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Level Raising and Anticyclotomic Selmer
Groups for Hilbert Modular Forms of
Weight Two

Jan Nekovář

Abstract. In this article we refine the method of Bertolini and Darmon [BD1], [BD2] and prove several

finiteness results for anticyclotomic Selmer groups of Hilbert modular forms of parallel weight two.

0 Introduction

0.0 Convention

A “character” always means a continuous character. For any perfect field k we denote

by Gk = Gal(k/k) the absolute Galois group of k.

0.1 Let F be a totally real number field; let f ∈ S2(n, ω) be — in the notation of [N2,

chapter 12] — a cuspidal Hilbert modular eigenform over F of parallel weight 2,

(exact) level n and character ω : A×
F /F× → C× (ω is a totally real character of finite

order).

For each prime v ∤ n∞ of F denote by λ f (v) the eigenvalue of the standard Hecke

operator T(v) acting on f : T(v) f = λ f (v) f . The field L f ⊂ C generated over Q by

all Hecke eigenvalues λ f (v) and by the values of ω (in fact, L f is generated by {λ f (v)}
for v belonging to any set of primes of F of density 1) is a totally real (resp. a CM)

number field if ω = 1 (resp. if ω 6= 1).

0.2 The (unitary) automorphic representation π( f ) of GL2(AF) attached to f has central

character ω and its standard L-function is related to the classical L-function of f by

the relation

L
(
π( f ), s− 1

2

)
= ΓC(s)[F:Q]L( f , s), ΓC(s) = 2(2π)−s

Γ(s),

which is valid Euler factor by Euler factor. In particular, the Euler factor at a prime

v ∤ n∞ is equal to

L
(
π( f )v, s

)
=

(
1− λ f (v)(Nv)−s−1/2 + ω(v)(Nv)−2s

)−1
.
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As π̃( f ) = π( f )⊗ ω−1, the functional equation

L
(
π( f ), s

)
= ε

(
π( f ), s

)
L
(
π̃( f ), 1− s

)
, ε

(
π( f ), s

)
= c(π)1/2−sε

(
π( f ), 1

2

)

becomes self-dual if ω = 1, in which case ε
(
π( f ), 1

2

)
= ±1.

0.3 Let K be a totally imaginary quadratic extension of F and χ : A×
K /K× → C× a char-

acter of finite order satisfying

(0.3.1) χ|
A
×
F
· ω = 1.

This condition implies that

(0.3.2) cχ · χ · (ω ◦ NK/F) = 1,

where c is the non-trivial element of Gal(K/F) and cχ : A×
K /K× → C× is the charac-

ter

(cχ)(a) = χ
(

c−1(a)
)
= χ

(
c(a)

)
.

0.4 Fix a number field L ⊂ C containing L f and the values of χ. Fix a prime p of L

above a rational prime p and denote by Vp( f ) the (cohomologically normalised) two-

dimensional representation of GF with coefficients in Lp attached to f : if v ∤ pn∞ is

a prime of F, then Vp( f ) is unramified at v and

det
(

1− Frgeom(v)X | Vp( f )
)
= 1− λ f (v)X + ω(v)(Nv)X2.

We identify ω (resp. χ) with a Galois character ω : GF → O×
L (resp. χ : GK → O×

L )

via the reciprocity map recF : A×
F /F× → Gab

F (resp. recK ) normalised by letting the

uniformisers correspond to geometric Frobenius elements. The relation (0.3.2) then

reads as follows:
cχ · χ · ω|GK

= 1.

It is known (see [C1, Theorem A] and [T1, Theorem 2]) that, for each prime v ∤ p∞
of F, the restriction Vp( f )v of Vp( f ) to the decomposition group GFv

corresponds

to π( f )v ⊗ | · |−1/2 via the local Langlands correspondence. This implies that L( f , s)
coincides with the L-function of the strongly compatible system of L-rational Galois

representations {Vp( f )}p of GF in the sense that

∀v ∤ p∞ Lv( f , s) = det
(

1− Frgeom(v)(Nv)−s | Vp( f )Iv
)−1

.

0.5 Denote by θχ the automorphic representation of GL2(AF) generated by the theta se-

ries of χ (which is a weight one Hilbert eigenform over F); its central character is

equal to χ|
A
×
F
· η, where η = ηK/F : A×

F /F×NK/F(A×
K )

∼−→ {±1} is the quadratic

character corresponding to the extension K/F. As θχ⊗ η = θχ, the condition (0.3.1)
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590 J. Nekovář

implies that the Rankin–Selberg L-function L
(
π( f )× θχ, s

)
(which will be abusively

denoted by L
(
π( f )× χ, s

)
) coincides with L(π̃( f )× θ̃χ, s), hence admits a self-dual

functional equation

(0.5.1)
L
(
π( f )× χ, s

)
= ε

(
π( f )× χ, s

)
L
(
π( f )× χ, 1− s

)
,

ε
(
π( f )× χ, s

)
= c

(
π( f )× χ

) 1/2−s
ε
(
π( f )× χ, 1

2

)
, ε

(
π( f )× χ, 1

2

)
= ±1.

In more concrete terms,

L
(
π( f )× χ, s− 1

2

)
= ΓC(s)[K:Q]L( fK , χ, s),

where L( fK , χ, s) is the L-function of the strongly compatible system of L-rational

Galois representations {Vp( f )|GK
⊗ χ}p of GK :

∀v ∤ p∞ Lv( fK , χ, s) =
∏
w|v

det
(

1− Frgeom(w)(Nw)−s
∣∣ (Vp( f )⊗ χ

) Iw
)−1

.

Above, v (resp. w) is a prime of F (resp. of K). Set

ran( fK , χ) := ords=1 L( fK , χ, s) = ords=1/2 L
(
π( f )× χ, s

)
.

0.6 For any GK -module M we denote by cM the abelian group M equipped with a new

action of GK given by m 7→ (c̃−1gc̃)m (m ∈ M, g ∈ GK ), where c̃ ∈ GF is any element

of GF that does not belong to GK (the isomorphism class of the GK -module cM does

not depend on the choice of c̃).

The map sending a non-homogeneous n-cochain z ∈ Cn(GK ,M) to the cochain

z ′ ∈ Cn(GK ,
cM) given by z ′(g1, . . . , gn) = z(c̃−1g1c̃, . . . , c̃−1gnc̃) induces an isomor-

phism

(0.6.1) Hn(GK ,M)
∼−→ Hn(GK ,

cM).

In the special case when M is a GF-module the map c̃ : M
∼−→ cM (m 7→ c̃m) is an

isomorphism of GK -modules.

0.7 As det
(

Vp( f )
)
= Lp(−1)⊗ ω, the Lp[GF]-module V := Vp( f )(1) is equipped with

a non-degenerate skew-symmetric GF-equivariant pairing

(0.7.1) V ×V −→ Lp(1)⊗ ω,

which induces a non-degenerate GK -equivariant pairing

(V |GK
⊗ χ)× (V |GK

⊗ cχ) −→ Lp(1).

As a result, there is an isomorphism of GF-modules

V ∗(1) := HomLp
(V, Lp)(1)

∼−→ V ⊗ ω−1
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and isomorphisms of GK -modules

(V |GK
⊗ χ)∗(1)

∼−→ V |GK
⊗ cχ

∼−→ c(V |GK
⊗ χ).

The fields Kϕ = K
Ker(ϕ)

(ϕ = χ, cχ) are finite abelian extensions of K satisfying

KχKcχ = KχFω = KcχFω,

where Fω = F
Ker(ω)

is the (totally real) finite abelian extension of F trivialising ω.

0.8 We are interested in the Bloch–Kato Selmer groups

H1
f (K,V ⊗ ϕ) =

(
H1

f (Kϕ,V )⊗ ϕ
)Gal(Kϕ/K)

= H1
f (Kϕ,V )(ϕ−1) (ϕ = χ, cχ),

where

M(ϕ)
= {m ∈ M | ∀g ∈ Gal(Kϕ/K), g(m) = ϕ(g)m}

for any OL[Gal(Kϕ/K)]-module M. Set

h1
f (K,V ⊗ ϕ) := dimLp

H1
f (K,V ⊗ ϕ).

The discussion in 0.6–0.7 implies that there are isomorphisms

(0.8.1)

H1
f

(
K, (V ⊗χ)∗(1)

) ∼−→ H1
f (K,V ⊗ cχ)

∼−→ H1
f

(
K, c(V ⊗χ)

) ∼−→ H1
f (K,V ⊗χ).

As the Galois representation V is pure of weight −1 by the generalised Ramanujan

conjecture [Bl],

(0.8.2)

H0
(

K, (V ⊗ χ)∗(1)
)
= H0(K,V ⊗ cχ) = H0

(
K, c(V ⊗ χ)

)
= H0(K,V ⊗ χ) = 0.

0.9 If we take into account (0.8.1)–(0.8.2), the conjectures of Bloch and Kato [BK] predict

that

(0.9.1) h1
f (K,V ⊗ χ)

?
= ran( fK , χ).

In the present article we concentrate only on the implication

(0.9.2) ran( fK , χ) = 0
?

=⇒ H1
f (K,V ⊗ χ) = 0.

Results of this kind were first proved by Bertolini and Darmon [BD1], [BD2]; their

method was further developed in [L1], [L2], [L3], [LV1], [LV2], [LRV], [H], [PW],

[Cd] and [TZ]. Our aim is to eliminate, whenever possible, the restrictive assump-

tions imposed in [loc. cit.]. Our main result is the following.
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Theorem A Let f ∈ S2(n, ω), χ : A×
K /K× → C× (χ|

A
×
F
·ω = 1) and V = Vp( f )(1)

be as in 0.1–0.7. If f has CM by a totally imaginary quadratic extension K( f ) of F (i.e.,

if f is the θ-series attached to a Hecke character of K( f )), assume that K( f ) 6⊂ KχFω .

Assume that there exists an element gp ∈ GF satisfying the following conditions (A1)–

(A3):

(A1) gp acts trivially on Fω (⇐⇒ ω(gp) = 1);

(A2) det(1− gpX | V ) = (1− λ1X)(1− λ2X), where λ2
1 = 1 6= λ2

2, and if f has CM,

then ∀n ≥ 1, λn
2 6= 1;

(A3) gp does not act trivially on K.

(Such an element exists for p belonging to a set of primes of L of positive density).

If L( fK , χ, 1) 6= 0, then H1
f (K,V ⊗ χ) = H1

f (K,V ⊗ cχ) = 0; if, in addition,

p does not belong to a finite set of primes of L depending only on f , K and χ, then

H1
f

(
K, (V/T)⊗χ

)
= H1

f

(
K, (V/T)⊗ cχ

)
= 0 for any GF-stable OL,p-lattice T ⊂ V .

0.10 Conjecturally, for each f in Theorem A there exists an abelian variety A f defined

over F (unique up to isogeny) such that

(0.10.1) dim(A f ) = [L f : Q], EndF(A f ) = OL f
, L(ιA f /F, s) = L( f , s)

(Euler factor by Euler factor), where ι denotes the inclusion L f ⊂ C. In this case we

have, for any prime p of L above a prime p f of L f ,

V = Vp( f )(1) = Vp
f
(A f )⊗L f ,p

f

Lp, Vp
f
(A f ) = Tp(A f )⊗(OL f

⊗Zp) L f ,p
f
.

Moreover, the Bloch–Kato Selmer group of A f [p∞] over any finite extension F ′ of F

coincides with the classical Selmer group for the p-power descent on A f . In view of

the standard descent sequence

0 −→
(

A f (F ′)⊗Qp/Zp

)
⊗(OL f

⊗Zp) OL,p −→ H1
f (F ′,V/T)

−→X(A f /F ′)[p∞]⊗(OL f
⊗Zp) OL,p −→ 0,

T = Tp(A f )⊗(OL f
⊗Zp) OL,p,

Theorem A can be rephrased in this context as follows.

Theorem A ′ Assume that f ∈ S2(n, ω) in Theorem A is attached to an abelian variety

A f satisfying (0.10.1). If A f acquires CM over a totally imaginary quadratic extension

K( f ) of F, assume that K( f ) 6⊂ KχFω . Assume that there exists an element gp
f
∈ GF

satisfying the following conditions.

(A1 ′) gp
f

acts trivially on Fω (⇐⇒ ω(gp
f
) = 1);

(A2 ′) det
(

1 − gp
f
X | Vp

f
(A f )

)
= (1 − λ1X)(1 − λ2X), where λ2

1 = 1 6= λ2
2; if A f

has CM, then ∀n ≥ 1, λn
2 6= 1;

(A3 ′) gp
f

does not act trivially on K;
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(such an element exists for p f belonging to a set of primes of L f of positive density).

If L(ιA f /K, ι ◦ χ, 1) 6= 0, then A f (Kϕ)(ϕ−1) is finite (ϕ = χ, cχ); if, in addition,

p f does not belong to a finite set of primes of L f depending only on f , K and χ, then
(
X(A f /Kϕ)[p∞]⊗(OL f

⊗Zp) OL,p

) (ϕ−1)
is finite (ϕ = χ, cχ).

0.11 Applying Theorem A to χ = 1 for variable K we obtain the case (c) of the fol-

lowing result. The cases (a) and (b) are well-known consequences (cf. [Zh2, Theo-

rem 4.3.2.]) of [N1, Theorem 3.2], [YZZ, Theorem 1.3.1] and [FH, Theorem B.2],

which generalise, respectively, the Euler system argument, the Gross–Zagier formula

and the non-vanishing results for quadratic twists used by Kolyvagin and Logachev

[KoLo] in their proof of the corresponding result for F = Q.

Theorem B Assume that f ∈ S2(n, 1) from 0.1 has trivial character, V = Vp( f )(1),

L( f , 1) 6= 0 and that at least one of the following three conditions holds:

(a) 2 ∤ [F : Q];

(b) there exists a finite prime v of F for which π( f )v is not a principal series representa-

tion;

(c) there exists gp ∈ GF satisfying the conditions (A1) and (A2) from Theorem A (if f

has no CM this is equivalent to V not being quaternionic in the sense of B.4.7, which

holds for all but finitely many p).

Then H1
f (F,V ) = 0 and, if p does not belong to a certain finite set of primes of L, then

H1
f (F,V/T) = 0 for any GF-stable OL,p-lattice T ⊂ V .

There is also an analogue of Theorem A ′ in this situation (the field L f being totally

real in this case).

Theorem B ′ If f ∈ S2(n, 1) in Theorem B is attached to an abelian variety A f sat-

isfying (0.10.1) and L(ιA f /F, 1) 6= 0, then A f (F) is finite. Moreover, if at least one of

the following five conditions holds, then X(A f /F)[p∞f ] is finite (and equal to zero if p f

does not belong to a certain finite set of primes of L f ):

(a) 2 ∤ [F : Q];

(b1) A f does not have potentially good reduction everywhere;

(b2) A f does not acquire semistable reduction everywhere over any cyclic extension of F;

(c1) A f does not have CM and the localisation C ⊗Z(C) Z(C)p
C

of the simple algebra

C := EndQ(A f ) ⊗ Q at the prime pC of Z(C) ⊂ L f below p f is isomorphic to

Mn

(
Z(C)p

C

)
;

(c2) A f has CM by a totally imaginary quadratic extension L ′ of L f , the prime p f splits

in L ′/L f and Vp
f
(A f )|GK( f )

= ψ1 ⊕ψ2, where ψi : GK( f ) → L×
f ,p

f
are characters for

which ψ2

(
Ker(ψ1)

)
is infinite.

[In particular, if 2 ∤ [F : Q] or if f does not have CM then X(A f /F)[p∞f ] = 0 for all

but finitely many p f .]

Corollary If E is a modular elliptic curve over F satisfying L(E/F, 1) 6= 0, then:

(1) (cf. [L2, Theorem A]) E(F) is finite.

(2) If 2 ∤ [F : Q] or if E has no CM, then X(E/F) is finite.
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(3) If 2 | [F : Q] and E has CM by an imaginary quadratic field K ′, then the following

group is finite:

X(E/F)split :=
⊕

p splits in K ′/Q

X(E/F)[p∞].

0.12 The proof of Theorem A is based on the method of Bertolini and Darmon [BD2],

with the following improvements:
• Assumptions such as

(
n, dK/FNK/F(cond(χ))

)
= 1, which had been used to

transfer f to an explicit definite quaternion algebra, can be eliminated by an ap-

peal to results of Tunnell [Tu] and Saito [Sa] on local toric linear forms (such

linear forms were used in the context of a generalised Gross–Zagier formula by

Zhang et al. [Zh1], [YZZ]).
• It is not necessary to assume that there exists a level-raising congruence f ≡ f ′

(mod pm), where f ′ is an eigenform of level nℓ, new at a well-chosen prime ℓ
of F. As in [T1], it is sufficient to work with an eigenform with coefficients in

OL/p
mOL, which always exists (for a suitable ℓ). A variant of the arguments of

Boston–Lenstra–Ribet [BLRi] then allows us to realise the reduction modulo pm−C

of (a certain lattice T in a Tate twist of) the p-adic Galois representation attached

to f as a quotient of the Tate module of a suitable Shimura curve.
• Assumptions such as (n, p) = 1 or p ∤ DF , which had been used to control the lo-

cal behaviour at p of the cohomology class c(ℓ) ∈ H1(Kχ,T/p
m−C T) constructed

from a certain CM point on the Shimura curve alluded to above, can be avoided

by a consistent use of Raynaud extensions and their flat cohomology, combined

with a uniformity result A.1.8 for Barsotti–Tate groups.
• The assumptions about the image of the Galois representation V can be formu-

lated in an abstract — and probably optimal — form (the conditions (A1)–(A3)

in Theorem A).

The contents of the present article are as follows. In Section 1, we sum up the ge-

ometric machinery behind level raising from a weight two form on a definite quater-

nion algebra over F to a (weight two) form arising from a suitable Shimura curve

over F. There are no original results in this part of the article; we simply translate back

relevant parts of [T1] to a natural geometric situation similar to [Ri7] (see also [J]

and [R]). In Section 2, we construct the cohomology classes c(ℓ) ∈ H1(Kχ,T/p
nT)

using “weak level raising modulo pn”; we study their local properties and prove the

main result (and its corollaries) by combining the annihilation relation arising from

the reciprocity law

∀s ∈ H1(Kχ, (T/pnT)⊗ ω−1)
∑

v

invv

(
c(ℓ)v ∪ sv

)
= 0 ∈ OL/p

nOL

with the Čebotarev density theorem, as in Kolyvagin’s method. In Appendix A (resp.

Appendix B) we collect useful results about flat cohomology of finite group schemes

and Raynaud extensions (resp. about images of Galois representations attached to

Hilbert modular forms of regular weight).
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Notation

Throughout this article, F is a totally real number field of degree d and S∞ =

{τ1, . . . , τd} (resp. Sp = {v | p}) the set of archimedean primes (resp. of primes

above a rational prime p) inF. For a quaternion algebra D over F we denote by

Ram(D) = {v | invv(Dv) = −1} the set of primes of F at which D is ramified (above,

Dv = D ⊗F Fv). We also write ⊗ for ⊗Z and Â for A ⊗ Ẑ (Ẑ = lim←−n
Z/nZ), for any

abelian group A.

1 Level Raising

Throughout Section 1, B is a totally definite quaternion algebra over F (i.e., such that

Ram(B) ⊃ S∞).

1.1 Automorphic Forms of Weight Two on Definite Quaternion Algebras

1.1.1 The Space S(U ; A) For any open compact subgroup U ⊂ B̂× and any

abelian group A, denote by

S(U ; A) = { f : B̂× −→ A | ∀b ∈ B× ∀g ∈ B̂× ∀u ∈ U , f (bgu) = f (g)}

= A[B×\B̂×/U ]

the abelian group of automorphic forms “of weight two” and level U on B×
A with

values in A (note that the set B×\B̂×/U is finite).

1.1.2 Action of B̂× The action of B̂× on S(B×
A ; A) =

⋃
U S(U ; A) by right trans-

lations (g · f )(g ′) = f (g ′g) is smooth (the stabiliser of each element is open in

B̂×) and, for each open compact subgroup U , the space of U -invariants is equal to

S(B×
A ; A)U

= S(U ; A).

The restriction of this action to Z(B̂×) = F̂× leaves each S(U ; A) stable. More

precisely, F̂× acts on S(U ; A) through the finite abelian group F×\F̂×/(F̂× ∩U ).

1.1.3 Some Subspaces of S(U ; A) It will be useful to consider the following

subgroups of S(U ; A):

S(U ; A)triv =

{ f ∈ S(U ; A) | f factors through Nrd : B×\B̂×/U −→ F×
+ \F̂×/Nrd(U )};

S(UY ; A) := S(U ; A)Y
= S(U ; A)Y (F̂×∩U )

= A[B×\B̂×/UY ],

where Y is an open — but not necessarily compact — subgroup of F̂×
= Z(B̂×).
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1.1.4 Action of Double Cosets If U ,U ′ ⊂ B̂× are compact open subgroups

and x ∈ B̂×, then xU = xU x−1 is commensurable with U ′. If we write U ′
=∐

i αi(U
′ ∩ xU ) as a disjoint union of cosets, then U ′xU =

∐
i xiU , where xi = αix.

The linear map

[U ′xU ] : S(U ; A) −→ S(U ′; A), ([U ′xU ] f )(g) =
∑

i

f (gxi)

has the following properties.

(1.1.4.1) [U ′xU ] commutes with the action of F̂×. In particular, it maps S(UY ; A)

to S(U ′Y ; A), for any open subgroup Y ⊂ F̂×.

(1.1.4.2) The endomorphisms [U xU ] define a left action of the double coset algebra

Z[U\B̂×/U ] on S(U ; A). If x ∈ Z(B̂×) = F̂×, then [U xU ] coincides with

the action of x.

(1.1.4.3) If x = 1 and U ′ ⊂ U , then [U ′1U ] : S(U ; A) → S(U ′; A) is the inclusion

and [U 1U ′] : S(U ′; A)→ S(U ; A) is the trace map.

Recall that Z[U\B̂×/U ] embeds into the Hecke algebra C∞
c (B̂×) of locally constant

functions on B̂× with compact support, equipped with the convolution product

(α ∗ β)(g) =

∫

B̂×

α(h)β(h−1g) dh

(for a fixed Haar measure dh on B̂×), via the map which sends vol(U )[U gU ] to

the characteristic function of U gU . Denote by x 7→ x∨ the (anti)-involution of

Z[U\B̂×/U ] which sends [U gU ] to [U g−1U ].

1.1.5 Action of the Spherical Hecke Algebra Fix an open compact subgroup

U ⊂ B̂×. There exists a finite set S ⊃ Ram(B) of primes of F such that U = USU S,

where US is an open compact subgroup of
∏

v∈S f
B×

v (S f = S − S∞) and U S
=∏

v /∈S Uv, where each Uv is a maximal compact subgroup of B×
v .

Fix such a set S and denote by T
S(U ) the (commutative) subring of Z[U\B̂×/U ]

generated by the double cosets [U xU ] for all x ∈ (B̂S)× = {x ∈ B̂× | ∀v ∈ S f , xv =

1}. As a ring, it is isomorphic to Z[T(v), S(v), S(v)−1 | v /∈ S], where T(v) and S(v)

are the standard Hecke operators

T(v) = [UξvU ], S(v) = [U̟vU ] (v /∈ S).

Above, ̟v is a uniformiser of Fv and ξv is as in 1.2.1 below. The involution x 7→ x∨

acts on T
S(U ) by T(v)∨ = T(v)S(v)−1, S(v)∨ = S(v)−1 (v /∈ S).

For any open subgroup Y ⊂ F̂×, the image T
S(UY ) of T

S(U ) in Z[UY\B̂×/UY ]

is the quotient of T
S(U ) by the ideal generated by [U yU ]− 1 (y ∈ Y ).

The image of T
S(UY ) in EndZ

(
S(UY ; Z)

)
is an order in a finite product of num-

ber fields. It acts on S(UY ; A) = S(UY ; Z)⊗Z A, for any abelian group A.

For any T
S(UY )-module N set

hN = N ⊗TS(UY ),∨ T
S(UY ).

The map n 7→ hn := n⊗ 1 is an isomorphism of abelian groups N → hN satisfying

∀t ∈ T
S(UY ) ∀n ∈ N t(hn) = h

(
t∨(n)

)
.
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1.1.6 The Eisenstein Part of S(U ; C) As a B̂×-module, S(B×
A ; C)triv =⋃

U S(U ; C)triv decomposes into a direct sum of one-dimensional eigenspaces C fϕ,

one for each character of finite order ϕ : B×\B̂× → C× factoring as B×\B̂×
Nrd
−−→

F×
+ \F̂×

ϕ ′

−→ C×. If U satisfies ϕ ′
(

Nrd(U )
)
= 1, then

∀v /∈ S T(v) fϕ =
(

N(v) + 1
)
ϕ ′(̟v) fϕ, S(v) fϕ = ϕ ′(̟v)2 fϕ.

1.1.7 The Non-Eisenstein Part of S(U ; C) As a T
S(U )-module, the space

S(U ; C) =
⊕

λ S(U ; C)λ is a direct sum of its isotypic components, for certain ring

morphisms λ : T
S(U )→ C.

If f ∈ S(U ; C)λ but f /∈ S(U ; C)triv, it follows from the Jacquet–Langlands cor-

respondence that there exists a cuspidal Hilbert eigenform of parallel weight 2 on F

with the same Hecke eigenvalues under T(v) and S(v) (∀v /∈ S) as f . The generalised

Ramanujan conjecture for Hilbert modular forms, whose proof was completed in

[Bl], implies that

(1.1.7.1) ∀v /∈ S T(v) f = λ
(

T(v)
)

f ,
∣∣λ

(
T(v)

) ∣∣ ≤ 2N(v)1/2.

As a result, for each v /∈ S, T(v) has no common eigenvalues on S(U ; C)triv and

S(U ; C)/S(U ; C)triv. It follows that there is a unique T
S(U )-submodule S(U ; C)0 ⊂

S(U ; C) such that

S(U ; C) = S(U ; C)triv ⊕ S(U ; C)0.

Moreover, for each v /∈ S, any eigenvector of T(v) in S(U ; C) lies either in S(U ; C)triv

or in S(U ; C)0.

For a subring A ⊂ C and an open subgroup Y ⊂ F̂× set

S(UY ; A)0 := S(UY ; A) ∩ S(U ; C)0.

If f is as in (1.1.7.1), then σ ◦ f ∈ S(U ; C)σ◦λ and σ ◦ f /∈ S(U ; C)triv, for each

σ ∈ Aut(C). This implies that S(U ; C)0 is stable under Aut(C); as the same is true for

S(U ; C)triv, it follows that

(1.1.7.2) S(UY ; A) = S(UY ; A)triv ⊕ S(UY ; A)0,

for any subring A ⊂ C containing Q and any open subgroup Y ⊂ F̂×.

1.2 Oldforms and Newforms

Let U and S be as in 1.1.5.

