, . . . , zk) which satisfy:
• the contour γk is a circle around 1, small enough so as not to contain q;
• for all 1 6 A < B 6 k, the interior of γA contains the image of γB multiplied by q;
• for all 1 6 j 6 k, there exist deformations Dj of γj to γk so that for all z1, . . . , zj−1,

zj+1, . . . , zk with zi ∈ γi for 1 6 i < j, and zi ∈ γk for j < i 6 k, the function zj 7→ ∆(~z)F (z1,
. . . , zj , . . . , zk) is analytic in a neighborhood of the area swept out by the deformation Dj .

Then we have the following residue expansion identity:∮
γ1

dz1

2πi
· · ·
∮
γk

dzk
2πi

∏
16A<B6k

zA − zB
zA − qzB

F (z1, . . . , zk) =
∑
λ`k

∮
γk

· · ·
∮
γk

dµλ(~w)Eq(~w ◦ λ), (A.2.1)

where ~w ◦ λ was defined in (1.3.2). Here we define

Eq(z1, . . . , zk) =
∑
σ∈Sk

∏
16B<A6k

zσ(A) − qzσ(B)

zσ(A) − zσ(B)
F (zσ(1), . . . , zσ(k))

and

dµλ(~w) =
(1− q)k(−1)kq−k(k−1)/2

m1!m2! · · ·
det

[
1

wiqλi − wj

]`(λ)

i,j=1

`(λ)∏
j=1

w
λj
j q

λj(λj−1)/2dwj
2πi

where λ = 1m12m2 · · · .

Proof. First notice that for k = 1 the result follows immediately. Hence, in what follows we
assume k > 2.

We proceed sequentially and deform (using the deformation Dk−1 afforded from the
hypotheses of the proposition) the γk−1 contour to γk, and then deform (using the deformation
Dk−2 afforded from the hypotheses of the proposition) the γk−2 contour to γk, and so on until
all contours have been deformed to γk. However, due to the zA − qzB terms in the denominator
of the integrand, during the deformation of γA we may encounter simple poles at the points
zA = qzB, for B > A. The residue theorem implies that the integral on the left-hand side of
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Pick the integral

Pick the residue

(A)

(B)

Figure 5. The expansion of the k = 3 nested contour integral as explained in Example A.5.
On the left-hand side, the γ2 contour is deformed to the γ3 contour and a pole is crossed along
qγ3 at the point qz3 (here the point z3 is drawn as a small black bullet and its location is on
the solid line circle; and the point qz3 is drawn as a small white bullet and its location is on the
dotted line circle). On the upper right-hand side the effect of picking the integral is shown. The
γ3 contour is represented as a (doubled) solid line circle since both z3 and z2 are integrated along
it (these correspond to the two black bullets). The white bullets are along qγ3 (the dotted line
circle) and represent qz3 and qz2. As the γ1 contour is deformed to γ3 these residues must be
taken. On the lower right-hand side the effect of picking the initial residue at z2 = qz3 is shown.
As the γ1 contour is deformed to γ3 a pole is encountered along q2γ3 at the location q2z3 (as
before z3 is the black bullet and q2z3 is the white bullet.

(A.2.1) can be expanded into a summation over integrals of possibly few variables (all along γk)

whose integrands correspond to the various possible residue subspaces coming from these poles.

Our proof splits into three basic steps. First, we identify the residual subspaces upon which

our integral is expanded via residues. This brings us to equation (A.2.4). Second, we show that

these subspaces can be brought to a canonical form via the action of some σ ∈ Sk. This enables

us to simplify the summation over the residual subspaces to a summation over partitions λ ` k
and certain subsets of permutations σ in Sk. Inspection of those terms corresponding to σ ∈ Sk
not in these subsets shows that they have zero residue contribution and hence the summation

can be completed to include all of Sk. This brings us to equation (A.2.7). And third, we rewrite

the function whose residue we are computing as the product of an Sk invariant function (which

contains all of the poles related to the residual subspace) and a remainder function. We use

Lemma A.6 to evaluate the residue of the Sk invariant function and we identify the summation

over σ ∈ Sk of the substitution into the remainder function as exactly giving the Eq function in

the statement of the proposition we are presently proving.