1.2.1 Degeneracy and Trace Maps Fix a prime ℓ /∈ S of F, a uniformiser ̟ℓ of

Fℓ and an isomorphism M2(Fℓ)
∼−→ Bℓ sending GL2(Oℓ) onto Uℓ (where Oℓ = OF,ℓ
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is the ring of integers of Fℓ). Set

ξℓ =

(
1 0

0 ̟ℓ

)
∈ GL2(Fl)

∼−→ B×
ℓ ⊂ B̂×,

U (ℓ) = U ∩ ξℓU =

{
u ∈ U | uℓ ≡

(
∗ ∗
0 ∗

)
(mod ̟ℓ)

}
.

For any abelian group A we have the standard injective degeneracy maps

α∗
= [U (ℓ)1U ] : S(U ; A) −→ S

(
U (ℓ); A

)
, (α∗ f )(g) = f (g),

β∗
= [U (ℓ)ξℓU ] : S(U ; A) −→ S

(
U (ℓ); A

)
, (β∗ f )(g) = f (gξℓ),

and the corresponding trace maps

α∗ = [U 1U (ℓ)] : S
(

U (ℓ); A
)
−→ S(U ; A),

β∗ = [Uξ−1
ℓ U (ℓ)] : S

(
U (ℓ); A

)
−→ S(U ; A).

All these maps commute with the respective actions of Z(B̂×) = F̂× and T(v) (v /∈
S ∪ {ℓ}) on S(U ; A) and S

(
U (ℓ); A

)
.

Definition 1.2.2 The ℓ-new subspace of S
(

U (ℓ); A
)

is defined as

S
(

U (ℓ); A
) ℓ-new

:= Ker
(

S
(

U (ℓ); A
) (α∗,β∗)
−−−−→ S(U ; A)⊕2

)
.

It is stable by the action of Z(B̂×) and T(v) (v /∈ S ∪ {ℓ}) and satisfies

S
(

U (ℓ); A
) ℓ-new

= S
(

U (ℓ); A
)
∩ S

(
U (ℓ); A ′

) ℓ-new
(A ⊂ A ′),

S
(

U (ℓ)Y ; A
) ℓ-new

:= S
(

U (ℓ)Y ; A
)
∩ S

(
U (ℓ); A

) ℓ-new
=

(
S
(

U (ℓ); A
) ℓ-new)Y

,

for any open subgroup Y ⊂ F̂×.

Proposition 1.2.3 (i) For any open subgroup Y ⊂ F̂× containing F×
ℓ , the compos-

ite map

µ : S(UY ; A)⊕2
α∗−β∗

−−−−→ S
(

U (ℓ)Y ; A
) (−α∗,β∗)
−−−−−→ S(UY ; A)⊕2

is given by the matrix

(
−α∗α

∗ α∗β
∗

β∗α
∗ −β∗β∗

)
=

(
−N(ℓ)− 1 T(ℓ)

T(ℓ) −N(ℓ)− 1

)
.

(ii) Ker
(

S(U ; A)⊕2
α∗−β∗

−−−−→ S
(

U (ℓ); A
))

= {(ξℓ · f , f ) | f ∈ S(U ; A)triv}.
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Proof (1) [Ri7, Proof of Theorem 3.22], [T1, Lemma 2].

(2) If f , f ′ ∈ S(U ; A) satisfy α∗( f ) = β∗( f ′), then f is invariant by both Uℓ =

GL2(Oℓ) and ξ−1
ℓ GL2(Oℓ)ξℓ, hence by {g ∈ GL2(Fℓ) | det(g) ∈ O∗

ℓ }. As

(B̂×)Nrd=1
= (B×)Nrd=1 SL2(Fℓ)(U (ℓ))Nrd=1

by the strong approximation theorem [Vi, Theorem III.4.3], it follows that f factors

through Nrd, hence f ∈ S(U ; A)triv. The relation α∗( f ) = β∗( f ′) implies that

f = ξℓ · f ′.

1.3 Shimura Curves

Let U , S and ℓ be as in 1.2.1.

1.3.1 New Quaternion Algebra Let B ′ be the quaternion algebra over F ob-

tained from B by“switching invariants” at ℓ and a fixed infinite prime τ1 ∈ S∞:

Ram(B ′) =
(

Ram(B) \ {τ1}
)
∪ {ℓ}.

Denote by F̂(ℓ) (resp. D̂(ℓ), for D = B,B ′) the restricted product of Fv (resp. of Dv)

over all finite primes v 6= ℓ of F (in other words, we have F̂ = Fℓ × F̂(ℓ) and D̂ =

Dℓ × D̂(ℓ)). Fix an isomorphism of F̂(ℓ)-algebras

ϕ : B̂(ℓ) ∼−→ B̂ ′(ℓ)

and set

U (ℓ)
= US

∏
v /∈S∪{ℓ}

Uv ⊂ B̂(ℓ)×, U ′
= ϕ(U (ℓ))O×

B ′
ℓ
⊂ B̂ ′×,

where OB ′
ℓ

is the maximal order of the division algebra B ′
ℓ.

1.3.2 Shimura Curve (Complex Uniformisation) Fix an isomorphism B ′
τ1

∼−→
M2(R) and consider the Shimura curve MU ′ corresponding to the open compact

subgroup U ′ ⊂ B̂ ′×, using the notation and conventions of [CV1, Section 3] and

[CV2, Section 3] with ǫ = 1 (see also [C2] and [N1, Section 1]). In concrete terms,

MU ′ is a smooth and projective curve over F whose associated Riemann surface Man
U ′

is naturally identified with

Man
U ′ = (MU ′ ⊗F,τ1

C)(C) = B ′×\(C− R)× B̂ ′×/U ′,

where B ′× ⊂ B ′×
τ1

∼−→ GL2(R) acts on C− R by the standard action z 7→ az+b
cz+d

.

The curve MU ′ is irreducible, but not necessarily geometrically irreducible. Its

field of constants is isomorphic to the finite abelian extension FU ′ of F characterised

by the isomorphism

recF : F×
+ \F̂×/Nrd(U ′) = F×

+ \F̂×/Nrd(U (ℓ))O×
ℓ

∼−→ Gal(FU ′/F).
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This is consistent with the fact that the reduced norm for B ′ induces a bijection

π0(Man
U ′) = B ′×\π0(C− R)× B̂ ′×/U ′ ∼−→ Nrd(B ′×)\{±1} × F̂×/Nrd(U ′)

= F×
+ \F̂×/Nrd(U ′),

by strong approximation [Vi, Theorem III.4.3] and Eichler’s norm theorem [Vi, The-

orem III.4.1].

1.3.3 Quotient Shimura Curve For z ∈ C−R and b ′ ∈ B̂ ′×, denote by [z, b ′]U ′

the complex point of MU ′ represented by the pair (z, b ′). The centre Z(B̂ ′×) = F̂×

acts on MU ′ (by morphisms defined over F) according to the formula

(1.3.3.1) g([z, b ′]U ′) = [z, b ′g]U ′ = [z, gb ′]U ′ .

This action factors through the finite abelian group F×\F̂×/(F̂× ∩U ′).

For any open subgroup Y ⊂ F̂×, denote by MU ′Y the quotient of MU ′ by (the

image in F×\F̂×/(F̂× ∩U ′)) of Y ; it is a smooth projective curve over F satisfying

Man
U ′Y = (MU ′Y ⊗F,τ1

C)(C) = B ′×\(C− R)× B̂ ′×/U ′Y.

Denote by [z, b ′]U ′Y ∈ MU ′Y (C) the image of [z, b ′]U ′ .

In the case Y = F̂× ∩ U ′ (resp. Y = F̂×) the curve MU ′Y coincides with MU ′

(resp. with the curve which was denoted by X in [Zh1, 1.5.1] and by NU ′ in [N1]).

1.3.4 Hecke Correspondences For each g ∈ B ′×, the right multiplication

[·g] : [z, b ′] 7→ [z, b ′g] and the diagram

(1.3.4.1) M(U ′∩gU ′g−1)Y

[·g]
//

pr

��

M(g−1U ′g∩U ′)Y

pr ′

��
MU ′Y

[U ′Y gU ′Y ]
//________ MU ′Y

define a multivalued map (a “Hecke correspondence”)

(1.3.4.2) [U ′Y gU ′Y ] : MU ′Y
//____ MU ′Y .

1.4 ℓ-adic Uniformisation of Shimura Curves

Let U , S and ℓ be as in 1.2.1. Denote by Our
ℓ (resp. by Oℓ2 ) the ring of integers in

the maximal unramified extension Fur
ℓ (resp. in the unramified quadratic extension

Fℓ2 ⊂ Fur
ℓ ) of Fℓ and by Ôur

ℓ (resp. Cℓ) the completion of Our
ℓ (resp. of Fℓ) with respect

to the ℓ-adic topology.
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1.4.1 Theorem of Čerednik and Drinfeld Fix an isomorphism Bℓ
∼−→ M2(Fℓ).

According to [Če] and [Dr] (see also [BC, Theorem 5.2], [BZ, Theorem 3.1] and

[V, Theorem 5.3]) there is a natural integral model MU ′ of MU ′⊗F Fℓ over Oℓ, whose

completion MU ′ along the special fibre is canonically identified with

B×\(Ĥℓ⊗̂Oℓ
Ôur
ℓ )× B̂(ℓ)×/U (ℓ),

where Ĥℓ is the formal scheme over Spf(Oℓ) [BC, I.3] which is a natural formal

model of Drinfeld’s ℓ-adic half plane P1(Cℓ) − P1(Fℓ) and b ∈ B× acts on Ĥℓ

(resp. on Ôur
ℓ ) via the natural action of B× ⊂ B×

ℓ
∼−→ GL2(Fℓ) on P1

Fℓ
(resp. by

Frgeom(ℓ)ordℓ(Nrd(b))).

Denote by Man
U ′ the corresponding rigid analytic space over Fℓ. As in 1.3.2, the

components of

Man
U ′(Cℓ) = B×\

(
P1(Cℓ)− P1(Fℓ)

)
× B̂(ℓ)×/U (ℓ)

are in bijection with

B×\Z× B̂(ℓ)×/U (ℓ)
= B×\Nrd(B×

ℓ /Uℓ)× B̂(ℓ)×/U (ℓ) ∼−→ F×
+ \F̂×/O×

ℓ Nrd(U (ℓ))

= F×
+ \F̂×/Nrd(U ′),

where the middle bijection is again induced by the reduced norm, this time for B.

For z ∈ P1(Cℓ) − P1(Fℓ) and b ∈ B̂(ℓ)×, denote by [z, b]U ∈ MU ′(Cℓ) the point

represented by (z, b).

1.4.2 ℓ-adic Uniformisation of the Quotient Shimura Curve The action

(1.3.3.1) of g ∈ F̂×
= Z(B̂ ′×) on MU ′ extends to an action on MU ′ . The correspond-

ing action on MU ′ is given by the following formula: write g = gℓg
(ℓ) with gℓ ∈ F×

ℓ

and g(ℓ) ∈ F̂(ℓ)×; then g acts on Ĥℓ⊗̂Oℓ
Ôur
ℓ (resp. on B̂(ℓ)×) by id×Frgeom(ℓ)ordℓ(Nrd(gℓ))

(resp. by multiplication by g(ℓ)).

Fix an open subgroup Y ⊂ F̂× containing F×
ℓ (i.e., such that Y = Yℓ×Y (ℓ), where

Yℓ = F×
ℓ and Y (ℓ) is an open subgroup of F̂(ℓ)×) and consider the quotient curve

M = MU ′Y = MU ′/Y

from 1.3.3. Taking this quotient (by a finite abelian group) makes sense for MU ′ and

MU ′ ; this yields an integral model M = MU ′/Y of M over Oℓ and its completion

M = MU ′/Y along the special fibre. The field of constants FU ′Y of M satisfies

recF : F×
+ \F̂×/Nrd(U ′)Y 2 ∼−→ Gal(FU ′Y/F) (Y 2

= {a2 | a ∈ Y}).

In the notation of 1.4.1 we denote by [z, b]UY ∈ MU ′Y (Cℓ) the image of [z, b]U .

The assumption Y = F×
ℓ × Y (ℓ) implies that

M = B×\(Ĥℓ⊗̂Oℓ
Ôur
ℓ )× B̂(ℓ)×/U (ℓ)Y = B×\(Ĥℓ ⊗Oℓ

Oℓ2 )× B̂(ℓ)×/U (ℓ)Y (ℓ).
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Write

B̂(ℓ)×
=

∐
i

B×αiU
(ℓ)Y (ℓ)

as a disjoint union of double cosets and set, for each i,

Γi = B× ∩ αiU
(ℓ)Y (ℓ)α−1

i ;

there is an isomorphism

∐
i

Γi\(Ĥℓ ⊗Oℓ
Oℓ2 )

∼−→M,

sending Γiz to the class represented by the pair (z, αi). As the subgroup

Γi,+ :=
{
γ ∈ Γi | ordℓ

(
Nrd(γ)

)
≡ 0 (mod 2)

}
⊂ Γi

acts trivially on Oℓ2 , we obtain (cf. [BC, 5.3.3]) an isomorphism

(1.4.2.1) M
∼−→∐

i

Wi\
(

(Γi,+\Ĥℓ)⊗Oℓ
Oℓ2

)
,

where Wi = Γi/Γi,+ is a group of order 1 or 2 and where we have denoted by Γi,+ the

image of Γi,+ in B×
ℓ /F×

ℓ
∼−→ PGL2(Fℓ).

1.5 Bad Reduction of the (Quotient) Shimura Curve at ℓ

Let U , S and ℓ be as in 1.2.1. In addition, let Y = Yℓ×Y (ℓ)
= F×

ℓ ×Y (ℓ) be as in 1.4.2.

1.5.1 Bruhat–Tits Tree Denote by Tℓ the Bruhat–Tits tree attached to B×
ℓ

∼−→
GL2(Fℓ). Its set of vertices is equal to V(Tℓ) = B×

ℓ /UℓF
×
ℓ , the set of oriented edges

(= of ordered pairs of adjacent vertices) to
−→
E (Tℓ) = B×

ℓ /U (ℓ)ℓF
×
ℓ , the incidence

relation is given by the maps

s, t :
−→
E (Tℓ) −→ V(Tℓ), s

(
gU (ℓ)ℓF

×
ℓ

)
= gUℓF

×
ℓ , t

(
gU (ℓ)ℓF

×
ℓ

)
= gξℓUℓF

×
ℓ

(s = source, t = target) and the inversion of an edge by

ι :
−→
E (Tℓ)→

−→
E (Tℓ), gU (ℓ)ℓF

×
ℓ 7→ g

(
0 1

̟ℓ 0

)
U (ℓ)ℓF

×
ℓ = gξℓ

(
0 1

1 0

)
U (ℓ)ℓF

×
ℓ .

Denote by E(Tℓ) =
−→
E (Tℓ)/{id, ι} the set of non-oriented edges of Tℓ.
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1.5.2 Special Fibre of Ĥℓ The group B×
ℓ

∼−→ GL2(Fℓ) acts on Ĥℓ. The special

fibre of Ĥℓ is identified, in a B×
ℓ -equivariant way, with a collection of projective lines

P1
k(ℓ) glued together according to the incidence relation given by Tℓ; in other words,

with the coequaliser of the pair of morphisms

s, t :
∐

−→
E (Tℓ)

Spec
(

k(ℓ)
)
−→ ∐

V(Tℓ)

P1
k(ℓ),

where s (resp. t) maps the point Spec
(

k(ℓ)
)

corresponding to an oriented edge e to

∞ (resp. to 0) on the copy of P1
k(ℓ) corresponding to the vertex s(e) (resp. to t(e)).

1.5.3 Special Fibre of Ci According to Kurihara [Ku, Prop. 3.2], who extended

earlier results of Mumford [Mu], each quotient Ci = Γi,+\Ĥℓ from (1.4.2.1) is an

admissible curve over Oℓ, in the terminology of [JL, Section 3]:

(1.5.3.1) Ci is a proper and flat curve over Oℓ with a smooth generic fibre.

(1.5.3.2) The special fibre Ci ⊗Oℓ
k(ℓ) is reduced; the normalisation of each of its

irreducible components is isomorphic to P1
k(ℓ); its only singular points are

ordinary double points, rational over k(ℓ).

(1.5.3.3) The completion of the local ring of Ci at each of its singular points x is

isomorphic, as an Oℓ-algebra, to Oℓ[[X,Y ]]/(XY −̟w
ℓ ), where w = w(x) ∈

{1, 2, 3, . . . }.
In addition, the combinatorics of the special fibre is described as follows.

(1.5.3.4) The set of irreducible components of Ci⊗Oℓ
k(ℓ) is naturally identified with

Γi,+\V(Tℓ).

(1.5.3.5) The set of singular points of Ci ⊗Oℓ
k(ℓ) is naturally identified with(

Γi,+\E(Tℓ)
)∗

, where the star in the superscript refers to the fact that we

remove from Γi,+\E(Tℓ) the images of those oriented edges e ∈
−→
E (Tℓ)

for which there exists γ ∈ Γi,+ such that γ(e) = ι(e). As we are go-

ing to see in 1.5.4 below, no such edges exist in our case; as a result,(
Γi,+\E(Tℓ)

)∗
= Γi,+\E(Tℓ).

(1.5.3.6) The incidence relation between the irreducible components and the singu-

lar points is inherited from Tℓ.

(1.5.3.7) If x is a singular point of Ci ⊗Oℓ
k(ℓ) represented by an oriented edge e ∈

−→
E (Tℓ), then the integer w(x) from (1.5.3.3) is equal to the order of the

stabiliser (Γi,+)e of e in Γi,+.

Kurihara rephrased (1.5.3.4–7) by saying that the dual graph G(Ci) of the special fibre

of Ci is equal to

V
(
G(Ci)

)
= Γi,+\V(Tℓ),

−→
E
(
G(Ci)

)
=

(
Γi,+\

−→
E (Tℓ)

)∗
,

and is equipped with the function

w :
−→
E
(
G(Ci)

)
−→ {1, 2, 3, . . . }

given by (1.5.3.7).
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1.5.4 Special Fibre of M ⊗Oℓ
Oℓ2 The formula (1.4.2.1) and the discussion in

the previous paragraph imply that M⊗Oℓ
Oℓ2 is an admissible curve over Oℓ2 . More-

over, the dual graph G of the special fibre M⊗Oℓ
k(ℓ2) (whose vertices correspond to

irreducible components and edges to singular points) is given by

V(G) =
∐

i

Γi\
(
V(Tℓ)× Z/2Z

)
,
−→
E (G) =

∐
i

(
Γi

∖(−→
E (Tℓ)× Z/2Z

))∗
,

where γ ∈ Γi ⊂ B× acts on Z/2Z by translation by ordℓ
(

Nrd(γ)
)

(mod 2). In adelic

terms,

V(G) = B×\
(
V(Tℓ)× Z/2Z× B̂(ℓ)×/U (ℓ)Y (ℓ)

)

= B×\
(

B×
ℓ /UℓYℓ × Z/2Z× B̂(ℓ)×/U (ℓ)Y (ℓ)

) ∼−→ (B×\B̂×/UY )× Z/2Z,

where the last bijection is given by

B×(bℓUℓYℓ, j, b(ℓ)U (ℓ)Y (ℓ)) 7→
(

B×bℓb
(ℓ)UY, j + ordℓ

(
Nrd(bℓ)

))
.

The same formula for U (ℓ) instead of U induces a bijection

∐
i

Γi\
(−→
E (Tℓ)× Z/2Z

) ∼−→ B×\
(

B×
ℓ /U (ℓ)ℓYℓ × Z/2Z× B̂(ℓ)×/U (ℓ)Y (ℓ)

)

∼−→
(

B×\B̂×/U (ℓ)Y
)
× Z/2Z.

The maps

s, t :
(

B×\B̂×/U (ℓ)Y
)
× Z/2Z −→ (B×\B̂×/UY )× Z/2Z

induced by the incidence relation on Tℓ are given by

s
(

B×bU (ℓ)Y, j
)
= (B×bUY, j), t

(
B×bU (ℓ)Y, j

)
= (B×bξℓUY, j + 1).

In particular, each quotient Γi\(Tℓ × Z/2Z) is a bipartite graph, hence

(
Γi\

(−→
E (Tℓ)× Z/2Z

))∗
= Γi\

(−→
E (Tℓ)× Z/2Z

)
,

−→
E (G)

∼−→
(

B×\B̂×/U (ℓ)Y
)
× Z/2Z.

Proposition 1.5.5

(1) M⊗Oℓ
Oℓ2 is an admissible curve over Oℓ2 .

(2) The dual graph G of the special fibre of M⊗Oℓ
Oℓ2 is bipartite, with

V(G) = (B×\B̂×/UY )× Z/2Z,
−→
E (G) =

(
B×\B̂×/U (ℓ)Y

)
× Z/2Z,

s
(

B×bU (ℓ)Y, j
)
= (B×bUY, j), t

(
B×bU (ℓ)Y, j

)
= (B×bξℓUY, j + 1),

ι
(

B×bU (ℓ)Y, j
)
=

(
B×b

(
0 1

̟ℓ 0

)

ℓ

U (ℓ)Y, j + 1

)
.
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(3) If there exists an integer N > 2 such that {v | N} ∩ Ram(B) = ∅ and ∀v | N

Uv ⊆ 1 + NR(v) for some maximal order R(v) ⊂ Bv
∼−→ M2(Fv), then the curve

M⊗Oℓ
Oℓ2 is semi-stable (⇔ the integers w attached to the singular points of M⊗Oℓ

k(ℓ2) are all equal to 1).

Proof Statements (1) and (2) follow from the discussion in 1.5.4. The assertion (3)

is a consequence of (1.5.3.7) and the following lemma.

Lemma 1.5.6 If U satisfies the assumptions of 1.5.5(3), then, for any t ∈ B̂×, the

group Γt := B× ∩ tU F̂×t−1 (⊇ F×) is equal to F×.

Proof Suppose first that γ ∈ Γ
Nrd=1
t , γ /∈ F×. In this case γ ∈ B× ∩ tU (ÔF)×t−1

is integral over OF , K := F(γ) ⊂ B is a totally imaginary quadratic extension of

F and NK/F(γ) = 1, which implies that the roots of the characteristic polynomial

X2 − Trd(γ)X + Nrd(γ) = X2 − TrK/F X + 1 are ζ and ζ−1, where ζ 6= ζ−1 is

a root of unity such that ζ + ζ−1 ∈ OF . Writing γ = tuu ′t−1 with u ∈ U and

u ′ ∈ (ÔF)×, we have ζ + ζ−1
= u ′ Trd(u), u ′2 Nrd(u) = 1 and Nrd(u) ∈ 1 + NÔF ,

which implies that, for each v | N and a suitable choice of a sign,±γ ∈ I +NM2(OF,v)

is a matrix of finite order, which implies that ±γ = I, since N > 2. This shows that

Γ
Nrd=1
t = (F×)Nrd=1

= {±1}.
If γ ∈ Γt , then Nrd(γ)γ−2

= γγ−1 ∈ Γ
Nrd=1
t = {±1} (where γ 7→ γ is the

standard involution on B). If γγ−1
= 1, then γ ∈ F×. If γγ−1

= −1, then Trd(γ) =

γ + γ = 0. However, γ = tuu ′t−1 with u ∈ U and u ′ ∈ F̂×, which implies that

Trd(γ) = u ′ Trd(u) 6= 0, since Trd(u) ∈ 2 + NÔF and N > 2. This contradiction

shows that Γt = F×, as claimed.

1.5.7 (Co)homology of G As the graph G is bipartite, it has two natural ori-

entations (by an orientation of G we mean a section of the canonical projection
−→
E (G)→

−→
E (G)/{id, ι} = E(G)). Fix one of them, say, the following one:

E(G) = B×\B̂×/U (ℓ)Y ∼−→
(

B×\B̂×/U (ℓ)Y
)
× {0}

⊂
(

B×\B̂×/U (ℓ)Y
)
× Z/2Z =

−→
E (G),

for which

s : E(G) −→ (B×\B̂×/UY )× {0}, s
(

B×bU (ℓ)Y
)
= (B×bUY, 0),

t : E(G) −→ (B×\B̂×/UY )× {1}, t
(

B×bU (ℓ)Y
)
= (B×bξℓUY, 1).

The chain and cochain complexes of G

Z[E(G)]
d∗=−s∗+t∗−−−−−−→ Z[V(G)], Z[V(G)]

d∗
=−s∗+t∗

−−−−−−→ Z[E(G)]

are then identified, respectively, with

S
(

U (ℓ)Y ; Z
) (−α∗,β∗)
−−−−−→ S(UY ; Z)⊕2, S(UY ; Z)⊕2

−α∗+β∗

−−−−−→ S
(

U (ℓ)Y ; Z
)
,

https://doi.org/10.4153/CJM-2011-077-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-077-6


606 J. Nekovář

in the notation of 1.2.1 (in particular, both maps d∗ and d∗ are T
S∪{ℓ}

(
U (ℓ)

)
-linear).

As a result,

H1(G) = Ker(d∗) = S
(

U (ℓ)Y ; Z
) ℓ-new

and

H0(G) = {(ξℓ · f , f ) | f ∈ S(UY ; Z)triv},

by Proposition 1.2.3(2). Set

Z[V(G)]0 := Ker
(

Z[V(G)] −→ H0(G)
)
= Im(d∗).

1.5.8 Scalar Products Under the assumptions of 1.5.5(3), the formulas

u : Z[E(G)]× Z[E(G)] = S
(

U (ℓ)Y ; Z
)
× S

(
U (ℓ)Y ; Z

)
−→ Z,

u( f , f ′) =
∑

e∈E(G)

f (e) f ′(e)

and

u ′ : Z[V(G)]× Z[V(G)] = S(UY ; Z)⊕2 × S(UY ; Z)⊕2 −→ Z,

u ′( f , f ′) =
∑

a∈V(G)

f (a) f ′(a)

define non-degenerate symmetric bilinear pairings satisfying

∀T ∈ Z[U (ℓ)\B̂×/U (ℓ)] u(T f , f ′) = u( f ,T∨ f ′),

∀T ∈ Z[U\B̂×/U ] u ′(T f , f ′) = u ′( f ,T∨f ′)

and

(1.5.8.1) ∀ f ∈ Z[E(G)] ∀ f ′ ∈ Z[V(G)]

u( f , s∗ f ′) = u ′(s∗ f , f ′), u( f , t∗ f ′) = u ′(t∗ f , f ′).

In particular, for each finite prime v /∈ S∪{ℓ} of F, the adjoint of T(v) (resp. of S(v))

with respect to u or u ′ is equal to T(v)∨ = S(v)−1T(v) (resp. to S(v)∨ = S(v)−1).

Proposition 1.5.9 Let A ⊂ C be a subring. Let v0 /∈ S ∪ {ℓ} be a finite prime of F

with trivial class in F×
+ \F̂×/Nrd(U ).

(1) We have
(

T(v0) − N(v0) − 1
)

S(UY ; A)⊕2 ⊆ A[V(G)]0, where A[V(G)]0 :=

Z[V(G)]0 ⊗ A.

(2) If f̃ ∈ S(UY ; A)⊕2
0 satisfies T(v0) f̃ = λ f̃ for some λ ∈ A, then f̃ ∈ A[V(G)]0.

In particular, if f̃ ∈ S(UY ; A)⊕2
0 is an eigenform for the action of T

S∪{ℓ}(U ), then

f̃ ∈ A[V(G)]0.
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Proof (1) Under the non-degenerate pairing A[V(G)] × A[V(G)] → A obtained

from u ′ by extending the scalars, the orthogonal complement of A[V(G)]0 is equal to

(
A[V(G)]0

)⊥
=

(
Im(−s∗+t∗)

)⊥
= Ker(−s∗+t∗) = {(ξℓ· f , f ) | f ∈ S(UY ; A)triv},

where the second (resp. the third) equality follows from (1.5.8.1) (resp. from

Proposition 1.2.3(2)). The elements S(v0) − 1 and T(v0) − N(v0) − 1 annihilate

S(UY ; A)triv, which implies that both S(v0)∨ − 1 = S(v0)−1 − 1 and T(v0)∨ −
N(v0) − 1 = S(v0)−1T(v0) − N(v0) − 1 (hence also T(v0) − N(v0) − 1) annihilate(

A[V(G)]/A[V(G)]0

)
⊗ Q ⊃ A[V(G)]/A[V(G)]0 (recall that A[V(G)]/A[V(G)]0 =

H0(G)⊗ A is a free A-module). It follows that

(
T(v0)− N(v0)− 1

)
S(UY ; A)⊕2

=
(

T(v0)− N(v0)− 1
)

A[V(G)] ⊆ A[V(G)]0.

(2) We know by (1) that the image of
(
λ − N(v0) − 1

)
f̃ in the free A-module

A[V(G)]/A[V(G)]0 is trivial. As λ− N(v0)− 1 ∈ A− {0} by (1.1.7.1), the image of

f̃ is trivial, too.

1.6 Bad Reduction of the Jacobian of the Shimura Curve at ℓ

Let U , S and ℓ be as in 1.2.1. Let Y = Yℓ×Y (ℓ)
= F×

ℓ ×Y (ℓ) be as in 1.4.2. In addition,

assume that U satisfies the condition from 1.5.5(3).

1.6.1 Components and Geometric Components Recall that M = MU ′Y is an

irreducible smooth projective curve over F, whose field of constants F ′ := FU ′Y ⊂
Fab satisfies

recF : F×
+ \F̂×/Nrd(U ′)Y 2 ∼−→ Gal(F ′/F).

For any field L ⊃ F, the set of irreducible (= connected) components of M⊗F L is in

bijection with Spec(F ′ ⊗F L). As Nrd(U ′)Y 2 ⊃ O×
ℓ F×2

ℓ , the completion of F ′ at any

prime above ℓ is isomorphic to Fℓ or Fℓ2 , which implies that F ′⊗F Fℓ2
∼−→ F[F ′:F]

ℓ2 . As

a result, each irreducible component of M ⊗F Fℓ2 is geometrically irreducible.

1.6.2 Jacobian The Jacobian of M

J(M) := Pic◦M/F
∼−→ ResF ′/F Pic◦M/F ′

is an abelian variety defined over F. If L ⊃ F is a field and D is a divisor on M ⊗F L

which has degree zero on each connected component of M ⊗F L, then D represents a

point cl(D) ∈ J(M)(L).

1.6.3 Actions of Hecke Correspondences For any cohomology theory H(−)

that admits trace maps for finite flat morphisms between curves we let the Hecke
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correspondence [U ′Y gU ′Y ] from (1.3.4.1–2) (g ∈ B̂ ′×) act on H(M) = H(MU ′Y )

as follows (by “Picard functoriality”):

(1.6.3.1)

H(MU ′Y )
pr ′∗

−−→ H(M(g−1U ′g∩U ′)Y )
[·g]∗

−−−→ H(M(U ′∩gU ′g−1)Y )
pr∗−−→ H(MU ′Y ).

This formula (which also applies to functors such as H(−) = Pic◦−/F = J(−) or

H(−) = Γ(−,Ω−/F)) defines a ring homomorphism

(1.6.3.2) Z[U ′Y\B̂ ′×/U ′Y ] −→ EndZ

(
H(MU ′Y )

)
.

As in 1.1.5, denote by T
′S∪{ℓ}(U ′Y ) the (commutative) subring of Z[U ′Y\B̂ ′×/U ′Y ]

generated by the double cosets [U ′Y xU ′Y ] for all x ∈ (B̂ ′S∪{ℓ})×. The isomorphism

ϕ : B̂(ℓ) ∼−→ B̂ ′(ℓ) induces a ring isomorphism

(1.6.3.3) ϕ∗ : T
S∪{ℓ}(UY )

∼−→ T
′S∪{ℓ}(U ′Y ),

ϕ∗([UY gUY ]) = [U ′Yϕ(g)U ′Y ]
(

g ∈ (B̂S∪(ℓ))×
)
.

For each v /∈ S ∪ {ℓ}, the elements

T ′(v) := ϕ∗

(
T(v)

)
, S ′(v) := ϕ∗

(
S(v)

)
∈ T

′S∪{ℓ}(U ′Y )

are independent of the choice of ϕ. Combining (1.6.3.2) with (1.6.3.3) we obtain a

ring homomorphism

(1.6.3.4) T
S∪{ℓ}(UY ) −→ EndZ

(
H(MU ′Y )

)
.

1.6.4 Néron Model Denote by J the Néron model of J(M) ⊗F Fℓ2 over Oℓ2 , by

Js = J⊗Oℓ2
k(ℓ2) its special fibre and by Φ = Js/ J◦s the étale group scheme over k(ℓ2)

of connected components of Js.

As M ⊗F Fℓ2 has a semi-stable model M ⊗Oℓ
Oℓ2 whose special fibre consists of

several copies of P1
k(ℓ2) intersecting at ordinary double points defined over k(ℓ2), the

general theory [BLRa, chapter 9] tells us that J◦s is a split torus over k(ℓ2) and Φ is

a constant group scheme. By abuse of language we identify Φ with the finite abelian

group Φ
(

k(ℓ)
)

.

1.6.5 Connected Components of the Néron Model There are two equivalent

descriptions of Φ, due to Raynaud [Ra1, Proposition 8.1.2] (see also [BLRa, Theo-

rem 1 in Sect. 9.6]) and Grothendieck [G2, Theorems 11.5 and 12.5], respectively.

They can be summed up by the following commutative diagram with exact rows and
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columns, which we have borrowed from [Ed].

(1.6.5.1) 0

��

0

��
X

��

X

i

��

Z[V(G)]

− id

��

d∗

// Z[E(G)]

d∗

��

// X∨

��

// 0

Z[V(G)]
µ0

// Z[V(G)]0

��

// Φ

��

// 0

0 0

In this diagram, the free abelian group

X := Ker(d∗) = H1(G) = S
(

U (ℓ)Y ; Z
) ℓ-new ∼−→ X∗( J◦s )

is canonically isomorphic to the character group of the torus J◦s [Ed, p. 140]. The

map

(1.6.5.2) i : X −→ X∨
= HomZ(X,Z)

is induced by the monodromy pairing

(1.6.5.3) X × X →֒ Z[E(G)]× Z[E(G)]
u
−→ Z,

where u is the scalar product from 1.5.8. The composition of µ0 with the inclusion

Z[V(G)]0 →֒ Z[V(G)] is equal to the map

µ : Z[V(G)] −→ Z[V(G)], µ(C) =
∑

C ′

(C ·C ′)C ′,

where C,C ′ ∈ V(G) are irreducible components of the special fibre of M⊗Oℓ
Oℓ2 and

(C ·C ′) ∈ Z is their intersection product on the regular scheme M⊗Oℓ
Oℓ2 .

1.6.6 Specialisation of Divisors Let K be a finite unramified extension of Fℓ2 .

Each divisor D on M ⊗F K naturally extends to a Cartier divisor D̃ on M ⊗Oℓ
OK

(write D = D1 − D2 with effective divisors Di and let D̃ := D̃1 − D̃2, where D̃i is the

closure of Di in M⊗Oℓ
OK).
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If D has degree zero on each connected component of M ⊗F K, then cl(D) ∈
J(M)(K) = J(OK) and its image in Φ is represented by

cl(D)V :=
∑

C∈V(G)

(CK · D̃)C ∈ Z[V(G)]0, CK = C ⊗Oℓ2
OK.

In the special case when D =
∑

nPP is a linear combination of K-rational points P ∈
M(K), each P̃ intersects CK for exactly one irreducible component C = C(P) ∈ V(G)

of the special fibre of M⊗Oℓ
Oℓ2 (we say that P specialises to C(P)). Consequently,

cl
(∑

nPP
)

V
=

∑
nPC(P).

1.6.7 Compatibility of Hecke Actions The recipe from [Ed, p. 140] defines, for

any k(ℓ2)-algebra A, a morphism of abelian groups Z[E(G)]⊗ A× → J◦s (A) which is

functorial in A and which sits in an exact sequence

(1.6.7.1) Z[V(G)]⊗ A×
d∗⊗id
−−−→ Z[E(G)]⊗ A× −→ J◦s (A) −→ 0.

The resulting isomorphism between H1(G) = Coker(d∗) and the group of cochar-

acters X∨
= X∗( J◦s ) = HomZ

(
X∗( J◦s ),Z

)
of the torus J◦s does not depend on the

choice of orientation of G. Moreover, for each v /∈ S ∪ {ℓ}, the action of T ′(v)

(resp. S ′(v)) on J◦s (A) given by (1.6.3.1) for H(−) = Pic◦−/F and the functorial-

ity of the Néron model is induced by the action of T(v) (resp. S(v)) on Z[E(G)] =

S
(

U (ℓ)Y,Z
)

. In other words, (1.6.7.1) becomes an exact sequence of T
S∪{ℓ}(UY )-

modules (with the action on the third term via (1.6.3.4)).

We equip X = H1(G) (resp. X∨
= H1(G)) with the structure of a T

S∪{ℓ}(UY )-

module induced by the inclusion H1(G) ⊂ Z[E(G)] = S
(

U (ℓ)Y,Z
)

(resp. by the

surjection Z[E(G)] = S
(

U (ℓ)Y,Z
)
→ H1(G)). The map (1.6.5.2) induces a mor-

phism of T
S∪{ℓ}(UY )-modules

i : hX −→ X∨

and Φ = Coker(i) inherits a T
S∪{ℓ}(UY )-module structure as a quotient of X∨.

For any commutative ring A ⊃ Z of characteristic zero and 0 6= m ∈ A there is an

isomorphism of T
S∪{ℓ}(UY )⊗ A-modules (which depends on m)

(Φ⊗ A)[m]
∼−→ Ker(hX ⊗ A/mA

i⊗id
−−→ X∨ ⊗ A/mA)

arising from snake lemma.

1.6.8 The Eichler–Shimura Relation For each integer m ≥ 1, the canonical

isomorphism

(1.6.8.1) H1
et(M ⊗F F, µm)

∼−→ J[m]
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is T
S∪{ℓ}(UY )-equivariant. The Eichler–Shimura congruence relation [C2, Sec-

tion 10] states that, for every prime v /∈ S ∪ {ℓ} of F, the special fibre of (the flat

extension to a proper smooth model of M over OF,v) the Hecke correspondence T(v)

is equal to

(1.6.8.2) T(v) (mod v) = ΓFrv ◦[·̟v] + t
ΓFrv

= ΓFrv
◦ S(v) + t

ΓFrv
.

The proper and smooth base change theorems for étale cohomology imply that, if v

does not divide m, the GF-module H1
et(M ⊗F F,Z/mZ) is unramified. Letting both

sides of (1.6.8.2) act on H1
et(M ⊗F F,Z/mZ) contravariantly (as in (1.6.3.1)), we ob-

tain the following relation:

(1.6.8.3) Frgeom(v)2 − T(v)S(v)−1Frgeom(v) + N(v)S(v)−1
= 0

∈ EndZ

(
H1

et(M ⊗F F,Z/mZ)
)
.

Applying the Tate twist and the involution t 7→ t∨ yields, respectively,

Frgeom(v)2 − T(v)S(v)−1N(v)−1Frgeom(v) + N(v)−1S(v)−1
= 0 ∈ EndZ( J[m])

and

(1.6.8.4) Frgeom(v)2 − T(v)N(v)−1 Frgeom(v) + S(v)N(v)−1
= 0

∈ EndZ(h J[m]).

1.6.9 Erratum for [N1] The congruence relation (1.6.8.2) (which can be

checked, for example, on the classical modular curve Y1(N) parameterising ellip-

tic curves E equipped with a level structure µN →֒ E) was stated incorrectly in

[N1, (1.14.1)]. As a result, the decomposition of H1
et(M ⊗F F,Qℓ) in [N1, Proposi-

tion 1.18(ii)] should involve the Galois representations Vℓ(π̃) = Vℓ(π)⊗ ω−1
π rather

than Vℓ(π).

1.6.10 Self-duality of Φ The monodromy pairing (1.6.5.3) gives rise to a non-

degenerate symmetric pairing [G2, (11.4.1)]

( · , · ) : Φ× Φ −→ Q/Z,

defined as follows. According to Grothendieck’s description,

Φ = Coker
(

X
i
−→ X∨

= HomZ(X,Z)
)
,

(
i(x)

)
(y) = u(x, y).

Fix an integer m ≥ 1 such that mΦ = 0. Given x∨, y∨ ∈ X∨ there is a unique x ∈ X

such that i(x) = mx∨; the value

(1.6.10.1) ([x∨], [y∨]) :=
1

m
y∨(x) + Z =

1

m
u(x, ỹ∨) + Z ∈ 1

m
Z/Z ⊂ Q/Z
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is independent of the choice of m and depends only on the respective classes

[x∨], [y∨] ∈ Φ of x∨ and y∨. Above, ỹ∨ ∈ Z[E(G)] is any representative of

y∨ ∈ X∨ ∈ Coker(d∗).

If we do not assume that mΦ = 0, the same formula defines a non-degenerate

pairing

( · , · )m : Φ[m]× Φ/mΦ −→ 1

m
Z/Z

and, for any commutative ring A ⊃ Z of characteristic zero and 0 6= m ∈ A, a pairing

( · , · )m : (Φ⊗ A)[m]× (Φ/mΦ)⊗ A −→ 1

m
A/A

satisfying

∀t ∈ T
S∪{ℓ}(UY )

(
t(x), y

)
m
=

(
x, t∨(y)

)
m
.

Proposition 1.6.11 Let A ⊃ Z be a commutative ring and m ≥ 1 an integer. Assume

that P,Q ∈ A[V(G)]0 and that mP = µ0(P ′) for some P ′ ∈ A[V(G)]. If we denote by

[P] and [Q] the respective images of P and Q in (Φ⊗ A)[m] and (Φ/mΦ)⊗ A, then

([P], [Q])m =
1

m
u ′(P ′,Q) + A ∈ 1

m
A/A.

Proof This follows easily from the definitions and the diagram (1.6.5.1): fix P̃ ∈
A[E(G)] such that P = d∗P̃; then [P] = [x∨], where x∨ is the image of P̃ in X∨ ⊗ A.

As d∗(mP̃ + d∗P ′) = mP−µ0(P ′) = 0, the element x := mP̃ + d∗P ′ lies in X⊗A and

satisfies i(x) = mx∨. Similarly, if we fix Q̃ ∈ A[E(G)] such that Q = d∗Q̃ and denote

by y∨ its image in Φ⊗ A, then we can take ỹ∨ = Q̃ in (1.6.10.1), hence

([P], [Q])m =
1

m
y∨(x) + A =

1

m
u(mP̃ + d∗P ′, Q̃) + A

= u(d∗P ′, Q̃) + A = u ′(P ′, d∗Q̃) + A = u ′(P ′,Q) + A.

1.7 ℓ-adic Uniformisation of the Jacobian

The assumptions of Section 1.6 are in force.

1.7.1 ℓ-adic Uniformisation As J has a split totally toric reduction over

Fℓ2 and a canonical principal polarisation, there is a commutative diagram of

T
S∪{ℓ}(UY )[GFℓ2

]-modules with exact rows

(1.7.1.1) 0 // hX // X∨ ⊗ F
×
ℓ

ordℓ

��

// J(Fℓ) // 0

0 // hX
i
// X∨ ⊗Q
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in which GFℓ2
= Gal(Fℓ/Fℓ2 ) acts trivially on X and X∨. This yields, for ev-

ery integer m ≥ 1, an exact sequence of T
S∪{ℓ}(UY )[GFℓ2

]-modules (in which

J[m] := J(Fℓ)[m])

(1.7.1.2) 0 −→ X∨ ⊗ µm −→ J[m] −→ hX ⊗ Z/mZ −→ 0,

which is self-dual (up to a sign and the involution t 7→ t∨) with respect to the Weil

pairing

(1.7.1.3) J[m]× J[m] −→ µm

corresponding to the canonical principal polarisation of J.

1.7.2 Connected Components Let K be a finite unramified extension of Fℓ2 .

The canonical map J(K) = J(OK)→ Φ sits in a commutative diagram with exact

rows

0 // hX // X∨ ⊗K×

ordℓ

��

// J(K)

��

// 0

0 // hX
i

// X∨ // Φ // 0,

whose first row is obtained from (1.7.1.1) by taking invariants under Gal(Fℓ/K).

1.7.3 Kummer Maps Let I = Gal(Fℓ/Fur
ℓ ) be the common inertia group of Fℓ2

and the field K from 1.7.2. Fix an integer m ≥ 1 prime to N(ℓ); denote by

∂ : J(K)⊗ Z/mZ →֒ H1(K, J[m])

the Kummer map arising from the standard descent sequence

0 −→ J(K)[m] −→ J(K)
m
−→ J(K) −→ H1(K, J[m]) −→ H1(K, J) −→ · · ·

and by ∂ram (“the ramified part of ∂”) the composite map

∂ram : J(K)⊗ Z/mZ −→ H1(K, J[m]) −→ H1(I, J[m]).

The key point of the construction of Bertolini and Darmon [BD2] is the fact that,

unlike in the case of good reduction, the map ∂ram can be far from being zero.

The corresponding Kummer maps for the torus X∨ ⊗ Gm over K and Fur
ℓ are

isomorphisms related by a commutative diagram

X∨ ⊗K× ⊗ Z/mZ

ordℓ

��

∼
// H1(K,X∨ ⊗ µm)

��

X∨ ⊗ Z/mZ
∼

// H1(I,X∨ ⊗ µm).
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The three Kummer maps can be combined into the following commutative diagram

whose first two rows are exact.

hX ⊗ Z/mZ // X∨ ⊗K× ⊗ Z/mZ // J(K)⊗ Z/mZ //

∂

��

0

hX ⊗ Z/mZ

i⊗id

��

// H1(K,X∨ ⊗ µm)

��

// H1(K, J[m])

��

X∨ ⊗ Z/mZ H1(I,X∨ ⊗ µm) // H1(I, J[m]).

This implies that the map ∂ram factors as

J(K)⊗ Z/mZ −→ Φ/mΦ = Coker(X/mX
i⊗id
−−→ X∨/mX∨) −→ H1(I, J[m]).

1.7.4 Unramified Cohomology The cohomology sequence of (1.7.1.2) over Fur
ℓ

0 −→ X∨ ⊗ µm −→ J[m]I −→ hX ⊗ Z/mZ
i⊗id
−−→ H1(I,X∨ ⊗ µm) = X∨/mX∨

yields

0 −→ X∨ ⊗ µm −→ J[m]I −→ Φ[m] −→ 0,

which in turn implies another exact sequence

H1
ur(K,X

∨ ⊗ µm) −→ H1
ur(K, J[m]) −→ H1

ur(K,Φ[m]) −→ 0.

Denote by r the composite surjection

r : H1
ur(K, J[m]) −→ H1

ur(K,Φ[m]) = Hom
(

Gal(Fur
ℓ /K),Φ[m]

) ∼−→ Φ[m],

where the last isomorphism is the evaluation map at the geometric Frobenius over K.

According to local duality, the cup product

∪ : H1(K, J[m])×H1(K, J[m]) −→ H2(K, µm)
∼−→ Z/mZ

induced by the Weil pairing (1.7.1.3) gives rise to a perfect pairing

(1.7.4.1) ∪ : H1
ur(K, J[m])× Im

(
H1(K, J[m]) −→ H1(I, J[m])

)
−→ Z/mZ.

Proposition 1.7.5 (Explicit Reciprocity Law) Let K be a finite unramified extension

of Fℓ2 and m ≥ 1 an integer prime to N(ℓ). If c ∈ H1
ur(K, J[m]) and R ∈ J(K), then

the cup product (1.7.4.1) satisfies

c ∪ ∂ram(R) = ±m
(

r(c), the image of R in Φ/mΦ
)

m
.

Proof This follows from the definitions and [Ru, Lemma 1.4.7(ii)].
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1.8 CM Points (Unramified at ℓ)

The assumptions of Section 1.6 are in force.

1.8.1 Embeddings Let K be a totally imaginary quadratic extension of F in which

none of the primes from Ram(B) splits. Under this assumption there exists an F-

embedding t : K →֒ B; fix such a t . It induces embeddings tv : Kv →֒ Bv and t̂ : K̂ →֒
B̂ (for each prime v of F we use the slightly ambiguous notation Kv := K ⊗F Fv and

OK,v := OK ⊗OF
OF,v).

Assume, in addition, that the prime ℓ satisfies the following conditions.

(1.8.1.1) ℓ is inert in K/F; denote by λ the unique prime of K above ℓ.
(1.8.1.2) t−1

ℓ (Uℓ) = O×
K,ℓ.

The existence of t together with (1.8.1.1) imply that there exists an F-embedding

t ′ : K →֒ B ′; any such embedding automatically satisfies the following analogue of

(1.8.1.2): t ′−1
ℓ (OB ′

ℓ
) = OK,ℓ (= OK,λ).

According to the Skolem–Noether theorem, two Fv-embeddings Kv →֒ B ′
v are

conjugate by an element of B ′×
v . This implies that, for fixed t and t ′, after replacing

ϕ : B̂(ℓ) ∼−→ B̂ ′(ℓ) by a conjugate isomorphism we can and will assume that ϕ, t and

t ′ are compatible outside ℓ in the sense that the composite map

K̂(ℓ)
t(ℓ)

−→ B̂(ℓ)
ϕ
−→ B̂ ′(ℓ)

is equal to t ′(ℓ).

1.8.2 CM Points in the Complex Uniformisation There are exactly two points

of C−R that are fixed under the action of tτ1
(K×) ⊂ tτ1

(K×
τ1

) ⊂ B×
τ1

∼−→ GL2(R); fix

one of them and denote it by z ′.

The set of CM points by K unramified at ℓ on the curve M = MU ′Y is defined as

CM(M,K)ℓ−ur := {[z ′, b ′]U ′Y | b ′ ∈ B̂ ′×, b ′
ℓ = 1} ⊂ (M ⊗F,τ1

C)(C).

Shimura’s reciprocity law states that

CM(M,K)ℓ−ur ⊂ M(Kab)

and that Gab
K acts on this set as follows:

∀a ∈ K̂× recK (a)[z ′, b ′]U ′Y = [z ′, t̂ ′(a)b ′]U ′Y

(in order to make sense of this statement one must appropriately choose an embed-

ding K →֒ C extending τ1 : F →֒ R; see [Mi3, II.5]). This implies that a CM point

x = [z ′, b ′]U ′Y ∈ CM(M,K)ℓ−ur is defined over a finite abelian extension K(x) of K

satisfying

recK : Gal(K(x)/K)
∼−→ K×\K̂×/t̂ ′−1(b ′U ′Y b ′−1).

In particular, λ splits completely in K(x)/K, since t ′ℓ (K×
ℓ ) = t ′ℓ (O×

K,ℓF
×
ℓ ) ⊂ U ′

ℓYℓ =

b ′
ℓU

′
ℓYℓb

′−1
ℓ .
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1.8.3 CM Points in the ℓ-adic Uniformisation Fix one of the two Fℓ-

embeddings Kℓ →֒ Fur
ℓ (i.e., fix an isomorphism Kℓ

∼−→ Fℓ2 over Fℓ). Under the

ℓ-adic uniformisation 1.4.2 of M, the set CM(M,K)ℓ−ur corresponds to

CM(M,K)ℓ−ur = {[z, b]UY | b ∈ B̂(ℓ)×} ⊂ M(Kℓ),

where z is one of the two fixed points of tℓ(K×) ⊂ tℓ(K×
ℓ ) ⊂ GL2(Fℓ) acting on

P1(Kℓ) − P1(Fℓ) (z is determined by the choice of Kℓ →֒ Fur
ℓ ). Moreover, the action

of Gab
K is given by the formula

∀a ∈ K̂× recK (a)[z, b]UY = [z, t̂ (ℓ)(a(ℓ))b]UY ,

where a(ℓ) denotes the projection of a to K̂(ℓ)×.

2 Proof of Theorem A and Its Corollaries

From now until the end of Section 2.9 we assume that f ∈ S2(n, ω), χ : A×
K /K× →

C× (χ|
A
×
F
· ω = 1) and V = Vp( f )(1) are as in Theorem A. In particular,

L( fK , χ, 1) 6= 0 and there exists gp ∈ GF satisfying (A1)–(A3). In addition, if f

has CM by a totally imaginary quadratic extension K( f ) of F, we assume in 2.9 that

K( f ) 6⊂ KχFω .

2.1 Local Linear Forms and Transfer to a Definite Quaternion Algebra

We begin by recalling results of Tunnell, H. Saito and D. Prasad on local invariant

linear forms.

Proposition 2.1.1 ([Tu], [Sa]) Let v be a finite prime of F, let D be a quaternion

algebra over Fv, let πD be an irreducible smooth complex representation of D× (of infinite

dimension if D = M2(Fv)) with central character ωD : F×
v → C×. Let ϕ : K×

v → C×

be a smooth character satisfying ϕ|F×
v
· ωD = 1.

(1) If there exists an Fv-embedding Kv →֒ D (which we fix), then

dimC HomK×
v

(πD ⊗ ϕ,C) =

{
1, ε(πD × ϕ, 1

2
) = invv(D)(ηvωD)(−1)

0, ε(πD × ϕ, 1
2
) = − invv(D)(ηvωD)(−1).

(2) If D = M2(Fv) and πD is a principal series representation, then HomK×
v

(πD ⊗
ϕ,C) 6= 0.

(3) If there is no Fv-embedding Kv →֒ D ( ⇐⇒ D 6= M2(Fv) and v splits in K/F),

then ε(πD × ϕ, 1
2
) = ωD(−1).

Proposition 2.1.2 ([Pr, Theorem 4]) Assume that, in the situation of Proposition

2.1.1, ϕ = 1. Denote by Nv the normaliser of K×
v in D×. If HomK×

v
(πD,C) 6= 0,

then the non-trivial element of Nv/K×
v

∼−→ {±1} acts on HomK×
v

(πD,C) by multipli-

cation by invv(D)ε(πD,
1
2
).
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2.1.3 The archimedean factors ΓC(s + 1/2) of L
(
π( f ) × χ, s

)
have no pole (and

no zero) at the central point s = 1/2. The assumption L( fK , χ, 1) 6= 0 is, therefore,

equivalent to L
(
π( f )× χ, 1

2

)
6= 0. The functional equation (0.5.1) implies that

(2.1.3.1) ε
(
π( f )× χ, 1

2

)
=

∏
v

ε
(
π( f )v × χv,

1
2

)
= 1.