Step 1: It is worthwhile to start with an example (k = 3). Figure 5 accompanies the example

and illustrates the deformations and locations of poles.
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Example A.5. When k = 3 the integrand on the left-hand side of (A.2.1) contains the fractions

z1 − z2

z1 − qz2

z1 − z3

z1 − qz3

z2 − z3

z2 − qz3
, (A.2.2)

times the function F (z1, z2, z3) which (by the hypotheses of the proposition) does not have poles
between γj and γk (for j = 1, 2, 3). Thinking of z3 as fixed along the contour γ3, we begin by
deforming the γ2 contour to γ3. As we proceed, we necessarily encounter a single simple pole at
z2 = qz3. The residue theorem implies that our initial integral equals the sum of (A) the integral
where z2 is along γ3, and (B) the integral with only z1 and z3 remaining and integrand given by
taking the residue of the initial integrand at z2 = qz3.

Let us consider these two pieces separately. For (A) we now think of z2 and z3 as fixed along
γ3 and deform the γ1 contour to γ3, encountering two simple poles at z1 = qz2 and z1 = qz3.
Thus (A) is expanded into a sum of three terms: the integral with z1, z2 and z3 along γ3; and
the integral with only z2 and z3 remaining (along γ3) and the residue taken at either z1 = qz2

or z1 = qz3.
For (B) we now think of z3 as fixed along γ3 and deform the γ1 contour to γ3, encountering

a simple pole at z1 = q2z3. This is because the residue of (A.2.2) at z2 = qz3 equals

z1 − z3

z1 − q2z3
(qz3 − z3).

Thus (B) is expanded into a sum of two terms: the integral with z1 and z3 (along γ3 and with
the above expression in the integrand); and the integral with only z3 remaining (along γ3) and
the residue of the above term taken at z1 = q2z3.

Gathering the various terms in this expansion, we see that the residue subspaces we sum
over are indexed by partitions of k (here k = 3) and take the form of geometric strings with
the parameter q. For example, λ = (1, 1, 1) corresponds to the term in the residue expansion
in which all three variables z1, z2 and z3 are still integrated, but along γ3. On the other hand,
λ = (3) corresponds to the term in which the residue is taken at z1 = qz2 = q2z3 and the only
variable which remains to be integrated along γ3 is z3. The partition λ = (2, 1) corresponds to
the three remaining terms in the above expansion in which two integration variables remain. In
general, `(λ) corresponds to the number of variables which remain to be integrated in each term
of the expansion.

Let us now turn to the general k case. By the hypotheses of the theorem, the function
zj 7→

∏
16A<B6k(zA−zB)F (z1, . . . , zj , . . . , zk) has no poles which are encountered during contour

deformations, hence it plays no role in the residue analysis. As we deform sequentially the
contours in the left-hand side of (A.2.1) to γk we find that the resulting terms in the residue
expansion can be indexed by partitions λ ` k along with a list (ordered set) of disjoint ordered
subsets of {1, . . . , k} (whose union is all of {1, . . . , k})

i1 < i2 < · · · < iλ1
j1 < j2 < · · · < jλ2

... (A.2.3)

Let us call such a list I. For a given partition λ call S(λ) the collection of all such lists I
corresponding to λ. For k = 3 and λ = (2, 1), in Example A.5 we saw there are three such lists
which correspond with

S(λ) = {{1 < 2, 3}, {1 < 3, 2}, {2 < 3, 1}}.
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For such a list I, we write ResIf(z1, . . . , zk) as the residue of the function f at

zi1 = qzi2 , zi2 = qzi3 , . . . , ziλ1−1
= qziλ1

zj1 = qzj2 , zj2 = qzj3 , . . . , zjλ2−1
= qzjλ2

...

and regard the output as a function of the terminal variables (ziλ1 , zjλ2 , . . .). There are `(λ) such

strings and consequently that many remaining variables (though we have only written the first

two strings above).
With the above notation in place, we may write the expansion of the integral on the left-hand

side of (A.2.1) as

LHS(A.2.1) =
∑
λ`k

λ=1m12m2 ···

1

m1!m2! · · ·
∑

I∈S(λ)

∮
γk

dziλ1
2πi

∮
γk

dzjλ2
2πi

· · ·

×Res
I

( ∏
16A<B6k

zA − zB
zA − qzB

F (z1, . . . , zk)

)
. (A.2.4)

The factor of 1/(m1!m2! · · · ) arose from multiple counting of terms in the residue expansion

due to symmetries of λ. For example, for the partition λ = (2, 2, 1), each I ∈ S(λ) corresponds

uniquely with a different I ′ ∈ S(λ) in which the i and j variables in (A.2.3) are switched. Since

these correspond with the same term in the residue expansion, this constitutes double counting

and hence the sum should be divided by 2!. The reason why our residual subspace expansion only

corresponds with strings is because if we took a residue which was not of the form of a string,

then for some A 6= A′ we would be evaluating the residue at zA = qzB and zA′ = qzB. However,

the Vandermonde determinant in the numerator of our integrand would then necessarily evaluate

to zero. Therefore, such possible non-string residues (coming from the denominator) in fact have

zero contribution.