Set

SB =
{

v a prime of F | ε
(
π( f )v × χv,

1
2

)
6= (ηvωv)(−1)

}
,

where ωv : F×
v → C× and χv : K×

v = (K⊗F Fv)× → C× denote the local components

of ω and χ, respectively.

Proposition 2.1.4

(1) SB is a finite set of even cardinality containing S∞. If v ∈ SB − S∞, then v does not

split in K/F and π( f )v is not a principal series representation.

(2) Denote by B the unique quaternion algebra over F such that Ram(B) = SB. The

algebra is totally definite and there exists an F-embedding t : K →֒ B (which we

fix).

(3) There exists a unique irreducible automorphic representation π of B×
A which corre-

sponds to π( f ) via the Jacquet–Langlands correspondence. The central character of

π is equal to ω and the archimedean component of π is trivial: π∞ = 1.

(4) ∀v ∤∞ dimC HomK×
v

(πv ⊗ χv,C) = 1.

Proof The cardinality of SB is even, by (2.1.3.1) and the product formula

∏
v

(ηvωv)(−1) = 1.

Each v ∈ S∞ belongs to SB, since ε
(
π( f )v×χv,

1
2

)
= ωv(−1) = 1 and ηv(−1) = −1.

The remaining statements follow from Proposition 2.1.1 and basic properties of the

Jacquet–Langlands correspondence.

2.1.5 As π∞ = 1, we can and will consider π as a representation of B̂×
= B×

A /(B⊗
R)×. It occurs with multiplicity 1 as a subrepresentation of S =

⋃
U S(U ; C) and

the embedding π →֒ S is unique up to a scalar multiple. Moreover, the generalised

Ramanujan conjecture [Bl] for f implies, as in 1.1.7, that the image of π is contained

in S0 =
⋃

U S(U ; C)0.

2.2 Global Linear Forms and Global Test Vectors

The fixed embedding t : K →֒ B (which is unique up to conjugation by an element of

B×) induces local embeddings tv : Kv →֒ Bv and an adelic embedding t̂ : K̂ →֒ B̂.

2.2.1 The property 2.1.4(4) and the fact that, for all but finitely many v, the image

of a spherical vector in πv by a non-trivial element of HomK×
v

(πv⊗χv,C) is non-zero,

imply that

dimC HomK̂×(π ⊗ χ,C) = 1.
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2.2.2 A suitably regularised integral

fB 7→ ℓχ( fB) :=

∫

K̂×/F̂×K×

χ(x) fB

(
t̂(x)

)
dx ( fB ∈ π ⊂ S0)

(for a fixed Haar measure dx on K̂×) defines an element ℓχ ∈ HomK̂×(π ⊗ χ,C).

According to a fundamental result of Waldspurger [W2, Theorem 2], our assumption

about the non-vanishing of L
(
π( f )× χ, 1

2

)
= L(π × χ, 1

2
) is equivalent to ℓχ 6= 0.

In concrete terms, there exist an open compact subgroup U ⊂ B̂× (sufficiently

small in the sense that χ
(

t̂−1(U )
)
= 1) and a function fB ∈ πU ⊂ S(U ; C)0 satisfy-

ing

Lχ( fB) :=
∑

K̂×/F̂×K× t̂−1(U )

χ(x) fB

(
t̂(x)

)
6= 0 ∈ C

( fB is a “test vector” for the global linear form ℓχ).

2.2.3 Note that π has a model over L in the sense that

πU0 =
(
πU0 ∩ S(U0; L)

)
⊗L C,

for any open compact subgroup U0 ⊂ B̂×. Indeed, the multiplicity one theorem

for automorphic forms on B×
A implies that πU0 coincides with the space of complex-

valued functions f0 on the finite set B×\B̂×/U0 which satisfy a system of linear equa-

tions with coefficients in L

T(v) f0 = λ f (v) f0,

for v belonging to a sufficiently large finite set of primes of F.

2.2.4 Combining 2.2.2 with 2.2.3 we deduce that there exists fB ∈ S(U ; L)0 ∩ π
satisfying Lχ( fB) 6= 0. After replacing fB by a suitable scalar multiple, we can assume

that

(2.2.4.1) fB ∈ S(U ; OL)0 ∩ π, χ
(

t̂−1(U )
)
= 1, Lχ( fB) ∈ OL − {0}.

We define

(2.2.4.2) C1 = C1(p) := ordp
(
Lχ( fB)

)
≥ 0.

2.2.5 We fix U and fB satisfying (2.2.4.1). We also fix a finite set S as in 1.1.5 and a

prime v0 /∈ S of F which has trivial class in F×
+ \F̂×/Nrd(U ) and for whichω(v0) = 1.

Furthermore, we set Y := Ker(ω : F̂× → C×).
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2.2.6 By definition of fB, the spherical Hecke algebra T
S(U ) acts on fB by the char-

acter

λB : T
S(U ) −→ OL, λB

(
T(v)

)
= λ f (v), λB

(
S(v)

)
= ω(v) (v /∈ S).

Denote by hλB the ring homomorphism

hλB : T
S(U )

∨
−→ T

S(U )
λB−→ OL.

For any OL[T
S(U )]-module N we set

N(λB) := {n ∈ N | ∀t ∈ T
S(U ) t(n) = λB(t)n} = N[Ker(λB)]

N(λB) := N ⊗TS(U ),λB
OL = N/Ker(λB)N

(and similarly for hλB instead of λB).

2.3 Choosing a Kolyvagin Prime ℓ

Denote by e(p) := ordp(p) the absolute ramification index of Lp and fix a GF-stable

OL,p-lattice T ⊂ V . For a suitable scalar multiple of the pairing (0.7.1) (which we fix)

the lattice T will be self-dual in the sense that (0.7.1) will induce an isomorphism of

OL,p[GF]-modules T∗(1) := HomOL,p
(T,OL,p)(1)

∼−→ T ⊗ ω−1.

2.3.1 The assumptions (A1)–(A3) tell us that there exists g = gp ∈ GFω , g|K 6= id,

which acts on T (in a suitable OL,p-basis e1, e2, which we fix) by a matrix
(
ε 0
0 ug

)
,

where ε = ±1 and ug ∈ O×
L,p, u2

g 6= 1. Set

C2 = C2(p) := ordp(u2
g − 1).

It follows from Appendix B.5.2 and B.5.5(7) (resp. B.6.5(5) and B.6.5(7)) in the case

when f does not have (resp. has) complex multiplication that for all but finitely many

p satisfying (A1)–(A3) one can choose gp in such a way that C2(p) = 0.

2.3.2 Fix a large integer n≫ 0 and set

F(T/pnT) = F
Ker(GF→Aut(T/pnT))

.

Using the basis e1, e2 of T from 2.3.1 we can consider the Galois group

Gal
(

F(T/pnT)/F
)

as a subgroup of AutOL,p
(T/pnT)

∼−→ GL2(OL/p
nOL).

Let ℓ be a prime of F satisfying the following properties.

(2.3.2.1) ℓ /∈ S ∪ {v0};
(2.3.2.2) ℓ does not divide p;

(2.3.2.3) ℓ is unramified in Kχ/F;
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(2.3.2.4) t−1
ℓ (Uℓ) = O×

K,ℓ;

(2.3.2.5) Frgeom(ℓ) with respect to the extension KFωF(T/pnT)/F is equal to the con-

jugacy class of the restriction of g (this makes sense, since ℓ ∤ n by (2.3.2.1),

hence is unramified in this extension, by (2.3.2.2–3)).

The set of ℓ satisfying (2.3.2.1–5) has positive density.

Proposition 2.3.3 The prime ℓ and the Hecke eigenvalue aℓ := λ f (ℓ) of T(ℓ) acting

on f have the following properties.

ω(ℓ) = 1, ℓ is inert in K/F, N(ℓ)−1 − εug ∈ pnOL,p,

N(ℓ)−1aℓ − (ε + ug) ∈ pnOL,p, N(ℓ) + 1− εaℓ ∈ pnOL,p,

ordp
(

N(ℓ)2 − 1
)
= ordp(u2

g − 1) = C2.

Proof As g acts trivially (resp. non-trivially) on Fω (resp. on K), ω(ℓ) = 1 (resp. ℓ is

inert in K/F). The remaining properties follow from the fact that

1− aℓN(ℓ)−1X + ω(ℓ)N(ℓ)−1X2
= det(1− Frgeom(ℓ)X | V )

≡ 1− (ε + ug)X + εugX2 (mod pnOL,p).

Definition 2.3.4 Denote by n ′ ≥ n the integer

n ′ := ordp
(

N(ℓ) + 1− εaℓ
)

(note that N(ℓ) + 1± aℓ 6= 0, by the generalised Ramanujan conjecture [Bl]).

2.4 Variations on a Theme of Boston–Lenstra–Ribet

In this section we prove a weak version of the results of [BLRi] for slightly more

general coefficient rings.

Proposition 2.4.1 Let A be a quotient of a discrete valuation ring by a non-zero ideal,

M a free A-module of finite rank r ≥ 1, ρ ′ : R → EndA(M) a morphism of A-algebras

and I0, I1 ⊂ A ideals such that I0 · Ker(ρ ′) = 0 and I1 · Coker(ρ ′) = 0. Then, for

each left R-module N and an element x ∈ N there exists j ∈ HomR(N,M) such that

I0I2
1 AnnA

(
u(x)

)
⊆ AnnA(x).

Proof After replacing R (resp. N) by R/Ker(ρ ′) (resp. N/Ker(ρ ′)N) and x by its

image in N/Ker(ρ ′)N we can assume that I0 = 0. In other words, there is an exact

sequence of A-modules

0 −→ R −→ EndA(M) −→ C −→ 0, I1C = 0.

The map

λ : EndA(M) −→ HomA

(
EndA(M),A

)
,

(
λ(X)

)
(Y ) = Tr(Y X)
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is an isomorphism of left EndA(M)-modules, the module structure on the RHS being

given by (Z f )(Y ) = f (Y Z). Its composition with the restriction map to R gives rise

to a morphism of left R-modules

λ ′ : M⊕r
= EndA(M)

λ
−→ HomA

(
EndA(M),A

)
−→ HomA(R,A)

whose kernel and cokernel is killed by I1. It follows that the induced morphism of

A-modules

λ ′
∗ : HomR(N,M⊕r) −→ HomR

(
N,HomA(R,A)

) ∼−→ HomA(N,A)

satisfies I2
1 · Coker(λ ′

∗) = 0. Fix j ′ ∈ HomA(N,A) such that AnnA

(
j ′(x)

)
=

AnnA(x); as I1 = tmA (where t ∈ A is a generator of the maximal ideal of A), there

exist ji ∈ HomR(N,M) such that t2m j ′ = λ ′( j1, . . . , jr). This implies that

r⋂
i=1

AnnA

(
ji(x)

)
⊆ AnnA

(
t2m j ′(x)

)
= AnnA(t2mx);

thus AnnA

(
ji(x)

)
⊆ AnnA(t2mx) for some i = 1, . . . , r, as claimed.

2.4.2 Let A be a commutative ring, M a free A-module of rank 2, G a group and

ρ : G → AutA(M) (
∼−→ GL2(A)) a group homomorphism. Denote by J ⊂ A[G] the

bilateral ideal generated by the elements g2 − Tr
(
ρ(g)

)
g + det

(
ρ(g)

)
(for all g ∈ G)

and set R = A[G]/ J. The Cayley–Hamilton theorem implies that the morphism

of A-algebras A[G] → EndA(M) (
∼−→ M2(A)) induced by ρ — which will still be

denoted by ρ — factors as

ρ : A[G] −→ R
ρ ′

−→ EndA(M).

Proposition 2.4.3 If, under the assumptions of 2.4.2, I ⊂ A is an ideal such that

Im(ρ) ⊇ I · EndA(M), then I4 · Ker(ρ ′) = 0.

Proof This statement is proved in [BLRi, Proposition 2] in the case when A = I is

a field. In general, the arguments in the proof of [loc. cit.] show that the annihilator

AnnR(x) = {r ∈ R | rx = 0} of each element x ∈ Ker(ρ ′) is a bilateral ideal of R

containing {yz − zy | y, z ∈ R}. It follows that ρ ′
(

AnnR(x)
)

is a bilateral ideal of

Im(ρ ′) = Im(ρ) containing {y ′z ′ − z ′y ′ | y ′, z ′ ∈ I · EndA(M)}, which implies

that ρ ′
(

AnnR(x)
)

contains {t ∈ I2 · EndA(M) | Tr(t) = 0}. In particular, for any

a, b ∈ I2 there is w ∈ R such that wx = 0 and ρ ′(w) =
(

0 a
b 0

)
. As w2−Tr

(
ρ(w)

)
w +

det
(
ρ ′(w)

)
= 0 ∈ R by [BLRi, Proposition 1], we have abx = − det

(
ρ ′(w)

)
x = 0;

thus I4x = 0.

Corollary 2.4.4 In the situation of Proposition 2.4.3, assume that A = Ã/tnÃ and

M = M̃/tnM̃, where Ã is a discrete valuation ring with a uniformiser t, M̃ is a free

Ã-module of rank 2 and ρ̃ : G→ AutÃ(M̃) a group homomorphism lifting ρ.
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(1) If M̃ ⊗Ã Frac(Ã) is an absolutely irreducible representation of G with coefficients in

the fraction field Frac(Ã) of Ã, then there exists an integer c ≥ 0 such that Im(ρ̃) ⊇
t c EndÃ(M̃) (hence Im(ρ) ⊇ t c EndA(M)).

(2) t4c Ker(ρ ′) = 0.

(3) If the residual representation M/tM of G is an absolutely irreducible representation

of G with coefficients in A/tA, then Im(ρ) = EndA(M) and Ker(ρ ′) = 0.

Proof (1) The existence of c is equivalent to Im(ρ̃) ⊗Ã Frac(Ã) = EndÃ(M̃) ⊗Ã

Frac(Ã), which is, in turn, equivalent to the absolute irreducibility of M̃ ⊗Ã Frac(Ã),

by a theorem of Burnside [CR, Theorem 3.32] (and Schur’s lemma [CR, Proposi-

tion 3.33]).

(2) By (1), Proposition 2.4.3 applies with I = t cA.

(3) By the argument used in the proof of (1), the absolute irreducibility of

M/tM = M̃/tM̃ is equivalent to Im(ρ̃) + t EndÃ(M̃) = EndÃ(M̃), which implies

that Im(ρ̃) = EndÃ(M̃), by Nakayama’s lemma; thus c = 0.

Proposition 2.4.5 Assume that, in the situation of 2.4.2, A is a quotient of a discrete

valuation ring by a non-zero ideal and that we are given h ∈ G, a ∈ A and a basis e1, e2

of M such that ρ(h)e1 = e1 and ρ(h)e2 = ae2. If N is a left R-module and N0 ⊂ N

an A-submodule such that h(n0) = an0 for each n0 ∈ N0, then the cokernel of the

restriction map

HomR(N,M) −→ HomA[h](N0,M)

is killed by (a− 1)2I12.

Proof Write I = bA for some b ∈ A. We must show that, for each j0 ∈
HomA[h](N0,M), there exists j ∈ HomR(N,M) such that j|N0

= (a − 1)2b12 j0.

Set

N1 := Ker( j0) ⊂ N0 ⊂ Nh=a.

As j0 injects N0/N1 into Mh=a and (a − 1)Mh=a
= A(a − 1)e2 is a cyclic A-

module, (a − 1)N0/N1 and its quotients, such as (a − 1)
(

N0/(N0 ∩ RN1)
) ∼−→

(a− 1)
(

(N0 + RN1)/RN1

)
, are also cyclic.

Lemma 2.4.6 below implies that the map (a − 1)b6 j0 : N0 → (a − 1)b6Mh=a
=

A(a − 1)b6e2 factors through j1 ∈ HomA

(
N0/(N0 ∩ RN1),A(a − 1)b6e2

)
. Fix an

element x ∈ N ′ := (N0 + RN1)/RN1 such that (a − 1)x is a generator of the cyclic

A-module (a − 1)N ′. Applying Proposition 2.4.1 to the R-module N/RN1 (with

I1 = bA by definition and I0 = b4A by Proposition 2.4.2), we obtain a morphism

j2 ∈ HomR(N/RN1,M) such that b6 AnnA

(
j2(x)

)
⊆ AnnA(x); thus

(a− 1)b6 AnnA

(
(a− 1) j2(x)

)
⊆ b6 AnnA

(
j2(x)

)
⊆ AnnA(x) ⊆ AnnA

(
j1(x)

)
.

As both j1(x) and (a − 1) j2(x) belong to the cyclic A-module A(a − 1)b6e2, there

exists a ′ ∈ A such that (a − 1)b6 j1(x) = a ′(a − 1) j2(x). This implies, by definition

of x, that the map j := a ′(a− 1) j2 ∈ HomR(N,M) satisfies j|RN1
= 0 and

j|N0
= (a− 1)b6 j1 = (a− 1)2b12 j0,

as required.
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Lemma 2.4.6 (a− 1)b6(N0 ∩ RN1) = (a− 1)b6N1.

Proof It is enough to prove the non-trivial inclusion (a − 1)b6(N0 ∩ RN1) ⊆
(a− 1)b6N1. If

n0 =

k∑

i=1

rini ∈ N0 ∩ RN1 (∀i ≥ 1 ri ∈ R, ni ∈ N1),

then

∀ j ′0 ∈ HomR(RN0,M)∀i ≥ 0

(a− 1) j ′0(ni) = (a− 1)aie2 ∈ (a− 1)Mh=a
= A(a− 1)e2 (ai ∈ A).

Writing rie2 = λie1 + µie2, we obtain

0 = (a− 1) j ′0

(
n0 −

k∑

i=1

rini

)
= (a− 1)

(
a0e2 −

k∑

i=1

ai(λie1 + µie2)
)
,

hence

0 = (a− 1)
(

a0e2 −
k∑

i=1

aiµie2

)
.

This implies that the element n ′ := n0 −
∑k

i=1 µini ∈ N0 satisfies

∀ j ′0 ∈ HomR(RN0,M) (a− 1) j ′0(n ′) = 0.

Applying Proposition 2.4.1 to the R-module RN0 and n ′ ∈ RN0 (again with

I1 = bA and I0 = b4A) we deduce that (a − 1)b6n ′
= 0 and (a − 1)b6n0 =

(a− 1)b6
∑k

i=1 µini ∈ (a− 1)b6N1, which finishes the proof.

2.5 Weak Level Raising Modulo pn

In this section we are going to work with the curve MU ′Y and its Jacobian J =

J(MU ′Y ) attached to U and Y = Ker(ω) from 2.2.5 and ℓ from 2.3.2 (note that

Y = F×
ℓ × Y (ℓ), since ω(ℓ) = 1).

2.5.1 The element

(2.5.1.1) f̃ :=

(
fB

ε fB

)
∈
(

S(UY ; OL)⊕2
0

) (λB) ⊂ OL,p[V(G)](λB)
0

(see Proposition 1.5.9(2)) satisfies

(µ0 ⊗ id)( f̃ ) =

(
−N(ℓ)− 1 T(ℓ)

T(ℓ) −N(ℓ)− 1

)(
fB

ε fB

)
=

(
εaℓ − N(ℓ)− 1

)
f̃ .
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Consequently, the image [ f̃ ] of f̃ in

Φ⊗ OL,p = Coker
(
µ0 ⊗ id : S(UY ; OL,p)

⊕2 −→ S(UY ; OL,p)
⊕2
0

)

satisfies, by definition of n ′,

(2.5.1.2) [ f̃ ] ∈ (Φ⊗ OL,p)[pn
′

](λB).

Proposition-Definition 2.5.2 The OL-module

I( fB) := {a ∈ L | a fB ∈ S(UY ; OL) + S(UY ; L)triv}

is a fractional OL-ideal containing OL; set

C3 = C3(p) := − ordp
(

I( fB)
)
≥ 0.

The element [ f̃ ] ∈ (Φ⊗ OL,p)[pn
′

] satisfies pn
′−C3−1[ f̃ ] 6= 0 ∈ Φ⊗ OL,p.

Proof I( fB) is a fractional OL-ideal, since fB /∈ S(UY ; L)triv, which means that C3 is

defined. We must show that any relation

c

(
fB

ε fB

)
=

(
−N(ℓ)− 1 T(ℓ)

T(ℓ) −N(ℓ)− 1

)(
x

y

)
=

(
−
(

N(ℓ) + 1
)

x + T(ℓ)y

T(ℓ)x −
(

N(ℓ) + 1
)

y

)

with c ∈ OL,p and x, y ∈ S(UY ; OL,p) implies that c ∈ pn ′−C3 OL,p. As in 1.1.7, it

follows from the relation

(
T(ℓ) + ε

(
N(ℓ) + 1

))
(y − εx) = 0

that y − εx ∈ S(UY ; OL,p)triv. Decomposing x = x0 + xtriv (x0 ∈ S(UY ; Lp)0, xtriv ∈
S(UY ; Lp)triv), we deduce from

2εc fB =

(
T(ℓ)− ε

(
N(ℓ) + 1

))
(x + εy)

= 2
(

T(ℓ)− ε
(

N(ℓ) + 1
))

x − 2
(

N(ℓ) + 1
)

(y − εx)

that (
T(ℓ)− ε

(
N(ℓ) + 1

))
x0 = εc fB,

hence

x0 = c ′ fB, c ′ = εc/
(

aℓ − ε
(

N(ℓ) + 1
))

(since T(ℓ) − ε
(

N(ℓ) + 1
)

is invertible on S(UY ; Lp)0 and T(ℓ) fB = aℓ fB). By defi-

nition of I( fB), the relation

y =
(

(y − εx) + εxtriv

)
+ εc ′ fB

implies that c ′ ∈ I( fB)OL,p, hence ordp(c) = ordp

(
aℓ − ε

(
N(ℓ) + 1

))
+ ordp(c ′) ≥

n ′ −C3, as claimed.
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2.5.3 Set

Tp( J ⊗ OL) := Tp( J)⊗Zp
OL,p, ( J ⊗ OL)[pm] := Tp( J)⊗Zp

OL/p
mOL (m ≥ 0).

These are T
S∪{ℓ}

(
U (ℓ)Y

)
⊗ OL,p[GF]-modules (see 1.6.7) and there are exact se-

quences of T
S∪{ℓ}

(
U (ℓ)Y

)
⊗ OL,p[GF(ℓ2)]-modules (see 1.7.1)

(2.5.3.1)
0 −→ X∨ ⊗ OL,p(1) −→ Tp( J ⊗ OL) −→ hX ⊗ OL,p −→ 0

0 −→ X∨ ⊗ OL/p
mOL(1) −→ ( J ⊗ OL)[pm] −→ hX ⊗ OL/p

mOL −→ 0.

Dualising the maps

[· f̃ ] : OL/p
n ′

OL → (Φ⊗ OL,p)[pn
′

](λB⊗id) →֒ (Φ⊗ OL,p)[pn
′

]

→֒ hX ⊗ OL/p
n ′

OL

1 7→ [ f̃ ]

(using the pairings from 1.6.10 and fixing a generator of pn
′

OL,p) we obtain a mor-

phism of T
S∪{ℓ}

(
U (ℓ)Y

)
⊗ OL,p[GF(ℓ2)]-modules

[· f̃ ]∨ : X∨ ⊗ OL/p
n ′

OL ։ Φ⊗ OL/p
n ′

OL ։ (Φ⊗ OL/p
n ′

OL)(hλB⊗id)

→ OL/p
n ′

OL ։ OL/p
nOL

a 7→ ([ f̃ ], a)pn ′

(2.5.3.2)

which factors through (X∨⊗OL/p
nOL)(hλB⊗id) and whose cokernel is killed by pC3 , by

Proposition 2.5.2 and non-degeneracy of the pairing Φ× Φ→ Q/Z. Above,

λB ⊗ id : T
S∪{ℓ}

(
U (ℓ)Y

)
⊗ OL,p −→ OL/p

n ′

OL

is obtained from λB by extension of scalars.

After tensoring (2.5.3.1) over T
S∪{ℓ}

(
U (ℓ)Y

)
⊗ OL,p via the morphism

hλB ⊗ id : T
S∪{ℓ}

(
U (ℓ)Y

)
⊗ OL,p −→ OL/p

nOL,

we obtain an exact sequence of OL/p
nOL[GF(ℓ2)]-modules

Tor
T

S∪{ℓ}(U (ℓ)Y )⊗OL,p
1 (hX ⊗ OL/p

nOL,OL/p
nOL)

∂
−→ (X∨ ⊗ OL/p

nOL)(hλB⊗id)(1) −→ ( J ⊗ OL)[pn](hλB⊗id)

−→ h
(

(X ⊗ OL/p
nOL)(λB⊗id)

)
−→ 0.
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The Frobenius element Frgeom(ℓ2) acts on the domain (resp. on the target) of ∂ triv-

ially (resp. by multiplication by N(ℓ)2), which implies that

p
C2 Im(∂) =

(
N(ℓ)2 − 1

)
Im(∂) = 0.

Set

N := ( J ⊗ OL)[pn](hλB⊗id) ⊃ N0 := Coker(∂);

the previous discussion implies that the Tate twist of the map
(

N(ℓ)2 − 1
)

[· f̃ ]∨

factors through a morphism of OL/p
nOL[GF(ℓ2)]-modules

j0 : N0 −→ OL/p
nOL(1), j0(x) =

(
N(ℓ)2 − 1

)
([ f̃ ], x)pn ′ (mod pn).

As pC3 Coker([· f̃ ]∨) = 0, we have pC2+C3 Coker( j0) = 0. To sum up, we have proved

the following statement.

Proposition 2.5.4 There exists a diagram of morphisms of OL/p
nOL[GF(ℓ2)]-modules

(where N = ( J ⊗ OL)[pn](hλB⊗id))

0 // N0

j0

��

// N // h
(

(X ⊗ OL/p
nOL)(λB⊗id)

)
// 0

OL/p
nOL(1)

whose row is exact and in which pC2+C3 Coker( j0) = 0.

Definition 2.5.5 Denote by C4 = C4(p) the smallest integer C4 ≥ 0 satisfying

Im
(

OL,p[GF] −→ EndOL,p
(T)

)
⊇ pC4 EndOL,p

(T)

(C4 exists, since V is an absolutely irreducible representation of GF [T2, Proposi-

tion 3.1]; see Corollary 2.4.4(1) above).

2.5.6 The following objects satisfy the assumptions of Proposition 2.4.3:

A = OL/p
nOL, G = GF, M = T/pnT, I = pC4 A.

As in 2.4.2, let R = A[G]/ J.

The construction of ℓ implies that ω(ℓ) = 1 and that h = Frgeom(ℓ2) acts on M in

the basis e1, e2 from 2.3.1 by

ρ(h)e1 = e1, ρ(h)e2 = u2
ge2 = N(ℓ)−2e2.

Furthermore, the Eichler–Shimura relation (1.6.8.4) (together with the Čebotarev

density theorem) implies that N is an R-module and that

j0 : N0 −→ OL/p
nOL(1) = (OL/p

nOL)e2 ⊂ M

is a morphism of A[h]-modules.
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Proposition 2.5.7 There exists a morphism of OL/p
nOL[GF]-modules

j : N = ( J ⊗ OL)[pn](hλB⊗id) −→ T/pnT = M

whose restriction to N0 is equal to

(
N(ℓ)−2 − 1

) 2
b12 j0,

where b is a fixed generator of pC4 OL,p. Furthermore, p3C2+C3+13C4 Coker( j) = 0.

Proof The existence of j follows from Proposition 2.4.5, which applies with

a = N(ℓ)−2, thanks to the discussion in 2.5.6. By construction, j(N0) con-

tains p3C2+C3+12C4 e2, which implies that j(N) contains p3C2+C3+13C4 e1, by definition

of C4.

2.5.8 The proof of Proposition 2.5.7 used only the existence of an element gp ∈ GF

satisfying (A1) and (A2). Neither the property (A3) nor the assumption L( fK , χ, 1) 6=
0 were used in the proof.

2.6 The Cohomology Class c(ℓ)

The assumptions and notation from 2.5 are in force.

2.6.1 The CM point x(ℓ) := [z, 1]UY ∈ CM(M,K)ℓ−ur is defined over the field

KUY ⊂ Fur
ℓ which is abelian over K (⊂ Kℓ ⊂ Fur

ℓ ) and which satisfies

recK : Gal(KUY/K)
∼−→ K̂×/K×t̂−1(U )Y = K̂×/K×K×

ℓ (t̂ (ℓ))−1(U (ℓ))Y (ℓ)

= K̂(ℓ)×/K×(t̂ (ℓ))−1(U (ℓ))Y (ℓ)

(this isomorphism does not depend on the choice of an embedding KUY →֒ Kab).

Note that the field KUY (more precisely, its image in Kab) does not depend on ℓ and

contains Kχ, by (2.2.4.1).

2.6.2 The divisor

D := eχ

(
TrKUY /Kχ

(
x(ℓ)

))
∈ Div(M ⊗F Kχ)⊗ OL,

where

eχ :=
∑

σ∈Gal(Kχ/K)

χ(σ)σ ∈ OL[Gal(Kχ/K)],

is equal to

(2.6.2.1) D =

∑

a∈K̂(ℓ)×/K×(t̂(ℓ))−1(U (ℓ))Y (ℓ)

χ(a) [z, t̂ (ℓ)(a)]UY ,
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by 1.8.3.

According to Proposition 1.5.9(1), the divisor D ′
=

(
N(v0) + 1 − T(v0)

)
D has

degree zero on each connected component of M ⊗F F; its class defines an element

cl(D ′) ∈
(

J(Kχ)⊗ OL

) (χ−1)
.

2.6.3 The Kummer map

J(Kχ)⊗ Zp = lim←−m
J(Kχ)⊗ Z/pmZ →֒ lim←−m

H1(Kχ, J[pm]) = H1
(

Kχ,Tp( J)
)

gives rise to a map

∂ : J(Kχ)⊗ OL,p →֒ H1
(

Kχ,Tp( J)⊗Zp
OL,p

)
−→ H1

(
Kχ, ( J ⊗ OL)[pn]

)
.

Set

c ′(ℓ) := j∗

(
∂
(

cl(D ′)
))
∈ H1(Kχ,T/p

nT)(χ−1),

where

j∗ : H1
(

Kχ, ( J ⊗ OL)[pn]
)
−→ H1(Kχ,T/p

nT)

is induced by the map j from Proposition 2.5.7.

Definition 2.6.4 Denote by c(ℓ) the image of c ′(ℓ) in H1(Kχ,T/p
n−C0 T)(χ−1),

where C0 is the constant defined in Definition 2.7.9 below.

2.7 Localisation of c(ℓ) outside ℓ

2.7.1 Let E/F be a finite extension. For each finite prime w of E denote by

H1
f (Ew,V ) = Ker

(
H1(Ew,V ) −→

{
H1(Ew,V ⊗Qp

Bcris), w | p

H1(IEw
,V ), w ∤ p

)

H1
f (Ew,T) = Ker

(
H1(Ew,T) −→ H1(Ew,V )/H1

f (Ew,V )
)

H1
f (Ew,V/T) = Ker

(
H1(Ew,V/T) −→ Coker

(
H1

f (Ew,V ) −→ H1(Ew,V/T)
))

H1
f (Ew,T/p

mT) = Im
(

H1
f (Ew,T) −→ H1(Ew,T/p

mT)
)

the Bloch–Kato subspaces [BK] of local Galois cohomology and by

H1
f (E,−) = Ker

(
H1(E,−) −→

∏
w∤∞

H1(Ew,−)/H1
f (Ew,−)

)

(− = V,T,V/T,T/pmT)

the corresponding Bloch–Kato Selmer groups (and similarly for T∗(1)
∼−→ T⊗ω−1).

Note that

H1
f (E,T) = lim←−m

H1
f (E,T/pmT), H1

f (E,V/T) = lim−→m
H1

f (E,T/pmT).
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For each finite extension E ′
w ′/Ew the restriction (resp. corestriction) map

res : H1(Ew,−) −→ H1(E ′
w ′ ,−) (resp. cor : H1(E ′

w ′ ,−) −→ H1(Ew,−))

maps the H1
f -subspace into the H1

f -subspace. The formula cor ◦ res = [E ′
w ′ : Ew]

implies that

(2.7.1.1)

[E ′
w ′ : Ew] · res−1

(
H1

f (E ′
w ′ ,−)

)
⊆ H1

f (Ew,−) (− = V,T,V/T,T/pmT).

2.7.2 The goal of Section 2.7 is to define integers C0,C5,C6 ≥ 0 depending on f

and p (but not on K, χ or ℓ) and prove Proposition 2.7.12 below.

Proposition 2.7.3 For each finite prime v ∈ S ∪ Sp there exists a finite Galois ex-

tension F ′
v/Fv which depends on U and ω but not on ℓ such that J(MU ′Y ) ⊗F F ′

v has

split semi-abelian reduction. In particular, the discussion in Appendix A.3 applies to

J(MU ′Y )⊗F F ′
v and K = F ′

v .

Proof If v ∈ Sp − S, then MU ′Y and its Jacobian have good reduction at v, so we can

and will take F ′
v = Fv.

For each rational prime q,

H1
et

(
J(MU ′Y )⊗F F,Qq

)
=

⊕
π ′

(π ′)U ′Y ⊗Vq(π̃ ′),

where π ′ runs through irreducible (cuspidal) representations of B ′×
A such that π ′

∞ =

σ2 ([N1, Proposition 1.18(ii)] and 1.6.9).

For each v ∈ S fix an open compact subgroup Uv ⊂ B ′×
v such that US ⊃

∏
v∈S Uv.

If π ′ as above satisfies (π ′)U ′Y 6= 0, then its central character ωπ ′ is equal to a power

of ω (since Y = Ker(ω) ⊂ Ker(ωπ ′)) and (π ′
v)Uv 6= 0 for each v /∈ S∞ ∪ {ℓ}.

It is known [C1, Theorem A], [T1, Theorem 2]) that, for each v ∤ q, Vq(π ′)|GFv

corresponds to JL(π ′
v) by the local Langlands correspondence. Above, JL(π ′

v) denotes

π ′
v if v /∈ Ram(B ′) (resp. the smooth representation of GL2(π ′

v) attached to π ′
v by the

Jacquet–Langlands correspondence if v ∈ Ram(B ′)).

In concrete terms, for v ∈ S and q diferent from the residue characteristic of v, the

condition (π ′
v)Uv 6= 0 implies the following.

(1) If JL(π ′
v) = π(µ1, µ2) (µi : F×

v → C×) is a principal series representation, then

the inertia group IFv
acts on Vq(π ′) — through a finite abelian quotient — by

(µ1 ⊕ µ2)|O×
F,v

. The conductor exponent o(µ1) + o(µ2) = o
(

JL(π ′
v)
)

is bounded

above by a constant depending on Uv, which implies that there is a finite abelian

extension Fv,1 of Fv depending only on Uv whose inertia group acts trivially on

Vq(π ′).

(2) If JL(π ′
v) is supercuspidal, then the argument in (a) applies to the base change of

JL(π ′
v) to a suitable extension of Fv of degree 2 (resp. degree dividing 12) if v ∤ 2

(resp. if v | 2). We obtain, again, a finite Galois extension Fv,2 of Fv depending

only on Uv whose inertia group acts trivially on Vq(π ′).
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(3) If JL(π ′
v) = St⊗µ (µ : F×

v → C×), then µ2
= (ωπ ′)v is a power of ωv, which

implies that that the order of µ is bounded above by a constant depending on ωv,

hence there is a finite abelian extension Fv,3 of Fv depending only on ωv contain-

ing F
Ker(µ)
v . By Proposition 2.7.8(2) below, the inertia group of Fv,3 acts unipo-

tently on Vq(π ′) and its absolute Galois group acts trivially on the corresponding

graded quotients of Vq(π ′).

For each v ∈ S, let F ′
v be any finite Galois extension of Fv containing the fields Fv,1,

Fv,2 and Fv,3. By construction, if π ′
∞ = σ2 and (π ′)U ′Y 6= 0, then the base change of

JL(π ′
v) to F ′

v is an unramified principal series representation in the cases (1) and (2)

(resp. the Steinberg representation St in the case (3)). The above description of the

action of GF ′
v

on Vq(π ′) implies that J(MU ′Y )⊗F F ′
v has split semi-abelian reduction,

as required.

2.7.4 We can and will enlarge each F ′
v so that the base change of π( f )v to F ′

v be

either an unramified principal series representation or the Steinberg representation

of GL2(F ′
v).

Definition 2.7.5 For each finite prime v ∈ S∪ Sp fix F ′
v as in 2.7.3–2.7.4 and define

C5,v = C5,v(p) := ordp([F ′
v : Fv]) ≥ 0, C5 = C5(p) := maxv C5,v.

Proposition 2.7.6 If v ∈ Sp, v ∤ n (and if there exists gp ∈ GF satisfying (A1)–(A2)),

then there is a Barsotti–Tate group H over OF,v equipped with an action of OL,p such

that Tp(H) = T|GFv
.

Proof This is known in general for an arbitrary Hilbert modular form of parallel

weight two (even without the assumption about the existence of gp):
• if f has CM, since T ⊂ Tp(A), where A is an abelian variety with CM with good

reduction at v;
• if T/pT is an irreducible GF-module [T2, Theorem 1.6];
• if p 6= 2 (V |GFv

is crystalline with Hodge–Tate weights contained in {0, 1} [Li3,

Theorem 4.2.1], [Sk, Theorem 1]; the existence of H follows from [Br, Theorem 1.4]);
• if p is arbitrary (replace the reference to [Br, Theorem 1.4] by [Ki, Corol-

lary 2.2.6]).

However, it may be of interest to note that in our case there is an argument along

the lines of [T2, Theorem 1.6]: fix, for each n≫ 0, a prime ℓ of F as in 2.3.2. The as-

sumption v ∤ n implies that J(MU ′Y ) has good reduction at v, hence the GFv
-module

N in Proposition 2.4.6 comes from a finite flat group scheme over OF,v (equipped

with an OL/p
nOL-action). This implies that T/pn−3C2−C3−13C4 T|GFv

, which is a sub-

quotient of N, also comes from such a finite flat group scheme. The existence of H

then follows from [Ra2, Proposition 2.3.1].

Corollary 2.7.7 If v ∈ Sp and π( f )v 6= St⊗µ (and if there exists gp ∈ GF satisfying

(A1) and (A2)), then there is a Barsotti–Tate group H with an action of OL,p over OF ′
v

such that Tp(H) = T|GF ′
v

.

Proof Again, this is known if p 6= 2 even without assuming the existence of gp.

Under our assumptions there exists a totally real solvable extension F ′/F and a prime
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v ′ | v of F ′ such that F ′
v ′/Fv is isomorphic to the extension F ′

v/Fv from 2.7.3–2.7.4 If

f has no CM, B.5.5(2) tells us that the existence of gp implies that there is g ′
p ∈ GF ′

satisfying (A1) and (A2). The result follows by applying Proposition 2.7.6 to the base

change of f to F ′. If f has CM, then the base change of the corresponding abelian

variety with CM to F ′ has good reduction at v ′, so we can conclude as in 2.7.6.

Proposition 2.7.8

(1) Let E and w be as in 2.7.1. If w ∤ p, then Hi(Ew,V ) = 0 for each i ≥ 0,

H1
f (Ew,T) = H1(Ew,T) is finite and H1

f (Ew,V/T) = 0.

(2) If π( f )v = St⊗µ (µ : F×
v → C×, µ2

= ωv), then Vv := V |GFv
sits in an exact

sequence of Lp[GFv
]-modules

0 −→ V +
v −→ Vv −→ V−

v −→ 0,

where V +
v = Lp(1)⊗µ and V−

v = Lp⊗µ. Set T+
v := T∩V +

v and T−
v := T/T+

v . The

extension class [Tv] of the exact sequence 0→ T+
v → Tv → T−

v → 0 is an element

of H1
(

Fv,OL,p(1)
) ∼−→ F×

v ⊗̂OL,p whose image under ordv⊗ id : F×
v ⊗̂OL,p →

OL,p is non-zero.

(3) If π( f )v = St⊗µ and v ∈ Sp, then

H1
f (Ew,V ) = Ker

(
H1(Ew,V ) −→ H1(Ew,V

−
v )

)
,

for each finite extension Ew/Fv.

Proof This is well known (see, for example, [N2, (12.4.4.2)], [N2, Lemma 12.5.4(ii)]

and [N3, Proposition 3.3.2]).

Definition 2.7.9 Let v be as in 2.7.3.

(1) If v /∈ Sp, set C0,v := 0.

(2) If v ∈ Sp and π( f )v = St⊗µ, set C0,v := e(p) · a, where a = a(OF ′
v
, µp∞) is the

integer from A.1.7.

(3) If v ∈ Sp and π( f )v 6= St⊗µ, set C0,v := e(p) · a, where a = a(OF ′
v
,H) is the

integer from A.1.7 for the Barsotti–Tate group H from Corollary 2.7.7.

Finally, set C0 = C0(p) := maxv|p C0,v.

Proposition-Definition 2.7.10 Let v be as in 2.7.3.

(1) If v ∤ pn, set C6,v := 0.

(2) If v | pn and π( f )v = St⊗µ, let C6,v ≥ 0 be the biggest non-negative integer such

that

e(F ′
v/Fv)(ordv⊗ id)[Tv] ∈ pC6,v OL,p.

(3) If v | pn and π( f )v 6= St⊗µ, then H0
(

F ′
v ,V (−1)

)
= 0. We let C6,v ≥ 0 be the

smallest non-negative integer such that

p
C6,v H0

(
F ′

v ,V/T(−1)
)
= 0.

Set C6 = C6(p) := maxv|p C6,v.

https://doi.org/10.4153/CJM-2011-077-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-077-6


632 J. Nekovář

Proof The existence of C6,v in the case (2) follows from Proposition 2.7.8(2). The

existence of C6,v in the case (3) follows from the vanishing of H0
(

F ′
v ,V (−1)

)
, which

is, in turn, a consequence of the fact that V (−1)|GF ′
v

is an unramified (resp. a crys-

talline) representation of GF ′
v

if v ∤ p (resp. if v | p) which is pure of weight 1, by the

compatibility of Vp( f ) with the local Langlands correspondence [T1, Theorem 2]

(resp. [Li3, Theorem 4.2.1] and [Sk, Theorem 1]) and the generalised Ramanujan

conjecture for f [Bl].

Proposition 2.7.11 Assume that π( f )v = St⊗µ.

(1) If v ∤ p, then

∀m ≥ 0 p
C6,v H0(IF ′

v
,T/pmT) ⊆ T+

v /p
mT+

v .

(2) If v | p, assume that H ∈ GrOF ′
v

in the notation of Appendix A.1.1 and that

j ′ : H(Fv) → T/pmT|GF ′
v

is a morphism of OL,p[GF ′
v
]-modules for which

Im( j ′) ∩ T+
v /p

mT+
v has a sufficiently large exponent (= bigger than a suitable con-

stant depending on Tv and F ′
v). Then

p
C0,v+C6,v Im( j ′) ⊆ T+

v /p
mT+

v .

Proof (1) This follows from the exact cohomology sequence of

0 −→ T+
v /p

mT+
v −→ T/pmT −→ T−

v /p
mT−

v −→ 0

over the maximal unramified extension of F ′
v , which reads as follows:

0 −→ T+
v /p

mT+
v −→ H0(IF ′

v
,T/pmT)

−→ OL/p
mOL

δ
−→ H1

(
IF ′

v
,OL/p

mOL(1)
)
= OL/p

mOL,

where δ(1) is equal to the image of

e(F ′
v/Fv)(ordv⊗ id)[Tv] ∈ OL,p − {0}

in OL/p
mOL.

(2) Let H ′ ∈ GrOF ′
v

be the quotient of H by the scheme-theoretical closure of

Ker( j ′). The induced map j ′ : H ′(Fv) →֒ T/pmT|GF ′
v

is injective and the state-

ment (2) follows from A.2.9 (since pC0,v OL,p = paOL,p).

Proposition 2.7.12 Let v be as in 2.7.3, let Ew/Fv be a finite extension. Denote by δEw

the map

δEw
: J(Ew)⊗ OL/p

nOL

∂
−→ H1

(
Ew, ( J ⊗ OL)[pn]

) j∗
−→ H1(Ew,T/p

nT)

( jC0,v )∗

−−−−→ H1(Ew,T/p
n−C0,v T).
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(1) If Ew ⊇ F ′
v , then

p
C6,v Im(δEw

) ⊆ H1
f (Ew,T/p

n−C0,v T).

(2) In general,

[EwF ′
v : Ew]pC6,v Im(δEw

) ⊆ H1
f (Ew,T/p

n−C0,v T),

p
C5,v+C6,v Im(δEw

) ⊆ H1
f (Ew,T/p

n−C0,v T).

Proof Note that (2) follows from (1) for EwF ′
v instead of Ew and (2.7.1.1) for

EwF ′
v/F ′

v . We can assume, therefore, that Ew ⊇ F ′
v . We distinguish several cases.

(a) If v ∤ pn (C0,v = C5,v = C6,v = 0), then w ∤ p and J has good reduc-

tion over Ew, which implies that Im(∂) = H1
ur

(
Ew, ( J ⊗ OL)[pn]

)
, hence Im(δEw

) ⊆
H1

ur(Ew,T/p
nT) = H1

f (Ew,T/p
nT) (the last equality is a consequence of the fact that

T is an unramified GEw
-module).

(b) If v ∤ p and π( f )v 6= St⊗µ (C0,v = 0), then T is again an unramified GEw
-

module, so we must show that Im(δEw
) is contained in H1

ur(Ew,T/p
nT). According to

A.3.6 (applied to J(MU ′Y )⊗F F ′
v , K = F ′

v and K′
= Ew) combined with A.2.3(1)

Im(δEw
) ⊆ X1 ⊕ X2,

X1 = Im
(

H1
ur

(
Ew, (G

◦ ⊗ OL)[pn](Fv)
) j∗
−→ H1(Ew,T/p

nT)
)
,

X2 = Im
(

H1
(

Ew, (T ⊗ OL)[pn](Fv)
)
= H1

(
Ew, (OL/p

nOL)(1)
) rk(T )

j∗
−→ H1(Ew,T/p

nT)
)
.

The statement holds, since j∗ maps unramified cohomology into unramified coho-

mology (hence X1 ⊆ H1
ur(Ew,T/p

nT)) and that pC6,v j(T ⊗ OL)[pn] = 0 by definition

of C6,v (hence pC6,v X2 = 0).

(c) If v | p and π( f )v 6= St⊗µ, then T|GEw
= Tp(H) for some Barsotti–

Tate group H over OEw
equipped with an OL,p-action. It follows from A.2.6 that

H1
f (Ew,T/p

nT) = X(H) ⊗OL
OL/p

nOL = H1
fl(OEw

,H[pn]). Using A.3.6 again, we

have

Im(δEw
) ⊆ Y1 ⊕ Y2,

Y1 = Im
(

H1
fl

(
OEw

, (G ◦ ⊗ OL)[pn]
) ( jC0,v )∗◦ j∗

−−−−−−→ H1(Ew,T/p
n−C0,v T)

)
,

Y2 = Im
(

H1
(

Ew, (T ⊗ OL)[pn](Fv)
)
= H1

(
Ew, (OL/p

nOL)(1)
) rk(T )

( jC0,v )∗◦ j∗

−−−−−−→ H1(Ew,T/p
n−C0,v T)

)
.

According to A.2.8, Y1 ⊆ H1
fl(OEw

,H[pn−C0,v ]), and the same argument as in (b)

shows that pC6,vY2 = 0.
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(d) If π( f )v = St⊗µ, then A.3.5(1) tells us that

Im(δEw
) ⊆ Z := Im

(
H1

(
Ew, (G

◦ ⊗ OL)[pn](Fv)
) ( jC0,v )∗◦ j∗

−−−−−−→ H1(Ew,T/p
n−C0,v T)

)
.

Proposition 2.7.11 implies that

p
C6,v jC0,v

◦ j(G ◦ ⊗ OL)[pn](Fv) ⊆ (T+
v /p

n−C0,v T+
v )|GEw

= OL/p
n−C0,v OL(1),

hence pC6,v Im(δEw
) ⊆ pC6,v Z is contained (using Proposition 2.7.8(3) for the last in-

clusion) in

Im
(

H1
(

Ew,OL/p
n−C0,v OL(1)

)

= H1
(

Ew,OL,p(1)
)
⊗OL

OL/p
n−C0,v OL −→ H1(Ew,T/p

n−C0,v T)
)

⊆ H1
f (Ew,T/p

n−C0,v T),

Note that, in the case when v | p, the assumption of Proposition 2.7.11(2) is sat-

isfied: as the GEw
-module J[pm](K)/G ◦[pm](K) is unramified for each m ≥ 0, it

follows from Proposition 2.5.7 that the intersection of j
(

(G ◦ ⊗ OL)[pn](K)
)

with

T+
v /p

nT+
v |GEw

= OL/p
nOL(1) contains pC (OL/p

nOL)(1), for some constant C .

Corollary 2.7.13 Let K ′/Kχ be a finite extension and w a finite prime of K ′.

(1) If w ∤ ℓ, then

p
C5+C6

(
resK ′/Kχ

(
c(ℓ)

))
w
∈ H1

f (K ′
w,T/p

n−C0 T).

(2) For each s ∈ H1
f

(
K ′, (T/pn−C0 T)⊗ ω−1

)
the local cup products

∪ : H1(K ′
w,T/p

n−C0 T)×H1
(

K ′
w, (T/pn−C0 T)⊗ ω−1

)

−→ H2
(

K ′
w,OL/p

n−C0 OL(1)
) invw−−→ OL/p

n−C0 OL

satisfy

p
C5+C6

∑

w|ℓ

invw

(
sw ∪

(
resK ′/Kχ

(c(ℓ))
)

w

)
= 0 ∈ OL/p

n−C0 OL.

Proof (1) This follows from Proposition 2.7.12(2). The statement (2) is a conse-

quence of the reciprocity law

∀x ∈ H1
(

K ′, (T/pn−C0 T)⊗ ω−1
)

∑

w

invw

(
xw ∪

(
resK ′/Kχ

(c(ℓ))
)

w

)
= 0 ∈ OL/p

n−C0 OL

and the fact that H1
f (K ′

w,T/p
n−C0 T) ∪ H1

f

(
K ′

w, (T/pn−C0 T) ⊗ ω−1
)
= 0 for each w.
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2.8 Localisation of c(ℓ) at ℓ

2.8.1 Recall that we have denoted by λ the unique prime of K above ℓ. As recK (K×
ℓ )

acts trivially on KUY and ω(ℓ) = 1, λ splits completely in FωKUY /K. As a result, the

inclusions Kχ ⊂ KUY ⊂ Fur
ℓ define a prime λχ | λ of Kχ such that (Kχ)λχ = Kλ = Kℓ.

2.8.2 By construction of ℓ,

(T/pnT)|GKℓ
= (OL/p

nOL)e1 ⊕ (OL/p
nOL)(1)e2.

We are interested in the image c ′(ℓ)λχ,ram of

c ′(ℓ)λχ ∈ H1
(

(Kχ)λχ ,T/p
nT

)
= H1(Kℓ,OL/p

nOL)e1 ⊕H1
(

Kℓ,OL/p
nOL(1)

)
e2

in

H1(IKℓ
,T/pnT) = H1(IKℓ

,OL/p
nOL)e1 ⊕H1

(
IKℓ
,OL/p

nOL(1)
)

e2

∼−→ (OL/p
nOL)(−1)e1 ⊕ (OL/p

nOL)e2.

Proposition 2.8.3 We have c ′(ℓ)λχ,ram = ce2, where c is the image of

(
N(v0) + 1− av0

)(
N(ℓ)2 − 1

)(
N(ℓ)−2 − 1

) 2

× b12
(

K×t̂−1(U )F̂× : K×t̂−1(U )Y
)
Lχ( fB) ∈ OL,p − {0}

in OL/p
nOL. Above, ordp(b) = C4 and

(
K×t̂−1(U )F̂× : K×t̂−1(U )Y

)
divides

(F̂× : Y ) = [Fω : F].

Proof We consider cl(D ′) as an element of J
(

(Kχ)λχ
)
⊗ OL = J(Kℓ) ⊗ OL. Using

the notation from 1.6.5 and 1.6.6, its image cl(D ′)Φ in Φ⊗ OL is represented by

c̃l(D ′)Φ :=
(

N(v0) + 1− av0

) (∑
a χ(a)[t̂ (ℓ)(a)]

0

)
∈ OL[V(G)]0 ⊂ S(UY ; OL)2,

thanks to (2.6.2.1). Above, a runs through K̂(ℓ)×/K×(t̂ (ℓ))−1(U (ℓ))Y (ℓ) and [b] is the

image of b ∈ B̂× in B×\B̂×/UY (we embed B̂(ℓ)× →֒ B̂× by b 7→ b× {1}, 1 ∈ B×
ℓ ).

The construction of the map j0 together with the discussion in 1.7.3 (for K =

(Kχ)λχ = Kℓ) imply that c ′(ℓ)λχ,ram = ce2, where c is the image in OL/p
nOL of

(
N(v0) + 1− av0

)(
N(ℓ)2 − 1

)(
N(ℓ)−2 − 1

) 2
b12u

(
[ f̃ ], c̃l(D ′)Φ

)
∈ OL,p.

The statement of the proposition follows from the fact that

u
(

[ f̃ ], c̃l(D ′)Φ
)
=

∑

a∈K̂×/K× t̂−1(U )Y

χ(a) fB

(
t̂(a)

)

=
(

K×t̂−1(U )F̂× : K×t̂−1(U )Y
)
Lχ( fB).
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Corollary 2.8.4 If x = x1e1 + x2e2 is an element of

H1
ur

(
(Kχ)λχ , (T/pnT)⊗ ω−1

)
= H1

ur(Kℓ,T/p
nT)

∼−→ (T/pnT)/
(

Frgeom(ℓ)2 − 1
)

= (OL/p
nOL)e1 ⊕

(
OL,p/(u2

g − 1)OL,p

)
e2,

then

invλχ
(

x ∪ c ′(ℓ)λχ
)
= ±cx1 ∈ OL/p

nOL,

where the sign depends on the choice of the sign of the isomorphism beween the p-

primary part of IKℓ
and Zp(1).