Step 2: For each I ∈ S(λ) relabel the z variables as

(zi1 , zi2 , . . . , ziλ1 ) 7→ (yλ1 , yλ1−1, . . . , y1)

(zj1 , zj2 , . . . , zjλ2 ) 7→ (yλ1+λ2 , . . . , yλ1+1)

...

and observe that there exists a unique permutation σ ∈ Sk for which (z1, . . . , zk) = (yσ(1), . . . ,

yσ(k)). Let us also say wj = yλ1+···λj−1+1, for 1 6 j 6 `(λ).

We introduce a canonical form for taking strings of residues. For a function f(y1, . . . , yk)
define Resqλf(y1, . . . , yk) to be the residue of f(y1, . . . , yk) at

yλ1 = qyλ1−1, yλ1−1 = qyλ1−2, . . . , y2 = qy1

yλ1+λ2 = qyλ1+λ2−1, yλ1+λ2−1 = qyλ1+λ2−2, . . . , yλ1+2 = qyλ1+1

... (A.2.5)

with the output regarded as a function of the terminal variables (y1, yλ1+1, . . . , yλ1+···+λ`(λ)−1−1).
We call each sequence of identifications of variables a string. As all poles which we encounter in
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what follows are simple, the above residue evaluation amounts to

Resq
λ

f(y1, . . . , yk) = lim
y2→qy1
···

yλ1→qyλ1−1

λ1∏
i=2

(yi − qyi−1)

× lim
yλ1+2→qyλ1+1

···
yλ1+λ2→qyλ1+λ2−1

λ1+λ2∏
i=λ1+2

(yi − qyi−1) · · · f(y1, . . . , yk). (A.2.6)

It is also convenient to define Subqλf(y1, . . . , yk) as the function of (y1, yλ1+1, . . . , yλ1+···+λ`(λ)−1−1),
which is the result of substituting the relations of (A.2.5) into f(y1, . . . , yk).

With the above notation we rewrite the term corresponding to a partition λ in the right-hand
side of (A.2.4) as

1

m1!m2! · · ·
∑
σ∈Sk

∮
γk

dw1

2πi
· · ·
∮
γk

dw`(λ)

2πi
Resq
λ

( ∏
16A<B6k

yσ(A) − yσ(B)

yσ(A) − qyσ(B)
F (σ(~y))

)
, (A.2.7)

where Resqλ is defined (A.2.5). Note that the output of the residue operation is a function of the
variables (y1, yλ1+1, . . .) = (w1, w2, . . .).

One should observe that the above expression includes the summation over all σ ∈ Sk, and
not just those which arise from an I ∈ S(λ) as above. This, however, is explained by the fact
that if σ does not arise from some I ∈ S(λ), then the residue necessarily evaluates to zero (hence
adding these terms is allowed). To see this, observe that in the renumbering of variables discussed
above, only permutations with

σ−1(1) > σ−1(2) > · · · > σ−1(λ1), σ−1(λ1 + 1) > σ−1(λ1 + 2) > · · · > σ−1(λ1 + λ2), . . .

participated. Any other σ must violate one of these strings of conditions. Consider, for example,
some σ with σ(λ1 − 1) < σ(λ1). This implies that the term yλ1−1 − qyλ1 shows up in the
denominator of (A.2.7), as opposed to the term yλ1 − qyλ1−1. Residues can be taken in any
order, and if we first take the residue at yλ1 = qyλ1−1, we find that the above denominator
does not have a pole (nor do any other parts of (A.2.7)) and hence the residue is zero. Similar
reasoning works in general.

Step 3: All that remains is to compute the residues in (A.2.7) and identify the result (after
summing over all λ ` k) with the right-hand side of (A.2.1) as necessary to prove the proposition.

It is convenient to rewrite the product over A < B as an Sk invariant function, times a
function that is analytic at the points in which the residue is being taken∏

16A<B6k

yσ(A) − yσ(B)

yσ(A) − qyσ(B)
=

∏
16A 6=B6k

yA − yB
yA − qyB

∏
16B<A6k

yσ(A) − qyσ(B)

yσ(A) − yσ(B)
.

Since it is only the Sk invariant function that contains the poles with which we are concerned,
it allows us to rewrite (A.2.7) as

1

m1!m2! · · ·

∮
w1

2πi
· · ·
∮
w`(λ)

2πi
Resq
λ

( ∏
16A 6=B6k

yA − yB
yA − qyB

)
×Subq

λ

(∑
σ∈Sk

∏
16B<A6k

yσ(A) − qyσ(B)

yσ(A) − yσ(B)
F (σ(~y))

)
.