Proof As in 1.7.5, this follows from Proposition 2.8.3 and [Ru, Lemma 1.4.7(ii)]

(recall that the dual basis to {e1, e2} with respect to the pairing (0.7.1) is equal to

{e2, e1}).

2.9 The Annihilation Relation and the Completion of the Proof of Theorem A

The assumptions listed at the beginning of Section 2 are in force. In addition, if f has

CM by a totally imaginary quadratic extension K( f ) of F, we assume that K( f ) 6⊂
FωKχ.

2.9.1 Let m≫ 0 be a large enough integer and consider the field extensions

F ⊂ K ⊂ FωK ⊂ H := FωKχ ⊂ Hn := F(T/pnT)H

for n = m + C0; set Un := Gal(Hn/H) and denote by gn ∈ Gal(Hn/F) the restriction

of g = gp to Hn.

The restriction gn|H is of the form gn = chn, where c ∈ Gal(Kab/F) is the complex

conjugation for a fixed embedding Kab ⊂ C and hn ∈ Gal(H/FωK). If we consider

g2
n = chnchn =

chnhn as an element of Gal(H/FωK) ⊂ Gal(Kχ/K), then

χ(g2
n) = (cχ · χ)(hn) = ω−1(hn|Fω ) = 1;

thus g2
n ∈ Un. Denote by

H ′
n := H

〈g2
n〉

n ⊂ Hn

the fixed field of the subgroup 〈g2
n〉 ⊂ Un generated by g2

n .

Proposition-Definition 2.9.2 There exists an integer C7 = C7(p) ≥ 0 (equal to 0 for

all but finitely many p) such that the restriction maps

res ′ : H1
(

H, (T/pmT)⊗ ω−1
)
−→ H1

(
H ′

n, (T/pmT)⊗ ω−1
)
,

res : H1
(

H, (T/pmT)⊗ ω−1
)
−→ H1

(
Hn, (T/pmT)⊗ ω−1

)

= HomUn
(Gab

Hn
⊗ Z/pmZ, (T/pmT)⊗ ω−1)

satisfy pC7 Ker(res) = pC7 Ker(res ′) = 0.
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Proof According to B.5.2 and B.6.5(2),

Z :=
{

a ∈ Z×
p | a · id ∈ Im

(
GH −→ Aut(T ⊗ ω−1)

)}

is an open subgroup of Z×
p . Fix a ∈ Z − {1}; then a · id is an element of the centre

of Un which acts on T ⊗ ω−1 by multiplication by a. Sah’s Lemma [S, Proof of

Proposition 2.7(b)] implies that a− 1 acts trivially on

H1
(

Un, (T/pmT)⊗ ω−1
)
= Ker(res) ⊇ Ker(res ′),

which means that we can take C7 := ordp(a − 1). The fact that we can choose a so

that C7 = 0 for all but finitely many p follows from B.5.2 and B.6.5(5) and (7).

Proposition-Definition 2.9.3 There exists an integer C8 = C8(p) ≥ 0 (equal to 0 for

all but finitely many p) such that

Im
(

OL,p[GH] −→ EndOL,p
(T ⊗ ω−1)

)
⊇ pC8 EndOL,p

(T ⊗ ω−1).

Proof The existence of C8 is equivalent to V ⊗ ω−1|GH
= V |GH

being (absolutely)

irreducible, which is, in turn, equivalent to our assumption “if f has CM by K( f ),

then K( f ) 6⊂ H”, by a variant of [N1, Proposition 6.2.1]. The fact that C8 is equal to

0 for all but finitely many p follows from [N1, Proposition 6.2.2].

Proposition 2.9.4 Let s̃ ∈ Z1(GH , (T/pmT) ⊗ ω−1) be a 1-cocycle representing an

element s ∈ H1
f

(
H, (T/pmT)⊗ ω−1

) (χ)
. Then:

(1) ∀h ′ ∈ GH ′
n
⊂ GH such that h ′|Hn

= g2
n

p
C s̃(h) ∈ (OL/p

mOL)e2 ⊂ (T/pmT)⊗ ω−1,

where C = C1 + 3C2 + 12C4 +C5 +C6 + ordp

((
N(v0) + 1−av0

)
[Fω : F][H : K]

)

(recall that e1, e2 is the OL/p
nOL-basis of T/pnT from 2.3.1).

(2) ∀h ′ ∈ GHn
p

C
(

res(s)
)

(h) ∈ (OL/p
mOL)e2 ⊂ (T/pmT)⊗ ω−1.

Proof If h ∈ GHn
and h ′|Hn

= g2
n , then hh ′|Hn

= g2
n . As

(
res(s)

)
(h) = s̃(h) = s̃(hh ′)− s̃(h ′)

by the cocycle relation, it is sufficient to prove (1).

Let λn | ℓ be the prime of Hn whose (geometric) Frobenius element with respect

to the extension Hn/Fω is equal to gn. Denote by λ ′
n (resp. λH) the prime of H ′

n (resp.

of H) below λn. As g2
n acts trivially on H ′

n, the unique prime λ of K above ℓ splits

completely in H ′
n/K.

Corollary 2.7.13(2) for K ′
= H says that

p
C5+C6

∑

w|ℓ

invw

(
sw ∪

(
resH/Kχ

(c(ℓ))
)

w

)
= 0 ∈ OL/p

mOL,
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where w runs through the set of primes of H above ℓ. All terms on the LHS are

equal to each other, since s (resp. resH/Kχ

(
c(ℓ)

)
) lies in the χ-eigenspace (resp. χ−1-

eigenspace) for the action of ∆ = Gal(H/K) ։ Gal(Kχ/K) and the action of ∆ on

the set {w | ℓ} is transitive. As a result, we obtain the following annihilation relation:

(⋆) [H : K]pC5+C6 invλH

(
sλH
∪
(

resH/Kχ
(c(ℓ))

)
λH

)
= 0 ∈ OL/p

mOL.

The localisation

sλH
∈ H1

ur

(
HλH

, (T/pmT)⊗ ω−1
)
= H1

ur

(
(H ′

n)λ ′
n
,T/pmT

)
= (T/pmT)/(g2

n − 1)

= (OL/p
mOL)e1 ⊕ (OL/p

C2 OL)e2

is represented by

(̃g2
n) = s̃(h ′) = s̃(h ′)1e1 ⊕ s̃(h ′)2e2, s̃(h ′)i ∈ OL/p

mOL.

Combining (⋆) with Corollary 2.8.4, we obtain

(
N(v0) + 1− av0

)
[Fω : F][H : K]pC1+3C2+12C4+C5+C6 s(h ′)1 = 0 ∈ OL/p

mOL,

as claimed.

Corollary 2.9.5 For each sufficiently large m≫ 0, we have

p
C+C7+C8 H1

f

(
H, (T/pmT)⊗ ω−1

) (χ)
= 0.

Proof Proposition 2.9.4(2) tells us that, for each s ∈ H1
f

(
H, (T/pmT)⊗ω−1

) (χ)
, the

Un-stable subgroup

p
C
(

res(s)
)

(GHn
⊗ Z/pmZ) ⊂ (T/pmT)⊗ ω−1

is contained in (OL/p
mOL)e2. By definition of C8, it is killed by pC8 , hence

p
C+C8 res(s) = 0. As pC7 Ker(res) = 0, the statement follows.

2.9.6 Proof of Theorem A Corollary 2.9.5 implies that

p
C+C7+C8 H1

f

(
H, (V/T)⊗ ω−1

) (χ)
= 0.

The kernel of the restriction map

H1
f

(
K, (V/T)⊗ cχ

)
−→

(
H1

f

(
H, (V/T)⊗ ω−1

)
⊗ χ−1

)Gal(H/K)

is killed by [H : K]; thus

[H : K]pC+C7+C8 H1
f

(
K, (V/T)⊗ cχ

)
= 0,
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which proves that both groups H1
f

(
K, (V/T) ⊗ χ

) ∼−→ H1
f

(
K, (V/T) ⊗ cχ

)
(see

(0.6.1)) are finite (and equal to zero if p does not belong to a certain finite set of primes

of F, since the constants Ci = Ci(p) are equal to zero for all but finitely many p).

Finally, the conditions (A1)–(A3) do not depend on χ and Lp. It is legitimate,

therefore, to analyse them by considering the minimal coefficient field L = L f (the

field generated over Q by the Hecke eigenvalues λ f (v) (v ∤ n) of f ). The correspond-

ing analysis is carried out in Appendix B.5B.6 in a more general context. The Galois

representation V = Vp( f )(1) corresponds to Vp(π) from B.2.1 for π = π( f ) ⊗ | · |;
thus ∀v ∈ S∞ kv = m = 2 in the notation of B.2.1. In particular, B.5.5(6) (resp.

B.6.5(4), (6), (7)) implies that an element gp ∈ GF satisfying (A1)–(A3) exists for p

belonging to a set of density 1 (resp. for p+ = L+ ∩ p belonging to a set of density 1/2,

where L+ is the maximal totally real subfield of L) if f does not have (resp. has) com-

plex multiplication. This completes the proof of Theorem A (and of Theorem A ′,

which is its immediate consequence).

2.10 Proof of Theorem B

In this section we assume that f ∈ S2(n, 1) (hence the corresponding automorphic

representation π( f ) of GL2(AF) as well) has trivial character. We take L = L f .

2.10.1 For any totally imaginary quadratic extension K/F we have

L( fK , 1K , s) = L( f , s)L( f ⊗ η, s), L
(
π( f )× 1K , s

)
= L

(
π( f ), s

)
L
(
π( f )⊗ η, s

)
,

using the notation of 0.5 for the trivial character 1K : A×
K /K×A×

F → C× (and writing

η = ηK/F).

Proposition 2.10.2 The following conditions are equivalent.

(1) π( f ) = JL(π ′) is associated by the Jacquet–Langlands correspondence to an irre-

ducible (cuspidal) automorphic representation π ′ of B ′×
A /F×

A , where B ′ is a quater-

nion algebra over F such that B ′ ⊗ R
∼−→ M2(R)×H[F:Q]−1 (⇐⇒ Vp( f ) occurs

in H1
et(MH ⊗F F, Lp) for a suitable (compactified) Shimura curve MH over F arising

from B ′ ⇐⇒ there exists a simple quotient A f of the Jacobian J(MH) satisfying

(0.10.1));

(2) 2 ∤ [F : Q] or there exists a finite prime v of F such that π( f )v is not a principal

series representation;

(3) there exists a totally imaginary quadratic extension K/F such that

ε
(
π( f )× 1K ,

1
2

)
= −1;

(4) there exists a finite set Σ of finite primes of F and for each v ∈ Σ a character

µv : F×
v → {±1} with the following property: for each totally imaginary quadratic

extension K/F satisfying ∀v ∈ Σ (ηK/F)v = µv we have ε
(
π( f )× 1K ,

1
2

)
= −1.

Proof The equivalence (1) ⇐⇒ (2) is standard. If π( f )v is a principal series rep-

resentation for each v /∈ S∞, then ε
(
π( f )v × 1K ,

1
2

)
= ηv(−1) for such v (Proposi-

tion 2.1.1), hence ε
(
π( f ) × 1K ,

1
2

)
=

∏
v|∞ ηv(−1) = (−1)[F:Q], which proves the
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implication (3) =⇒ (2). It remains to show that (2) =⇒ (4). If 2 ∤ [F : Q], then we

can take Σ = {w | n} and µw = 1 for each w ∈ Σ. If 2 | [F : Q] and π( f )v is a twist

of the Steinberg representation by an unramified character ( ⇐⇒ ordv(n) = 1),

then we can take Σ = {w | n}, µw = 1 if w ∈ Σ − {v} and µv = the unramified

quadratic character of F×
v . More generally, if 2 | [F : Q] and π( f )v is not a principal

series representation, let D be the quaternion division algebra over Fv and let π ′
v be

the (finite-dimensional) smooth representation of D×/F×
v corresponding to π( f )v

by the Jacquet–Langlands correspondence. Take any non-zero vector x in the repre-

sentation space of π ′
v . The stabiliser of x is open in D×; it contains an element d ∈ D×

which does not belong to F×
v . The commutative Fv-subalgebra E := Fv[d] ⊂ D is a

field of degree two over Fv and, by construction, HomE×(1E, π
′
v) 6= 0. As π ′

v decom-

poses under the action of E× into a direct sum of finitely man one-dimensional repre-

sentations, we also have HomE×(π ′
v , 1E) 6= 0, hence ε

(
π( f )v×1E,

1
2

)
= −ηE/Fv

(−1),

by Proposition 2.1.1(1). If we take Σ = {w | n}, µw = 1 if w ∈ Σ − {v} and

µv = ηE/Fv
, then

ε
(
π( f )× 1K ,

1
2

)
=

∏
w /∈Σ

1
( ∏

w∈Σ−{v}

ηw(−1)
)(
−ηv(−1)

)

= −
∏

w|∞

ηw(−1) = −(−1)[F:Q]
= −1,

for every totally imaginary quadratic extension K/F satisfying ηw = µw for all w ∈ Σ,

where η = ηK/F .

Proposition 2.10.3 If K from 2.10.1 satisfies ords=1 L( fK , 1K , s) = 1, then there exists

a (compactified) Shimura curve MHF̂× (for an open compact subgroup H ⊂ B̂ ′×), a

simple quotient A f of the Jacobian J(MHF̂×) satisfying (0.10.1), a finite subextension

K0/K of (Kab)recK (A
×
F )/K and a CM point x = [z ′, 1]HF̂× ∈ MHF̂×(K0) whose image

y ∈ A f (K0) under α : MHF̂× → J(MHF̂×) → A f (where the first map is given by a

suitable integral multiple of the Hodge class [Zh1, p. 30], [CV1, 3.5], [N1, 1.19]) has

the following properties:

(1) the point yK := TrK0/K (y) ∈ A f (K) is not torsion;

(2) the point c(yK ) + ε
(
π( f ), 1

2

)
yK ∈ A f (K) is torsion, where c is the non-trivial

element of Gal(K/F).

Proof The proof of Proposition 2.1.4 implies that there exists π ′ as in Proposi-

tion 2.10.2(1) for the quaternion algebra B ′ satisfying ∀v ∤∞ ε
(
π( f )v × 1K ,

1
2

)
=

invv(B ′)ηv(−1).

The generalised Gross–Zagier formula [Zh2, Theorem 4.2.1] proved in [YZZ]

states that the Néron–Tate distribution from [Zh2, 4.2]

NT1,π ′ ∈ HomK̂×(π ′∞,C)⊗HomK̂×(π ′∞,C)

is a non-zero multiple of the distribution βπ ′,1 defined in [Zh2, 4.2], which implies

that, for suitable H and A f , the point yK has non-zero height, hence is non-torsion.

The action of c on yK is given by c(P) = TrK0/K

(
α([z ′, n]HF̂×)

)
, where n ∈ NB×(K×)
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is an element of the normaliser of K× in B× (n /∈ K×). It follows from Proposi-

tion 2.1.2 that n acts on HomK̂×(π ′∞,C) by multiplication by

∏
v∤∞

invv(B ′)ε
(
π( f )v,

1
2

)
= ε

(
π( f ), 1

2

) ∏
v|∞

invv(B ′)ε
(
π( f )v,

1
2

)
= −ε

(
π( f ), 1

2

)
,

since ε
(
π( f )v,

1
2

)
= −1 for each v | ∞. As a result, the point c(yK ) + ε

(
π( f ), 1

2

)
yK

has trivial height pairing with yK , hence also with c(yK ) and itself; it must be torsion,

as claimed.

Corollary 2.10.4 If L( f , 1) 6= 0 and if K/F is a totally imaginary quadratic extension

such that f does not have CM by K and ords=1 L( fK , 1K , s) = 1, then the groups A f (F)

and X(A f /F) are finite.

Proof It follows from Proposition 2.10.3(1) and [N1, Theorem 3.2] that the groups

A f (K)/OL · yK and X(A f /K) are finite. As c(yK ) + yK is torsion by Proposi-

tion 2.10.3(2), the group A f (F) = A f (K)c=1 is finite, and so is X(A f /F) (since

2 · Ker
(
X(A f /F)→X(A f /K)

)
= 0).

2.10.5 Proof of Theorem B (a), (b) Combining Proposition 2.10.2(4) with

[FH, Theorem B.2] we obtain an extension K/F to which Corollary 2.10.4 applies.

The exact sequence

0 −→ A f (F)⊗ Lp/OL,p −→ H1
f (F,V/T) −→X(A f /F)[p∞] −→ 0

(where T = Tp(A f ) ⊂ V = Vp(A f ) = Vp( f )(1)) then implies that H1
f (F,V/T) is

finite (and equal to zero for all but finitely many p).

(c) Thanks to (a) we can assume that 2 | [F : Q]. If K/F is a totally imaginary

quadratic extension in which all primes dividing n split, then 2 | ords=1 L( fK , 1K , s).

According to [FH, Theorem B.1], there exists such a K for which K/F is ramified

at two primes q1, q2 not dividing n lying above two distinct rational primes and

L( fK , 1K , 1) = L( f , 1)L( f ⊗ ηK/F, 1) 6= 0. The ramification assumption at qi im-

plies that K 6⊂ FΓp
F(Vp) in the notation of B.5.1 (resp. K 6⊂ K( f )F(Vp)) if f does

not have (resp. has) CM. It follows from B.5.5(2), (4) (resp. B.6.5(2), (4)) that there

exists gp ∈ GF satisfying (A1)–(A3). Applying Theorem A for f ,K and χ = 1 we

obtain that the group H1
f (K,V/T) is finite (and equal to zero if p does not belong to

a certain finite set). As 2 ·Ker
(

H1
f (F,V/T)→ H1

f (K,V/T)
)
= 0, the same finiteness

result holds over F.

2.10.6 Proof of Theorem B ′ The statement (a) is an immediate consequence

of Theorem B(a). In the case (b1) (resp. (b2)) there exists a finite prime v of F at

which A f does not have potentially good reduction (resp. such that A f ⊗F Fv does

not acquire semistable reduction over any cyclic extension of Fv, by [AT, Chapter 10,

Theorem 5]); thus π( f )v is a twist of a Steinberg representation (resp. is a supercus-

pidal representation), so Theorem B(b) applies. Finally, in the case (c1) (resp. (c2))

Theorem B(c) applies, thanks to B.4.12 (resp. B.6.5(2)).
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A Finite Flat Group Schemes and Their Cohomology

In this appendix we recall basic facts about flat cohomology of finite flat group

schemes over the ring of integers in a finite extension of Qp. The main references

are [Ma] and [Mi2, Section III.1].

A.1 Finite Flat Group Schemes

Let R be a complete DVR of mixed characteristic (0, p), let K (resp. k) be its fraction

field (resp. its residue field).

A.1.1 Denote by GrR the (exact) category of commutative finite flat group schemes

over R. The generic fibre HK of any H ∈ GrR is a finite étale group scheme over K,

which is determined by the GK-module HK(K).

A.1.2 The functor

(A.1.2.1) H 7→ H(K) = HK(K)

from GrR into the category of discrete GK-modules is faithful. In other words, the

map

αH,H ′ : HomGrR
(H,H ′) −→ HomGK

(
H(K),H ′(K)

)

is injective for any H,H ′ ∈ GrR. Moreover,

Coker(αH,H ′)⊗ Z[1/p] = 0.

If the absolute ramification index e = vR(p) of K satisfies e < p−1, then the functor

(A.1.2.1) is fully faithful [Ra2, Corollary 3.3.6] (i.e., αH,H ′ is bijective).

Question A.1.3 In general, is there a constant s depending only on e and p such

that

∀H,H ′ ∈ GrR ps Coker(αH,H ′) = 0 ?

A.1.4 According to [Bo, Theorems A, B] (see also [Li1, Theorem 1.0.5], [Li2, The-

orem 2.4.2] and [VZ, Theorem 1]), the answer is “yes”. However, a much weaker

statement (Corollaries A.1.8–9) is sufficient for our purposes.

A.1.5 Recall [Ra2, Proposition 2.2.2] that the generic fibre HK of any H ∈ GrR

admits a maximal (resp. a minimal) prolongation Hmax ∈ GrR (resp. Hmin ∈ GrR).

By definition, there are canonical morphisms in GrR

Hmax −→ H −→ Hmin

inducing the identity on the generic fibre. Moreover,

Coker(αHmax,H ′
max

) = Coker(αHmin,H ′
min

) = 0.
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A.1.6 For any Barsotti–Tate group H = (Hn)n≥1 over R denote by

in : Hm −→ Hm+n, jn : Hm+n −→ Hm

the standard transition morphisms (the composite maps in jn and jnin are given by

multiplication by pn).

Proposition A.1.7 For each Barsotti–Tate group H ′
= (H ′

n) over R there is an integer

a = a(R,H ′) ≥ 0 such that, for each n ≥ 0, the minimal prolongation (H ′
n+a)min →

(H ′
n)min of ( ja)K : (H ′

n+a)K → (H ′
n)K factors through a morphism

(H ′
n+a)min

φ
−→ H ′

n −→ (H ′
n)min.

Proof We follow the proof of [Ra2, Proposition 2.3.1] for G(n) = (H ′
n)min. The con-

struction in [loc. cit. (b)–(d)] gives an integer i0 ≥ 0 and prolongationsG(n)i0
⊂ G(n)

of (H ′
i0

)K (∀n ≥ i0) such that the quotientsH(n) := G(n+i0)/G(n+i0)i0
(n ≥ 0) have

the following property: for fixed n, the inductive system of the scheme-theoretical

closure of H(n)K = G(n)K in H(n + j) (indexed by j) becomes stationary; its sta-

tionary values Hn form a Barsotti–Tate group (Hn) over R extending
(

(H ′
n)K

)
. The

functor (Hn) 7→ (Hn)K from Barsotti–Tate groups over R to Barsotti–Tate groups

over K being fully faithful [Ta, p. 180], there exists a compatible system of isomor-

phisms in GrR

un : Hn
∼−→ H ′

n.

Set a := i0. The composite morphism

φ : (H ′
n+a)min = G(n + a) −→ H(n) −→ Hn

un−→ H ′
n

has the required property, as it is a prolongation of the morphism ( ja)K : (H ′
n+a)K →

(H ′
n)K.

Corollary A.1.8 For each H ∈ GrR and each f ∈ HomGK

(
H(K),H ′

n+a(K)
)

(n ≥
0) the composite morphism

H(K)
f

−→ H ′
n+a(K)

ja

−→ H ′
n(K)

is of the form αH,H ′
n
( f̃ ) for some f̃ ∈ HomGrR

(H,H ′
n).

Corollary A.1.9 For each H ∈ GrR and each m ≥ 0 pa Coker(αH,H ′
m

) = 0.

A.2 Flat Cohomology

A.2.1 For any H ∈ GrR we denote by Hi
fl(R,H) the cohomology of the sheaf on the

flat site of Spec(R) represented by H [Mi1, II.1.7]. We can consider either the small

or the big site, equipped with any of the following topologies: fpqf, fppf, syntomic;

the cohomology groups Hi
fl(R,H) remain the same [Mi1, III.3.4].
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A.2.2 The functor (A.1.2.1) induces maps into Galois cohomology

Hi
fl(R,H) −→ Hi(K,HK) := Hi

(
GK,HK (K)

)
.

Proposition A.2.3 (Local flat duality [Ma], [Mi2, III.1]) Let H ∈ GrR, let HD ∈ GrR

be its Cartier dual. Assume that K is a finite extension of Qp.

(1) If H is étale over R (e.g., if the order of H is prime to p), then HK (K) is an

unramified GK-module and Hi
fl(R,H) = Hi

et(R,H) = Hi
(

Gk,HK (K)
)

=

H1
ur

(
K,HK (K)

)
.

(2) The map H0
fl(R,H)

∼−→ H0(K,HK) is an isomorphism.

(3) ∀i > 1 Hi
fl(R,H) = 0.

(4) The map H1
fl(R,H) →֒ H1(K,HK) is injective.

(5) Under the (non-degenerate) Tate pairing

H1(K,HK)×H1(K,HD
K)

∪
−→ H2(K,Gm,K)

invK−−−→ Q/Z,

the orthogonal complement of H1
fl(R,H) is equal to H1

fl(R,HD).

(6) For each i ≥ 0 Hi
fl(R,H) is a finite abelian group killed by the order of H (= the

cardinality of H(K)).

A.2.4 Restriction, Corestriction, Conjugation Assume that K is a finite exten-

sion of Qp and K′/K is a finite extension; let R ′ be the ring of integers in K′. For

each H ∈ GrR the standard functoriality of the flat site gives rise to a “restriction

map” resfl which sits, thanks to A.2.3(5), in a commutative diagram with exact rows

(A.2.4.1)

0 // H1
fl(R ′,HR ′) // H1(K ′,HK ′) // Hom

(
H1

fl(R ′,HD
R ′),Q/Z

)
// 0

0 // H1
fl(R,H) //

resfl

OO

H1(K,HK) //

res

OO

Hom
(

H1
fl(R,HD),Q/Z

)
//

OO

0.

Applying A.2.3(5) to this diagram, we obtain a “corestriction map” corfl sitting in a

commutative diagram with exact rows

(A.2.4.2)

0 // H1
fl(R ′,HD

R ′) //

corfl

��

H1(K ′,HD
K ′) //

cor

��

Hom
(

H1
fl(R ′,HR ′),Q/Z

)
//

��

0

0 // H1
fl(R,HD) // H1(K,HD

K) // Hom
(

H1
fl(R,H),Q/Z

)
// 0.
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Similarly, any field automorphism σ : K′ → K′ fixing K gives rise, by functoriality,

to a commutative diagram

(A.2.4.3) H1
fl(R ′,HR ′)

�

� //

σfl

��

H1(K ′,HK ′)

σ

��

H1
fl(R ′,HR ′)

�

� // H1(K ′,HK ′).

Moreover, σfl ◦ resfl = resfl, since σ ◦ res = res.

Proposition A.2.5 The maps from A.2.4 have the following properties.

(1) corfl ◦ resfl = [K′ : K] · id.

(2) If [K′ : K] is prime to p, then resfl is injective, corfl is surjective and the left square

in (A.2.4.1) is cartesian.

(3) More generally, res−1
(

H1
fl(R ′,HR ′)

)
/H1

fl(R,H) is killed by the greatest common

divisor d of [K′ : K] and the order of H.

(4) If K′/K is a Galois extension with Galois group ∆, then resfl ◦ corfl =
∑

σ∈∆
σfl.

The kernel and cokernel of the map

resfl : H1
fl(R,H) −→ H1

fl(R ′,HR ′)∆

is killed by the integer d from (3).

Proof This follows from the corresponding statements for Galois cohomology and

from A.2.3(4) and (6).

Proposition A.2.6 Assume that K is a finite extension of Qp. Let H = (Hn) be a

Barsotti–Tate group over R, let Ht
= (HD

n ) be the dual Barsotti–Tate group. Denote by

Tp(H) := lim←−n
Hn(K) the Tate module of H and set V p(H) = Tp(H)⊗Zp

Qp.

(1) V p(H) is a crystalline representation of GK.

(2) For each m, n ≥ 1 the map jm : Hm+n → Hn induces an isomorphism

H1
fl(R,Hm+n)⊗ Z/pnZ

∼−→ H1
fl(R,Hn).

(3) The Zp-module X(H) := lim←−n
H1

fl(R,Hn) is of finite type and, for each n ≥ 1, there

is a canonical isomorphism X(H)/pnH(H)
∼−→ H1

fl(R,Hn).

(4) The orthogonal complement of X(H) under the (non-degenerate) pairing

H1
(
K,Tp(H)

)
×H1

(
K,Tp(Ht )

) ∪
−→ H2

(
K,Tp(Gm)

)
= H2

(
K,Zp(1)

) ∼−→ Zp

is equal to X(Ht ).

(5) The subgroup X(H) →֒ lim←−n
H1

(
K, (Hn)K

)
= H1

(
K,Tp(H)

)
is equal to the

Bloch–Kato subspace

H1
f

(
K,Tp(H)

)
= Ker

(
H1

(
K,Tp(H)

)
−→ H1

(
K,V p(H)⊗Qp

Bcris

))
.
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Proof (1) This is a theorem of Fontaine [Fo, Theorem 6.2]. The statements (2)

and (3) follow from the exact cohomology sequences attached to

0 −→ Hm

in−→ Hm+n

jm

−→ Hn −→ 0

0 −→ Hn

im−→ Hm+n

jn

−→ Hm −→ 0

and the vanishing of H2
fl(R,H j), while (4) is a consequence of A.2.3(5).

(5) We first prove the inclusion X(H) ⊆ H1
f

(
K,Tp(H)

)
. Let x = (xn) ∈ X(H) ⊂

H1
(
K,Tp(H)

)
. Each element xn ∈ H1

fl(R,Hn) is represented by H̃n ∈ GrR sitting in

an exact sequence (of flat sheaves)

0 −→ Hn −→ H̃n −→ Z/pnZ −→ 0.

The generic fibres (H̃n)K form a Barsotti–Tate group over K; it extends, thanks to

[Ra2, Proposition 2.3.1], to a Barsotti–Tate group H ′
= (H ′

n) over R. By construc-

tion, x is the extension class of the exact sequence of GK-modules

0 −→ Tp(H) −→ Tp(H ′) −→ Zp −→ 0.

As V p(H ′) is a crystalline representation of GK (by (1)), x ∈ H1
f

(
K,Tp(H)

)
, proving

X(H) ⊆ H1
f

(
K,Tp(H)

)
.

Combining the inclusion X(Ht ) ⊆ H1
f

(
K,Tp(Ht )

)
with (4) and the equality [BK,

Proposition 3.8]

H1
f

(
K,Tp(H)

)
= H1

f

(
K,Tp(Ht )

)⊥

we obtain the converse inclusion X(H) ⊇ H1
f

(
K,Tp(H)

)
.

Proposition A.2.7 Let B be a semi-abelian variety over R siting in an exact sequence

0 −→ T −→ B −→ A −→ 0,

where T (resp. A ) is a torus (resp. an abelian scheme) over R.

(1) For each integer m ≥ 1 there is an exact sequence of flat sheaves on Spec(R)

0 −→ B[m] −→ B
m
−→ B −→ 0.

(2) If K is a finite extension of Qp, then H1
fl(R,B) = 0 and the coboundary map in the

exact cohomology sequence of (1) induces an isomorphism

∂R : B(R)⊗ Z/mZ
∼−→ H1

fl(R,B[m]).

Proof (1) [BLRa, Lemma 7.3.2(a)] The vanishing statement in (2) is a consequence

of the isomorphisms

H1
fl(R,B)

∼−→ H1
et(R,B)

∼−→ H1
(

Gk,B(k)
) ∼−→ 0
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(the first one is a theorem of Grothendieck [G1, Theorem 11.7], the second one an

elementary property of étale cohomology of Spec(R) [Mi2, Proposition II.1.1(b)]

and the third one a theorem of Lang [La, Proposition 3]). The exact cohomology

sequence

0 −→ B(R)[m] −→ B(R)
m
−→ B(R) −→ H1

fl(R,B[m]) −→ H1
fl(R,B) = 0

implies that ∂R is an isomorphism.

Proposition A.2.8 In the situation of A.1.7, for each H ∈ GrR, f ∈
HomGK

(
H(K),H ′

n+a(K)
)

(n ≥ 0) and a finite extension K′/K with ring of integers

R ′,

Im
(

H1
fl(R ′,HR ′) −→ H1(K′,HK ′)

f∗
−→ H1

(
K′(H ′

n+a)K ′

) ja∗

−−→ H1
(
K′, (H ′

n)K ′

))

⊆ H1
fl

(
R ′, (H ′

n)R ′

)
.

Proof This follows from Corollary A.1.8 and the fact that the maps A.2.2 are func-

torial in H.

Proposition A.2.9 There exists an integer a ≥ 0 depending on K with the following

property. For each m ≥ 0 and for each H ∈ GrR such that there is an exact sequence of

GK-modules

E : 0 −→ µpm (K) −→ H(K) −→ Z/pmZ −→ 0,

the image of the extension class [E] ∈ H1(K, µpm ) = K×⊗Z/pmZ in K×⊗Z/pm−aZ

is contained in R× ⊗ Z/pm−aZ.

Proof There is an exact sequence in GrR

0 −→ H1 −→ H −→ H2 −→ 0,

where H1 is the scheme-theoretical closure of (µpm )K in H. Applying Proposi-

tion A.1.7 to the Barsotti–Tate group µp∞ over R we obtain an integer a ≥ 0 such

that the surjection

H1(K)
∼−→ µpm (K)

ja

−→ µpm−a (K)

extends to a morphism H1 → µpm−a in GrR. Applying the same argument to HD
2 and

dualising, we see that the inclusion

Z/pm−aZ
ia−→ Z/pmZ

∼−→ H2(K)

extends to a morphism Z/pm−aZ → H2 in GrR. The fibre product H ′ := H ×H2

Z/pm−aZ ∈ GrR sits in an exact sequence in GrR

0 −→ H1 −→ H ′ −→ Z/pm−aZ −→ 0.

Applying the same argument to H ′D and dualising we obtain an exact sequence in GrR

0 −→ µpm−a −→ H ′ −→ Z/pm−aZ −→ 0,

whose K-valued points coincide with E⊗ Z/pm−aZ. It follows that the image of [E]

in H1(K, µpm−a ) = K× ⊗ Z/pm−aZ is contained in the image of H1
fl(R, µpm−a ) =

R× ⊗ Z/pm−aZ→ H1(K, µpm−a ), as claimed.
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A.3 Raynaud Extensions

A.3.1 Let J be an abelian variety over K with semi-abelian reduction, let J be its

Néron model over R. By definition, the connected component of the identity J ◦
s of

the special fibre Js of J is a semi-abelian variety over k.

A.3.2 The Raynaud extension [G2, Section 7] attached to J is a smooth commuta-

tive group scheme G over R with the following properties [FC, Chapters II, III].

(A.3.2.1) The connected component G ◦ is a semi-abelian scheme over R: as in A.2.7

there is an exact sequence

0 −→ T −→ G ◦ −→ A −→ 0.

(A.3.2.2) The quotient G /G ◦ is a finite étale group scheme over R whose special fibre

is isomorphic to J /J ◦
s .

(A.3.2.3) There exist a monomorphism Z → G ◦
K of étale group schemes over K,

where ZKur
∼−→ Zrk(T ) and G ◦(O

K
) ∩ Z(K) = 0, and an isomorphism of

GK-modules

G ◦
K(K)/Z(K)

∼−→ J(K).

(A.3.2.4) For any finite extension K′/K with ring of integers R ′, the following prop-

erties are equivalent:

ZK ′ is a constant group scheme ⇐⇒ TR ′ is a split torus ⇐⇒ JK ′ has

split semiabelian reduction.

A.3.3 The exact Galois cohomology sequence of

0 −→ Z(K) −→ G ◦
K(K) −→ J(K) −→ 0

over a finite extension K′ of K reads as

(A.3.3.1) 0 −→ Z(K′) −→ G ◦
K(K′) −→ J(K′) −→ H1

(
GK ′ ,Z(K)

)
.

If ZK ′ is a constant group scheme, then GK ′ acts trivially on Z(K) and (A.3.3.1)

reduces to

(A.3.3.2) G ◦
K(K′)/Z(K)

∼−→ J(K′).

A.3.4 For each integer m ≥ 1 there is an exact sequence of flat sheaves over Spec(R)

0 −→ T [m] −→ G ◦[m] −→ A [m] −→ 0

and an exact sequence of GK-modules

0 −→ G ◦[m](K) −→ J(K)[m] −→ Z(K)⊗ Z/mZ −→ 0.
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For any finite extension K′ of K denote by

∂K ′ : J(K′)⊗ Z/mZ →֒ H1(K′, J[m]) := H1
(

GK ′ , J(K)[m]
)

(as in 1.7.3) the injective map induced by the cohomology sequence of

0 −→ J[m] −→ J(K)
m
−→ J(K) −→ 0.

Note that there is a commutative diagram (where R ′ is the ring of integers in K′)
(A.3.4.1)

G ◦(R′) ⊗ Z/mZ //

∂R′

��

G ◦

K(K ′) ⊗ Z/mZ //

��

J(K ′) ⊗ Z/mZ

∂
K′

��

TK(K ′) ⊗ Z/mZoo

��

H1
fl(R′,G ◦[m]) // H1(K ′,G ◦[m]) // H1(K ′, J[m]) H1(K ′,T [m]).oo

If ZK ′ is a constant group scheme, then the second map in the top row is surjective.

Proposition A.3.5 Assume that K is a finite extension of Qp. Let K′ be a finite exten-

sion of K, let R ′ be its ring of integers.

(1) ∂K ′

(
Im

(
G ◦
K(K′) ⊗ Z/mZ → J(K′) ⊗ Z/mZ

))
⊆ Im

(
H1(K′,G ◦[m]) →

H1(K′, J[m])
)

.

(2) ∂K ′

(
Im

(
G ◦(R ′) ⊗ Z/mZ → J(K′) ⊗ Z/mZ

))
= Im

(
H1

fl(R ′,G ◦[m]) →
H1(K′, J[m])

)
.

(3) The LHS of (1) is contained in

∂K ′

(
Im

(
G ◦(R ′)⊗ Z/mZ −→ J(K′)⊗ Z/mZ

))

+ Im
(

H1(K′,T [m]) −→ H1(K′, J[m])
)
.

Proof The statements (1) and (2) follow from the commutative diagram (A.3.4.1)

and A.2.7(2). The inclusion (3) is a consequence of the fact that G ◦
K(K′) = TK(K′)+

G ◦(R ′).

Corollary A.3.6 If JK ′ has split semi-abelian reduction, then:

(1) Im(∂K ′) ⊆ Im
(

H1(K′,G ◦[m])→ H1(K′, J[m])
)

.

(2) Im(∂K ′) ⊆ Im
(

H1
fl(R ′,G ◦[m]) → H1(K′, J[m])

)
+ Im

(
H1(K′,T [m]) →

H1(K′, J[m])
)

.

B Galois Images for Cohomological Hilbert Modular Forms

In this appendix we collect basic statements about the images of Galois represen-

tations attached to Hilbert modular forms of regular weight. For elliptic modular

forms, these results were proved by Ribet [Ri1]–[Ri4], [Ri6] and Momose [Mo]. The

case of Hilbert modular forms seems to be well-known, but we have not been able to

find a good reference.
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B.1 Twisted Endomorphisms and the Brauer Group

B.1.1 Assume that we are given the following data: a field L, a group G, an L[G]-

module V (of finite dimension over L) satisfying EndL[G](V ) = L, and a finite group

Γ ⊂ Aut(L) of field automorphisms of L.

We assume, in addition, that the isomorphism class of V is Γ-invariant in the sense

that, for each σ ∈ Γ, there is an isomorphism of L[G]-modules

(B.1.1.1) ασ : σV
∼−→ V.

B.1.2 In concrete terms, after choosing an L-basis of V the action of G on V will be

given by a group homomorphism

ρ : G −→ AutL(V )
∼−→ GLn(L) (n = dimL(V ))

and the isomorphisms (B.1.1.1) by matrices ασ ∈ GLn(L) satisfying

(B.1.2.1) ∀g ∈ G ασ · σρ(g) = ρ(g) · ασ (⇐⇒ Ad(ασ)
(
σρ(g)

)
= ρ(g)).

For each couple σ, τ ∈ Γ the composite map

ασ ◦ σατ ◦ α−1
στ ∈ AutL[G](V )

is given by multiplication by a scalar βσ,τ ∈ L× and the function β = (βσ,τ ) ∈
Z2(Γ, L×) is a 2-cocycle with cohomology class

[β] = δ
(

[P(α)]
)
∈ H2(Γ, L×) = H2(L/LΓ, L×) ⊂ Br(LΓ),

where

δ : H1
(
Γ,PGLn(L)

)
−→ H2(Γ, L×)

is the coboundary arising from the exact sequence

1 −→ L× −→ GLn(L)
P
−→ PGLn(L) −→ 1

and P(α) =
(

P(ασ)
)
∈ Z1

(
Γ,PGLn(L)

)
. If we choose another basis of V , then

P(α) will be replaced by a cohomologous cocycle. Moreover, n[β] = 0 ∈ H2(Γ, L×).

B.1.3 Twisted Action, Twisted Endomorphisms The formula

tw(σ) f := Ad(ασ)(σf ) = ασ ◦ σf ◦ α−1
σ ( f ∈ EndL(V )

∼−→ Mn(L))

defines a twisted action of Γ on W := EndL(V ) (by morphisms of LΓ-algebras). Let

us call the LΓ-subalgebra of endomorphisms invariant by the twisted action of Γ

EndL(V )tw(Γ) ⊂ EndL(V )
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the algebra of “twisted endomorphisms”. According to (B.1.2.1), the morphism of

L-algebras

(B.1.3.1) L[G] −→ EndL(V )

given by the G-action is obtained from a morphism of LΓ-algebras

(B.1.3.2) LΓ[G] −→ EndL(V )tw(Γ)

by extension of scalars via the multiplication map

(B.1.3.3) m : L⊗LΓ EndL(V )tw(Γ) −→ EndL(V ), m(c ⊗ f ) = c f .

Proposition B.1.4 The map (B.1.3.3) is an isomorphism of L-algebras. The ring

EndL(V )tw(Γ) is a central simple algebra over LΓ whose class in the Brauer group of

LΓ is equal to

[EndL(V )tw(Γ)] = [β] ∈ H2(Γ, L×) ⊂ Br(LΓ)

(in particular, this class is killed by n). If, in addition, V is a simple L[G]-module, then

the maps (B.1.3.1) and (B.1.3.2) are surjective.

Proof As H1
(
Γ,AutL(W )

)
= 1, the 1-cocycle

(
Ad(ασ)

)
∈ Z1

(
Γ,AutL(W )

)
is a

coboundary: there exists an L-linear automorphism ϕ of W = EndL(V ), necessarily

of the form ϕ( f ) = a ◦ f ◦ b−1 for some a, b ∈ AutL(V ), such that

∀σ ∈ Γ ∀ f ∈W Ad(ασ) f = ϕ−1 ◦ σϕ( f ).

As a result,

∀σ ∈ Γ ∀ f ∈W ϕ(tw(σ) f ) = σ
(
ϕ( f )

)
,

hence

EndL(V )tw(Γ)
= ϕ−1

(
Mn(LΓ)

)
= {a−1 ◦ f ◦ b | Mn(LΓ)}

(note that ϕ is a morphism of LΓ-algebras iff a = b iff [P(α)] = 0 ∈
H1

(
Γ,PGLn(L)

)
iff [β] = 0 ∈ H2(Γ, L×)).

The map (B.1.3.3) is a surjective morphism of L-algebras, since its image contains

a−1 ◦ L ⊗LΓ Mn(LΓ) ◦ b = Mn(L). A dimension count implies that m is bijective. In

other words, EndL(V )tw(Γ) is an L/LΓ-form of the matrix algebra Mn(LΓ), hence it is

a central simple algebra over LΓ. Its Brauer class in H2(Γ, L×) is represented by the

2-cocycle b = (bσ,τ ) defined as follows: for each σ ∈ Γ there exists aσ ∈ Aut(V )
∼−→

GLn(L) such that m ◦ (σ ⊗ id) = Ad(aσ) ◦ (σ ◦m); then bσ,τ = aσ
σaτa−1

στ ∈ L×. By

definition of the twisted action, we can take aσ = ασ , hence b = β.

If V is a simple L[G]-module, then (B.1.3.1) is surjective by Burnside’s theorem

[CR, Theorem 3.32]. As (B.1.3.1) is obtained from (B.1.3.2) by extension of scalars

and m is an isomorphism, the map (B.1.3.2) must also be surjective.

Proposition B.1.5 The centraliser A of the LΓ-subalgebra EndL(V )tw(Γ) of

EndLΓ(V )
∼−→ Mn|Γ|(LΓ) is a central simple algebra over LΓ satisfying Mn(A)op ∼−→

M|Γ|

(
EndL(V )tw(Γ)

)
. In particular, dimLΓ(A) = |Γ|2 and [A] = −[EndL(V )tw(Γ)] ∈

Br(LΓ).
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Proof According to [Sc, Theorem 4.5], A is a central simple algebra over LΓ. The

remaining statements follow from the isomorphism of LΓ-algebras [Sc, Theorem 4.5]

A⊗LΓ EndL(V )tw(Γ) ∼−→ EndLΓ(V ), a⊗ b 7→ ab.

Proposition B.1.6 The normaliser {g ∈ EndL(V )× | g ◦ EndL(V )tw(Γ) ◦
g−1

= EndL(V )tw(Γ)} of the subring EndL(V )tw(Γ) ⊂ EndL(V ) is equal to(
EndL(V )tw(Γ)

)×
L×

= L×
(

EndL(V )tw(Γ)
)×

.

Proof One inclusion is obvious. To prove the opposite one, let g be an element of

the normaliser. By definition,

∀σ ∈ Γ ∀ f ∈ EndL(V )tw(Γ) g ◦ f ◦ g−1
=

tw(σ)(g ◦ f ◦ g−1) = tw(σ)g ◦ f ◦ tw(σ)g−1,

which implies that g−1 ◦ tw(σ)g centralises L ⊗LΓ EndL(V )tw(Γ)
= EndL(V ), hence

tw(σ)g = cσg for some cσ ∈ L×. As tw(σ)a =
σa for all a ∈ L, the function {cσ} ∈

Z1(Γ, L×) is a 1-cocycle. It follows that cσ =
σbb−1 for some b ∈ L×; thus g =

(gb−1)b with gb−1 ∈
(

EndL(V )tw(Γ)
)×

.

B.2 Automorphic Representations and Galois Representations

Let F be a totally real number field. As in the main body of this article, denote by S∞
(resp. by Sp) the set of all infinite primes (resp. all primes above a rational prime p)

of F.

B.2.1 Automorphic Representations Fix an irreducible cuspidal automorphic

representation π of GL2(AF) whose infinity type is of the form π∞ = ⊗v|∞πv, where

πv is a discrete series representation of weight kv and algebraic central character, with

all kv ≥ 2 of the same parity.

Denote byω : A×
F /F× → C× the central character of π. Unlike in [N2, chapter 12]

or in 0.2 we do not insist on ω being unitary (⇐⇒ of finite order). Our assumptions

imply that ω = | · |mϕ, where m ∈ Z and ϕ : A×
F /F× → C× is a character of finite

order satisfying ϕv(−1) = (−1)kv = (−1)m for all v ∈ S∞. Denote by

S = {v | πv 6= unramified principal series} ⊃ S∞

the (finite) ramification set of π.

B.2.2 Fields of Moduli As in [W1], set

S (πv) = {σ ∈ Aut(C) | σπv
∼−→ πv} (v /∈ S∞)

S (π) = {σ ∈ Aut(C) | σπ ∼−→ π}

and define the field of moduli of πv and π, respectively, to be

Q(πv) := CS (πv), Q(π) := CS (π).
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Note that, for each σ ∈ Aut(C), the representation σπ is also of the form considered

in B.2.1, with infinity type (σπ)∞ = π∞ and central character σω = | · |m σϕ.

Let c ∈ Aut(C) be the complex conjugation. The existence of a hermitian scalar

product on the space of cusp forms implies that, for each σ ∈ Aut(C),

c(σπ ⊗ | · |−m/2)
∼−→ ˜(σπ ⊗ | · |−m/2)

∼−→ σπ ⊗ | · |−m/2 ⊗ ϕ−1,

hence

(B.2.2.1) cσπ ∼−→ σπ ⊗ σϕ−1 ∼−→ σcπ.

Proposition B.2.3 ([W1])

(1) Q(π) is a number field which is either totally real or a CM field. If ϕ = 1, then

Q(π) is totally real.

(2) Q(π) ⊃ Q(ω) := Q
(

Im(ω)
)
= Q

(
Im(ϕ)

)
.

(3) Q(π) ⊃ Q(πv) for all v /∈ S∞.

(4) Q(π) is the compositum of {Q(πv)}v /∈Σ, for any finite set of primes Σ ⊃ S of F.

(5) For each v /∈ S∞, πv has a model over Q(πv).

(6) π has a model over Q(π).

(7) ∀v /∈ S Q(πv) = Q
(
λπ(v), ω(v)

)
, where λπ(v) is the eigenvalue of the Hecke

operator T(v) on the spherical line in πv. Explicitly, πv = π(µ1, µ2) acts by right

translations on the space

B(µ1, µ2) =

{
f : GL2(Fv) −→ C

∣∣∣∣ f

((
a b

0 d

)
g

)
= µ1(a)µ2(d)|ad−1|1/2

v f (g)

}
,

where µi : F× → C× are unramified characters, and λπ(v) =
(
µ1(v) +

µ2(v)
)

(Nv)1/2.

B.2.4 In the situation of B.2.3(7), Q(πv) is equal to the field of definition of the

local Hecke polynomial

PH(πv,X) = 1− λπ(v)X + ω(v)(Nv)X2,

which is related to the local L-factor

L(πv, s) =
[(

1− µ1(v)(Nv)−s
)(

1− µ2(v)(Nv)−s
)]−1

by the following relation:

L(πv, s− 1
2
) = PH

(
πv, (Nv)−s

)−1
.
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B.2.5 Galois Representations From now on (until the end of Appendix B) we

are going to denote the number field Q(π) by L. It is known, thanks to the work

of many people culminating in [T1] (see also [C1]), that for each finite prime p of

L above a rational prime p there exists a representation Vp(π) of GF which is two-

dimensional over Lp, unramified outside S ∪ Sp and which satisfies

∀v /∈ S ∪ Sp det
(

1− XFrgeom(v) | Vp(π)
)
= PH(πv,X).

In other words, {Vp(π)}p is a strongly compatible system of L-rational representa-

tions of GF whose L-function is equal to

LS∞(π, s− 1
2
) =

∏
v∤∞

L(πv, s− 1
2
).

It follows from B.2.4 that

∀σ ∈ Aut(C) Vσ(p)(
σπ)

∼−→ Vp(π)⊗Lp,σ
σ(L)σ(p).

Let us identify characters of finite order of A×
F /F× with characters of GF as in 0.4;

then

(B.2.5.1) Λ
2Vp(π)

∼−→ Lp(−1)⊗ Lp(m)⊗ ϕ = Lp(m− 1)⊗ ϕ.

If f ∈ Sk(n, ϕ) is a Hilbert modular newform of parallel even weight k as in [N2, 12.3]

and π = π( f ) is normalised as in [loc. cit.] by ω = ϕ, then

Vp(π) = Vp( f )(k/2− 1).

In particular, Vp(π) = Vp( f ) for newforms f ∈ S2(n, ϕ) considered in the main

body of this article.

We define the (semi-simplified) residual representation Vp(π)
ss

of Vp(π) to be the

semi-simplification of Tp(π)/pTp(π), for any GF-stable OL,p-lattice Tp(π) ⊂ Vp(π)

(up to isomorphism, Vp(π)
ss

does not depend on the choice of the lattice).

Proposition B.2.6 ([T2])

(1) Vp(π) is an absolutely irreducible Lp[GF]-module.

(2) For all but finitely many p the residual representation Vp(π)
ss

is an absolutely irre-

ducible OL/p[GF]-module.

Proposition B.2.7 The following properties are equivalent:

(1) There exists a finite extension E/F such that Vp(π)|GE
is not an absolutely irreducible

Lp[GE]-module.

(2) There exists a totally imaginary quadratic extension K(π)/F such that π⊗η ∼−→ π,

where η = ηK(π)/F : Gal
(

K(π)/F
) ∼−→ {±1} is the quadratic character corre-

sponding to K(π)/F.

https://doi.org/10.4153/CJM-2011-077-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-077-6


Level Raising and Anticyclotomic Selmer Groups 655

(3) There exists K(π)/F as in (2) such that π = IK(π)/F(ψ) is obtained by automorphic

induction from a Hecke characterψ : A×
K(π)/K(π)× → C× of infinity type ψw(z) =

zaw zbw (aw, bw ∈ Z, |aw − bw| = kv − 1 and aw + bw = m− 1 for each w | v | ∞).

[If they are satisfied, we say that π has complex multiplication by K(π).]

Proof Ribet’s argument [Ri3, Theorem 4.5] for F = Q combined with [He, Theo-

rem 2] works in general (see [N1, Proposition 6.2.1] for a special case).

Proposition-Definition B.2.8 ([Ri2, p. 788]) Let E be a finite extension of F con-

tained in F. The Frobenius field ME attached to π over E is the subfield of L generated

over Q by the traces Tr
(

Frgeom(w) | Vp(π)
)
∈ L (which do not depend on p), for w

running through all primes of E not dividing S. We have MF = L.

B.3 Inner Twists

Let π, L = Q(π) and Vp(π) be as in B.2.1 and B.2.5. Denote by L+ the maximal real

subfield of L.

B.3.1 In order to simplify the notation we are going to write Vp := Vp(π). The

direct sum V p :=
⊕
p|p Vp is a free module of rank 2 over L ⊗ Qp =

∏
p|p Lp. The

action of GF defines a morphism of (L⊗Qp)-algebras

(L⊗Qp)[GF] −→ EndL⊗Qp
(V p) =

∏
p|p

EndLp
(Vp)

∼−→ M2(L⊗Qp) =
∏
p|p

M2(Lp).

Proposition-Definition B.3.2 An inner twist of π is a pair (σ, χ), where σ : L →֒ C

and χ : A×
F /F× → C× is a character such that there exists an isomorphism σπ ∼−→

π ⊗ χ (more precisely, such that there exists an isomorphism σ ′

π ∼−→ π ⊗ χ for some,

hence for each, field automorphism σ ′ ∈ Aut(C) extending σ). Each such a pair has the

following properties.

(1) The character χ is unramified outside S.

(2) ∀v /∈ S σλπ(v) = χ(v)λπ(v).