59

https://doi.org/10.1112/S0010437X14007532 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007532


A. Borodin et al.

We use Lemma A.6 to evaluate the above residue, and we easily identify the substitution on

the second line with Eq(w ◦ λ) as in the statement of the proposition. Combining these two

expressions and summing the resulting expression over λ ` k we arrive at the desired residue

expansion claimed in the statement of the proposition. 2

Lemma A.6. For all k > 1, λ ` k and q ∈ (0, 1), we have that

Resq
λ

( ∏
16i 6=j6k

yi − yj
yi − qyj

)
= (−1)k(1− q)kq−k2/2

`(λ)∏
j=1

w
λj
j q

λ2j/2 det

[
1

wiqλi − wj

]`(λ)

i,j=1

, (A.2.8)

where we have renamed the variables remaining after the residue operator as wj = yλ1+···λj−1+1,

for 1 6 j 6 `(λ).

Proof. The product on the left-hand side of (A.2.8) involves terms in which i and j are in the

same string of variables in (A.2.5) as well as terms in which they are in different strings. We need

to compute the residue of the same string terms and multiply it by the substitution of variables

into the different string terms.

Let us first evaluate same string residues. Consider variables y1, . . . , y`, ` > 2, and observe

that

Res
y2=qy1
y3=qy2
···

y`=qy`−1

( ∏
16i 6=j6`

yi − yj
yi − qyj

)
= (−1)`−1y`−1

1

(1− q)`

1− q`
.

Now turn to the cross term between two strings of variables. Consider one set of variables

y1, . . . , y` with ` > 2 and a second set of variables y′1 . . . , y
′
`′ with `′ > 2. Then

Sub
y2=qy1
y3=qy2
···

y`=qy`−1

Sub
y′2=qy′1
y′3=qy′2···

y′
`′=qy

′
`′−1

(∏̀
i=1

`′∏
j=1

yi − yj
yi − qyj

)
=
∏̀
i=1

y1q
i−1 − y′1

yqi−1 − y′1q`
′ .

Since the strings of variables also come interchanged, we should multiply the above expression

by the same term with (y1, `) and (y′1, `
′) interchanged.

Returning to the statement of the lemma, we see that we can evaluate the desired residue
by multiplying the same string terms over all strings in (A.2.5) as well as multiplying all terms
corresponding to pairs of different strings. Using the above calculations we obtain

Resq
λ

( ∏
16i 6=j6k

yi − yj
yi − qyj

)
=

`(λ)∏
j=1

(1− q)λj
(1− qλj )

(−1)λj−1w
λj−1
j

×
∏

16i<j6`(λ)

q−λiλj
(wi − wj)(wiqλi − wjqλj )
(wiqλi − wj)(wi − wjqλj )

.

It is easy now to rewrite (using the Cauchy determinant) the above expression so as to produce

the equality of the lemma, as desired. 2
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A.3 Inductive proof of Lemma 4.7
The proof we give in the main body of the text for Lemma 4.7 relied upon Theorem 3.9 (the
dual Plancherel theorem). We record here an inductive proof of this same result.

The desired identity (4.3.4) can be rewritten as

∑
n1>···>nk>0

Ψr
~z(~n)

k∏
j=1

(1− α/qj)−nj = (−1)kqk(k−1)/2
k∏
j=1

1− α/qj

zj − α/q
. (A.3.1)

From the definition of Ψr we can rewrite this identity as∑
n1>···>nk>0

M∏
i=1

1

(ci)!q

∑
σ∈Sk

∏
16B<A6k

zσ(A) − q−1zσ(B)

zσ(A) − zσ(B)

k∏
j=1

(
1− zσ(j)

1− α/qj

)nj
=

k∏
j=1

1− α/qj

zj − α/q
(A.3.2)

where we recall M = M(~n) and (c1, . . . , cM ) = ~c(~n) from § 1.3. Define Ik to be the left-hand side
of the above desired equality.

We will proceed by induction in k. It is straightforward to check that the identity holds for
k = 1, and for later use define I0 = 1. We may write

Ik =
∑
nk>0

∑
I,J

∑
σI

∑
σJ

∑
n1>···>nk−m>nk

1

(m)!q

M ′∏
i=1

1

(c′i)!q

×
∏
B<A
A,B∈I

zσI(iA) − q−1zσI(iB)

zσI(iA) − zσI(iB)

∏
B<A
A,B∈J

zσJ (jA) − q−1zσJ (jB)

zσJ (jA) − zσJ (jB)

∏
i∈I
j∈J

zi − q−1zj
zi − zj

×
k∏

`=k−m+1

(
1

1− α/q`

)nk∏
i∈I

(1− zi)nk
k−m∏
`=1

(
1− zσJ (j`)

1− α/q`

)n`
.

The above formula involves some notation which should be explained. The term
∑

I,J is the
summation over all subsets I = {i1 < · · · < im} and J = {j1 < · · · < jk−m} such that m = |I| > 1,
I ∪ J = {1, . . . , k} and I ∩ J = ∅. The term

∑
σI

is the summation over all permutations σI
which permute the elements of I and fix the elements of J , and, conversely, the term

∑
σJ

is the
summation over all permutations σJ which permute the elements of J and fix the elements of I.
The final summation is over n1 > · · · > nk−m > nk with nk fixed. We say ~n ′ = (n1, . . . , nk−m)
and set M ′ = M(~n ′) and (c′1, . . . , c

′
M ′) = ~c(~n ′).

Notice that the summation over σI can be readily computed to be (m)!q−1 using (3.2.4). Note

that when (m)!q−1 is divided by (m)!q this yields q−m(m−1)/2. Further rearrangement of terms
leads to

Ik =
∑
nk>0

∑
I,J

q−k(k−1)/2
∏
i∈I

(1− zi)nk
k∏

`=k−m+1

(
1

1− α/q`

)nk ∏
i∈I
j∈J

zi − q−1zj
zi − zj

(A.3.3)

×
∑

n1>···>nk−m>nk

M ′∏
i=1

1

(c′i)!q

∑
σJ

∏
B<A
A,B∈J

zσJ (jA) − q−1zσJ (jB)

zσJ (jA) − zσJ (jB)

k−m∏
`=1

(
1− zσJ (j`)

1− α/q

)n`
. (A.3.4)

From the definition of Ik−m we can rewrite the second line as

Ik−m(zj1 , . . . , zjk−m)

k−m∏
`=1

(
1− zj`

1− α/qj

)nk+1

.
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By the inductive hypothesis Ik−m is given by the right-hand side of (A.3.2). Let us make this

substitution into (A.3.3)

Ik =
∑
nk>0

k∏
`=1

(
1− z`

1− α/q`

)nk∑
I,J

q−m(m−1)/2
∏
i∈I
j∈J

zi − q−1zj
zi − zj

∏
j∈J

1− zj
zj − α/q

.

The summation in nk can now be easily computed.

In order to prove the inductive step for k it suffices to check that the above expression equals

the right-hand side of (A.3.2). This reduces the proof of the lemma to showing the following

equality:

1−
∏k
`=1 ((1− z`)/(1− α/q`))∏k

`=1 ((z` − α/q)/(1− α/q`))
=
∑
I,J

q−m(m−1)/2
∏
i∈I
j∈J

zi − q−1zj
zi − zj

∏
j∈J

1− zj
zj − α/q

.

The summation on the left-hand side does not include the term corresponding to I = ∅. Including

this term cancels a portion of the left-hand side and further cross multiplying brings the desired

equality to

k∏
`=1

(
1− α

q`

)
=
∑
I,J

q−k(k−1)/2
∏
i∈I
j∈J

zi − q−1zj
zi − zj

∏
i∈I

(
zi −

α

q

)∏
j∈J

(1− zj) (A.3.5)

where the term
∑

I,J (without the ∗) represents the summation over all I and J such that

I ∪ J = {1, . . . , k} and I ∩ J = ∅.

This desired equality is a q-deformation of the binomial expansion of (1 − α)k. To prove it,

let V (~z) =
∏
i<j(zj − zi) be the Vandermonde determinant and let T` be the q-shift operator

defined as (T`f)(z1, . . . , zk) = (z1, . . . , q
−1z`, . . . , zk). Making the change of variables zi 7→ 1/zi

we can rewrite the desired equality (A.3.5) as

k∏
`=1

(
T` − 1

z`
+

(
1− α

q
T`

))
V (z) =

k∏
j=1

(
1− α

qj

)
V (z).

This eigenfunction relationship for V (z) is easily proved by writing V (z) = det[zj−1
i ]ki,j=1 and

observing that(
T` − 1

z`
+

(
1− α

q
T`

))
V (z) = det[(q−j+1 − 1)zj−2

i + (1− α/qj)zj−1
i ]ki,j=1.

By elementary column transformations the above matrix can be brought to the form

det[(1− α/qj)zj−1
i ]ki,j=1 =

k∏
j=1

(1− α/qj)V (z),

thus proving the desired equality (A.3.5) and ultimately the inductive step and the lemma.
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