(3) χ2
=

σω/ω =
σϕ/ϕ.

(4) χ = ϕiµ, where i ∈ Z and µ2
= 1 (=⇒ Im(χ) ⊆ L).

(5) σ(L) ⊆ L, hence σ ∈ Aut(L/Q).

(6) For each rational prime p there is an isomorphism of (L ⊗ Qp)[GF]-modules
σV p

∼−→ V p ⊗ χ (recall from B.2.5 that we identify χ with a character χ : GF −→
L× ⊂ C×).

Proof The arguments from [Mo, Section 1] and [Ri4, Section 3] apply.

Proposition B.3.3

(1) The inner twists of π form a group Γ under (σ, χ) · (σ ′, χ ′) = (σ ◦ σ ′, χ · σχ ′).

(2) The map “forget χ” is a group homomorphism Γ→ Aut(L/Q), (σ, χ) 7→ σ, whose

kernel is trivial (resp. is cyclic of order 2 generated by (id, ηK(π)/F)) if π has no CM

(resp. if π has CM by K(π) as in B.2.7). Consequently, Γ is a finite group.

(3) The image of Γ in Aut(L/Q) is an abelian group.
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(4) If ϕ 6= 1, then (c, ϕ−1) ∈ Γ (if, in addition, π has no CM, then L is not totally

real).

(5) For each p | p in L, the subgroup Γp := {(σ, χ) ∈ Γ | σ(p) = p} ⊂ Γ is equal to

{(σ, χ) | σ ∈ Aut(Lp/Qp), χ : GF −→ L×
p ,

σVp
∼−→ Vp ⊗ χ}.

Proof Again, everything works as in [Mo, Section 1] and [Ri4, Section 3].

Proposition-Definition B.3.4 From now on, until the end of B.5, we assume that π
has no CM. Under this assumption we can identify Γ with a (commutative) subgroup

of Aut(L/Q) and write its elements as (σ, χσ), since χ is determined by σ. For any

subgroup∆ ⊂ Γ denote by F∆ the fixed field of the open subgroup
⋂
σ∈∆

Ker(χσ) ⊆ GF .

(1) F∆ is a finite abelian extension of F unramified outside S.

(2) ∆ ⊂ ∆
′ ⇐⇒ F∆ ⊂ F∆ ′ .

(3) F∆F∆ ′ = F∆∆ ′ .

(4) F{1} = F, F{1,c} = Fϕ := F
Ker(ϕ)

.

(5) FΓ = Fϕ(
√

a1, . . . ,
√

ar) for some a j ∈ F×
ϕ .

(6) Fϕ is totally real (resp. totally complex) if 2 | m (resp. if 2 ∤ m).

(7) If 2 | m, then an intermediate field F ⊂ F ′ ⊂ FΓ is totally real ⇐⇒ it is not totally

complex.

(8) If the prime p
Γ

:= p ∩ LΓ of LΓ splits completely in L+/LΓ, then Γp ⊂ {1, c} and

FΓp
⊂ Fϕ.

Proof Easy exercise.

Definition B.3.5 Set Γtriv = {1} (resp. {1, c}) if ϕ = 1 (resp. if ϕ 6= 1). We say

that π has no non-trivial inner twist if Γ = Γtriv ( ⇐⇒ FΓ = Fϕ). Similarly, we say

that Vp has no non-trivial inner twist if Γp ⊂ Γtriv (⇐⇒ FΓp
⊂ Fϕ).

Proposition-Definition B.3.6 For any field embedding σ : L →֒ Qp let Vσ be the

Qp[GF]-module V p ⊗L⊗Qp ,σ⊗id Qp = Vp ⊗Lp,σ
Qp, where p | p is the prime of L

induced by σ. Let E be a finite extension of F contained in F, let σ, τ : L →֒ Qp be field

embeddings. The following conditions are equivalent.

(1) σ|ME
= τ |ME

.

(2) The Qp[GE]-modules Vσ|GE
and Vτ |GE

are isomorphic.

(3) [In the case when E/F is a Galois extension.] There exists a character

χ : Gal(E/F)→ Q
×
p and an isomorphism of Qp[GF]-modules Vσ

∼−→ Vτ ⊗ χ.

Proof [Ri2, Lemma 4.4.5], [Ri4, Proof of Theorem 4.7], [Ch, Proposition 5.4].

Corollary B.3.7
⋂

E ME = MFΓ
= LΓ.

B.4 Image of the Galois Representation V p (The Non-CM Case)

The assumptions of B.3 are in force. In particular, π does not have CM.
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B.4.1 Fix a rational prime p and denote by

ρp : GF −→ EndL⊗Qp
(V p)

∼−→ GL2(L⊗Qp)

the morphism given by the action of GF on V p.

The restriction of ρp to GFΓ
gives rise to a semi-local version of the situation

considered in B.1 (for G = GFΓ
): for each σ ∈ Γ there is an isomorphism of

(L ⊗ Qp)[GFΓ
]-modules ασ : σV

∼−→ V . The corresponding subalgebra of twisted

endomorphisms

D(p) := EndL⊗Qp
(V p)tw(Γ) ⊂ EndL⊗Qp

(V p)
∼−→

∏
p|p

M2(Lp)

is an Azumaya algebra with centre (L⊗Qp)Γ = LΓ ⊗Qp
∼−→ ∏
p
Γ
|p

(LΓ)p
Γ
. It satisfies

(L⊗Qp)⊗(LΓ⊗Qp) D(p)
∼−→ EndL⊗Qp

(V p)

and its class in

H2
(
Γ, (L⊗Qp)×

)
=

⊕
p
Γ
|p

H2(Γp, L
×
p ) ⊂

⊕
p
Γ
|p

Br
(

(LΓ)p
Γ

)

is killed by 2 (above, p
Γ

runs through all primes of LΓ above p, p | p
Γ

is any prime of

L above p
Γ

and Γp = Gal(Lp/(LΓ)p
Γ
) ⊂ Γ is — as in B.3.3(5) — the decomposition

group of p in L/LΓ). In other words,

D(p) =
⊕
p
Γ
|p

D(p
Γ

), D(p
Γ

) is a quaternion algebra over (LΓ)p
Γ
.

Proposition B.4.2 Let p be any rational prime.

(1) The restriction of ρp to GFΓ
defines a surjective morphism of L ⊗ Qp-algebras

(L ⊗ Qp)[GFΓ
] → EndL⊗Qp

(V p), which is obtained by extension of scalars from

a surjective morphism of LΓ ⊗Qp-algebras (LΓ ⊗Qp)[GFΓ
]→ D(p).

(2) If 2 | m, then ρp(GFϕ) ⊆ GL2(L+ ⊗ Qp), in a suitable basis of V p (this is also true

if π has complex multiplication).

Proof (1) Combine B.1.4 with B.2.6(1).

(2) The argument of [Ri3, Corollary 5.2] applies.

Corollary B.4.3 For each rational prime p the GFΓ
-action on V p factors through

ρp : GFΓ
−→ {x ∈ D(p)× | Nrd(x) ∈ χcycl,p(GFΓ

)m−1},

where m ∈ Z is as in B.2.1 and χcycl,p : GQ → Z×
p is the cyclotomic character.

Proof As FΓ ⊃ Fϕ, the formula (B.2.5.1) implies that (Λ2V p)|GFΓ
= χm−1

cycl,p|GFΓ
.
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Corollary B.4.4 For each rational prime p the Lie algebra (over Qp) gp :=

Lie
(
ρp(GFΓ

)
)
⊂ D(p) is contained in hp := {x ∈ D(p) | Trd(x) ∈ (m− 1)Qp}.

Theorem B.4.5 For each rational prime p we have gp = hp.

Proof The arguments in [Mo, Theorem 4.1] and [Ri4, Proposition 4.5] apply almost

word by word. For the reader’s convenience we repeat the main points. There is an

isomorphism of Qp-algebras

D(p)⊗Qp
Qp

∼−→ ∏
σ:LΓ→֒Qp

M2(Qp)

such that, for each field embedding σ : LΓ →֒ Qp, the composite morphism

ρσ : GFΓ

ρp

−→ D(p)× →֒
(

D(p)⊗Qp
Qp

)× ∼−→ ∏
σ:LΓ→֒Qp

GL2(Qp)
prσ
−−→ GL2(Qp)

corresponds to the action of GFΓ
on Vσ ′ |GFΓ

, where σ ′ : L →֒ Qp is any embedding

extending σ (see B.3.6 above). As Vσ ′ |GE
is an irreducible representation of GE, for

any finite extension E/F, the Lie algebra (over Qp) gσ := Lie
(
ρσ(GFΓ

)
)
⊂ gl2(Qp) is

a reductive Lie subalgebra acting irreducibly on Q
2

p; thus gσ contains sl2(Qp).

The Lie subalgebra gp⊗Qp
Qp ⊂

∏
σ:LΓ→֒Qp

gσ has the following property: for two

distinct embeddings σ, τ : LΓ →֒ Qp the Qp[GFΓ
]-modules Vσ ′ |GFΓ

and Vτ ′ |GFΓ
are

not isomorphic, by B.3.6. This implies that (prσ×prτ )(gp⊗Qp
Qp) contains sl2(Qp)×

sl2(Qp); this is enough to conclude that gp ⊗Qp
Qp contains

∏
σ : LΓ→֒Qp

sl2(Qp), by

[Ri4, Lemma 4.6]. Finally, the image of gp ⊗Qp
Qp in

∏
σ : LΓ→֒Qp

gl2(Qp)/sl2(Qp) is

given by det(V p)|GFΓ
= χm−1

cycl,p|GFΓ
.

Corollary B.4.6 (1) For each rational prime p the GF-action on V p factors through

ρp : GF −→ {x ∈ D(p)×(L⊗Qp)× | Nrd(x) ∈ χcycl,p(GF)m−1 Im(ϕ)}.

(2) For each rational prime p and each finite extension E/FΓ we have

Im
(

Qp[GE] −→ EndQp
(V p)

)
= D(p).

Proof (1) As GFΓ
is a normal subgroup of GF , the image of GF under ρp normalises

gp + (L⊗Qp) id = D(p). The statement follows from a semi-local version of B.1.6.

(2) D(p) contains the LHS, which in turn contains the Qp-algebra generated by

the Lie algebra gp = hp, namely D(p).

Definition B.4.7 let p be a finite prime of L. We say that the representation Vp is

quaternionic if the quaternion algebra D(p
Γ

) (where p
Γ
= p∩ LΓ) is a division algebra

(this depends only on the Γ-orbit of p).
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Proposition B.4.8

(1) If p is unramified in L/LΓ and Vp is quaternionic, then the residual representation

Vp(π)
ss

is reducible.

(2) The set of p for which Vp is quaternionic is finite.

(3) There exists a quaternion algebra D over LΓ such that D ⊗ Qp
∼−→ D(p) for each

rational prime p (hence D(p
Γ

)
∼−→ D⊗LΓ (LΓ)p

Γ
for each finite prime p

Γ
of LΓ).

Proof Thanks to B.2.6(2) it is enough to prove (1). Denote by O the (unique) max-

imal order of the quaternion division algebra D(p
Γ

). As Lp/(LΓ)p
Γ

is unramified, the

maximal (bilateral) ideal of O is of the form aO = Oa, where a2 is a uniformiser

of (LΓ)p
Γ
, hence of Lp. According to B.4.6, the image of the compact group GF in

AutLp
(Vp) is contained in the maximal compact subgroup O×O×

L,p of D(p
Γ

)×L×
p .

The image of O under that map O ⊂ M2(OL,p) → M2(OL/p) is isomorphic to

O/a2O
∼−→ k[ε]/(ε2), where k = O/aO. This implies that, possibly after conju-

gation by an element of GL2(OL/p), the image of O is contained in

R =
{(x y

0 x

) ∣∣ x, y ∈ OL/p
}
⊂ M2(OL/p).

Consequently, the image of O×O×
L,p, hence of GF , is contained in R×, which

proves (1).

B.4.9 It is likely that there exists a (unique) quaternion algebra D as in B.4.8(3)

which is totally indefinite (resp. totally definite) if 2 | m (resp. if 2 ∤ m). In the case

F = Q this was proved in [Mo, Theorem 3.1.2].

Theorem B.4.10 There exists a quaternion algebra D over LΓ such that:

(1) For each rational prime p the representation ρp factors through

ρp : GFΓ
−→ (D⊗Qp)× ⊂

(
(D⊗LΓ L)⊗Qp

)× ∼−→ GL2(L⊗Qp),

ρp : GF −→ (D⊗Qp)×(L⊗Qp)× ⊂ GL2(L⊗Qp).

(2) For each rational prime p the image ρp(GFΓ
) is an open subgroup of

{x ∈ (D⊗Qp)× | Nrd(x) ∈ χcycl,p(GFΓ
)m−1}.

(3) For all but finitely many rational primes p there is a basis of V p over L ⊗ Qp in

which

ρp(GFΓ
) = {x ∈ GL2(OLΓ ⊗ Zp) | det(x) ∈ (Z×

p )m−1}.

Proof (1) This is a combination of B.4.2(1), B.4.6, and B.4.8(3). The statement (2)

is equivalent to B.4.5. Finally, (3) is proved exactly as in [Ri6, Theorem 3.1].

https://doi.org/10.4153/CJM-2011-077-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-077-6


660 J. Nekovář

B.4.11 Modular Abelian Varieties Over F Assume that m = 2 and kv = 2 for

each v ∈ S∞. It is expected that there exists an abelian variety A over F with the

following properties:

dim(A) = [L : Q], EndF(A) = OL, ∀p V p = H1
et(A⊗F F,Qp)(1).

The existence of A is known if 2 ∤ [F : Q] or if there exists a finite prime v of F for

which πv is not a principal series representation (in this case A can be constructed as

a quotient of the Jacobian of a suitable Shimura curve over F).

Proposition B.4.12 (1) There exists a quaternion algebra D over LΓ such that

EndQ(A)⊗Q = EndFΓ
(A)⊗Q

∼−→
{

M|Γ|(LΓ), if D
∼−→ M2(LΓ)

M|Γ|/2(D), if D is a division algebra

and D⊗Qp
∼−→ D(p) for each rational prime p.

[Recall that π does not have CM, by assumption; this means that A does not have

CM, either.]

(2) Vp = H1
et(A ⊗F F,Qp)(1) ⊗L⊗Qp

Lp is quaternionic in the sense of B.4.7 iff the

central simple algebra
(

EndQ(A) ⊗ Q
)
⊗LΓ (LΓ)p

Γ
(where p

Γ
= p ∩ LΓ) has a

non-zero class in Br
(

(LΓ)p
Γ

)
.

Proof It is enough to prove (1). For any finite extension E/FΓ, the Faltings isogeny

theorem tells us that EndE(A) ⊗ Qp is equal to the centraliser of Im
(

Qp[GE] →
EndQp

(V p)
)
= D(p) in EndQp

(V p). As LΓ ⊗Qp = Z
(

D(p)
)
⊆ Z

(
EndE(A)⊗Qp

)
,

we deduce that EndE(A)⊗Qp coincides with the centraliser of D(p) in EndLΓ⊗Qp
(V p),

hence is isomorphic to

EndE(A)⊗Qp
∼−→

{
M|Γ|(LΓ ⊗Qp), if D(p)

∼−→ M2(LΓ ⊗Qp)

M|Γ|/2

(
D(p)

)
, if not,

thanks to a semi-local version of B.1.5. As L ⊂ EndE(A)⊗Q and Z
(

EndE(A)⊗Qp

)
=

LΓ ⊗ Qp, it follows that EndE(A)⊗ Q is a central simple algebra over LΓ which does

not depend on E ⊃ FΓ, whose class in Br(LΓ) is killed by 2 and whose localisations

at finite primes are given by the above formula. The statement (1) is implied by these

properties.

B.5 Image of the Galois Representation Vp (The Non-CM Case)

The assumptions of B.3 are in force. In particular, π does not have CM. Let K be a

totally imaginary quadratic extension of F.

B.5.1 For a prime p of L above a rational prime p we denote by

ρp : GF −→ AutLp
(Vp)

∼−→ GL2(Lp)
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the morphism defining the action of GF on Vp and by F(Vp) := F
Ker(ρp) the extension

of F trivialising ρp. As before, we denote by p
Γ
= p ∩ LΓ the prime of LΓ below p and

by Γp ⊂ Γ the decomposition group of p in the extension L/LΓ.

Theorem B.5.2 ρp(GFϕFΓp
) is an open subgroup of {x ∈ D(p

Γ
)× | Nrd(x) ∈

(Z×
p )m−1}. For all but finitely many p there exists a basis of Vp in which

ρp(GFϕFΓp
) = {x ∈ GL2(OLΓ,p

Γ

) | det(x) ∈ (Z×
p )m−1} (p

Γ
= p ∩ LΓ).

Proof The proof of B.4.5 (resp. B.4.10(3)) applies with trivial modifications (taking

into account B.3.3(5)).

Proposition B.5.3 If the field FϕFΓp
is not totally complex ( ⇐⇒ 2 | m and FΓp

is

totally real), then Vp is not quaternionic.

Proof Let c ∈ GFϕFΓp
be the complex conjugation with respect to some real prime

of FϕFΓp
. The element ρp(c) ∈ D(p

Γ
)× ⊂ GL2(Lp) has two distinct eigenvalues

±1 ∈ Qp ⊂ Z
(

D(p
Γ

)
)

, which implies that D(p
Γ

) is not a division algebra.

B.5.4 As in Theorem A in the Introduction to this article, consider the following

conditions on g ∈ GF :

(A1) g acts trivially on Fϕ (⇐⇒ ϕ(g) = 1);

(A2) ρp(g) ∈ GL2(Lp) has eigenvalues λ1, λ2 ∈ L×
p satisfying λ2

1 = 1 6= λ2
2;

(A3) g does not act trivially on K.

Proposition B.5.5

(1) Any g ∈ GF satisfying (A1) and (A2) acts trivially on FϕFΓp
.

(2) There exists g ∈ GF satisfying (A1) and (A2) ⇐⇒ Vp is not quaternionic.

(3) If there exists g ∈ GF satisfying (A1)–(A3), then Vp is not quaternionic and K 6⊂
FϕFΓp

.

(4) If Vp is not quaternionic and K 6⊂ FϕFΓp
F(Vp), then there exists g ∈ GF satisfying

(A1)–(A3).

(5) If 2 | m and FΓp
is totally real, then there exists g ∈ GF satisfying (A1)–(A3).

(6) If 2 | m and if p
Γ

splits completely in L+/LΓ, then there exists g ∈ GF satisfying

(A1)–(A3).

(7) For all but finitely many p satisfying K 6⊂ FϕFΓp
there exists g ∈ GF satisfying

(A1)–(A3).

(8) If K 6⊂ FΓ, then for all but finitely many p there exists g ∈ GF satisfying (A1)–(A3).

(9) If K ⊂ FΓ, then the set of primes p
Γ

of LΓ for which there exists (for each p | p
Γ

in

L) an element g ∈ GF satisfying (A1)–(A3) has density equal to at least 1 − [Fϕ :

F]/|Γ| ≥ 1/2.

(10) If 2 | m and if Vp has no non-trivial inner twist in the sense of B.3.5, then there

exists g ∈ GF satisfying (A1)–(A3).
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Proof (1) As g satisfies (A1) and (A2), we have ±λ2 = det
(
ρp(g)

)
=

χcycl,p(g)m−1ϕ(g) = χcycl,p(g)m−1 ∈ Qp. If (σ, χσ) ∈ Γp, then σVp
∼−→ Vp ⊗ χσ ,

which implies that 0 6= λ1 + λ2 =
σ(λ1 + λ2) = χσ(g)(λ1 + λ2), hence χσ(g) = 1, as

claimed.

(2) If Vp is not quaternionic, then D(p
Γ

)
∼−→ M2

(
(LΓ)p

Γ

)
and B.5.2 implies that

there exists g ∈ GF which acts trivially on FϕFΓp
and for which ρp(g) =

(
1 0
0 u

)
with

u ∈ Z×
p , u2 6= 1. Conversely, if there exists g ∈ GF satisfying (A1) and (A2), then g

acts trivially on FϕFΓp
(by (1)), hence ρp(g) is an element of D(p

Γ
)× ⊂ GL2(Lp) with

two distinct eigenvalues lying in Qp ⊂ Z
(

D(p
Γ

)
)

; thus D(p
Γ

) cannot be a division

algebra.

(3), (4) Both statements follow immediately from (1) and (2).

(5) Firstly, the assumptions imply that Vp is not quaternionic, thanks to B.3.4(6)–

(7) and B.5.3. Secondly, we can choose an isomorphism D(p
Γ

)
∼−→ M2

(
(LΓ)p

Γ

)
in

such a way that ρp : GFϕFΓp
→ GL2

(
(LΓ)p

Γ

)
will map the complex conjugation c with

respect to some real place of FϕFΓp
to the matrix

(
1 0
0 −1

)
. According to B.5.2 there

exists h ∈ GF which acts trivially on FϕFΓp
K and for which ρp(h) =

(
1 0
0 a

)
, a ∈ Z×

p .

The element g = ch ∈ GF then satisfies (A1)–(A3).

(6) Combine (5) with B.3.4(6) and B.3.4(8).

(7) Thanks to (4) it is enough to show that there are only finitely many p ∤ 6

satisfying K 6⊂ FϕFΓp
and K ⊂ FϕFΓp

F(Vp). Fix a GF-stable OL,p-lattice T ⊂ Vp;

then F(Vp) =
⋃

n≥1 F(T/pnT), where F(T/pnT) is the fixed field of Ker
(

GF →
Aut(T/pnT)

)
. As F(Vp)/F(T/pT) is a pro-p-extension and p 6= 2, the field K

satisfies FϕFΓp
( FϕFΓp

K ⊆ FϕFΓp
F(T/pT). According to B.5.2 (see also [Di,

Prop. 0.1(ii)]), the Galois group G := Gal
(

FϕFΓp
F(T/pT)/FϕFΓp

)
is equal to

{
x ∈ GL2

(
k(p

Γ
)
)
| det(x) ∈ (F×

p )m−1
}

, for all but finitely many p. As p > 3,

the commutator of G contains SL2

(
k(p

Γ
)
)

[Gr, Theorem 1.9], which implies that

FϕFΓp
( FϕFΓp

K ⊆ FϕFΓp
(µp), which can happen only for finitely many p (since

there are only finitely many possible values of FΓp
).

(8) This is an immediate consequence of (7).

(9) If p is unramified in L/LΓ, then Γp ⊂ Γ is cyclic, generated by the

Frobenius element σ(p
Γ

) = Frgeom(p
Γ

). If K ⊂ FϕFΓp
, then the restriction

of χσ(p
Γ

) to Gal(FΓ/Fϕ)
∼−→ (Z/2Z)r must be equal to the quadratic character

ηFϕK/Fϕ : Gal(FΓ/Fϕ)→ {±1} associated to the quadratic extension FϕK/Fϕ, which

implies that χσ(p
Γ

) = χ0ϕ
i for a fixed character χ0 of Gal(FΓ/F) extending ηFϕK/Fϕ

and some integer i ∈ Z. It follows that χσ(p
Γ

), hence σ(p
Γ

) ∈ Γ, has only [Fϕ : F]

possible values for which K ⊂ FϕFΓp
. The remaining |Γ|−[Fϕ : F] values correspond

to a set of primes p
Γ

of LΓ of density 1 − [Fϕ : F]/|Γ| ≥ 1/2 for which K 6⊂ FϕFΓp
,

for each p | p
Γ

; we conclude by (7).

(10) Combine (5) with B.3.4(6).
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B.6 The Case of Complex Multiplication

Assume that π = IK(π)/F(ψ) is as in B.2.7 and that 2 | m. Let K be a totally imaginary

quadratic extension of F.

B.6.1 The Hecke character ψ : A×
K(π)/K(π)× → C× can be written as

ψ(x) = ψalg(x)r(x∞)−1,

where

ψalg : A×
K(π) −→ L̃×

is an algebraic Hecke character with values in a finite extension L̃ ⊂ C of L and

r : RK(π)/QGm −→ RL ′/QGm

(for a suitable totally imaginary quadratic extension L ′ ⊂ L̃ of L+; L ′
= L if ϕ 6= 1)

is a morphism of algebraic tori satisfying

∀x ∈ K(π)× ψalg(x) = r(x).

The infinity type of ψ is related to r by the formula

∀x∞ ∈
(

K(π)⊗ R
)×

ψ∞(x∞) = r(x∞)−1.

B.6.2 For each rational prime p the action of GK(π)Fϕ ⊂ GF on V p is given (via the

reciprocity map) by the character

ψ(p) : A×
K(π)Fϕ

/
(

K(π)Fϕ
)× −→ (L ′ ⊗Qp)×

=
∏
p ′|p

L ′×
p ′ ⊂ GL2(L+ ⊗Qp) =

∏
p

+
|p

GL2(L+
p

+
),

ψ(p)(x) = ψalg

(
N(x)

)
r
(

N(xp)
)−1

, N = NK(π)Fϕ/K(π).

Consequently, the action of GK(π)Fϕ on Vp is given by the projection ψ(p) of ψ(p) to∏
p ′|p

+
, where p+ = p ∩ L+:

ψ(p) : A×
K(π)Fϕ

/
(

K(π)Fϕ
)× −→ (L ′ ⊗L+ L+

p
+
)× =

∏
p ′|p

+

L ′×
p ′ ⊂ GL2(L+

p
+
).

In particular, if p+ splits in L ′/L+, then Im(ψ(p)) is contained (after conjugation) in

the split Cartan subgroup (L+
p

+
)×× (L+

p
+
)× ⊂ GL2(L+

p
+
). If p+ does not split in L ′/L+,

then Im(ψ(p)) is contained in a non-split Cartan subgroup L ′×
p ′ ⊂ GL2(L+

p
+
), where p ′

is the unique prime of L ′ above p+.
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Proposition B.6.3

(1) For each rational prime p the Galois image

ρp(GK(π)Fϕ) = Im(ψ(p)) ⊂ (L ′ ⊗Qp)× ⊂ GL2(L⊗Qp)

contains r (an open subgroup of
(

K(π)⊗Qp

)×
).

(2) For all but finitely many rational primes p the image Im(ψ(p)) contains

r
(

(OK(π) ⊗ Zp)×
)

.

Proof (1) As Ker(ψalg) is open, there exists an open subgroup of
(

K(π)⊗Qp

)×
on

which ψ(p)
= r−1.

(2) For all but finitely many p the norm map

N : (OK(π)Fϕ ⊗ Zp)× −→ (OK(π) ⊗ Zp)×

is surjective and (OK(π) ⊗ Zp)× ⊂ Ker(ψalg).

B.6.4 Consider the following conditions on g ∈ GF corresponding to the CM case

of Theorem A:

(A1) g acts trivially on Fϕ (⇐⇒ ϕ(g) = 1);

(A2) ρp(g) ∈ GL2(Lp) has eigenvalues λ1, λ2 ∈ L×
p satisfying λ2

1 = 1 6= λn
2 (∀n ≥ 1);

(A3) g does not act trivially on K.

Proposition B.6.5

(1) Any g ∈ GF satisfying (A1) and (A2) acts trivially on FϕK(π).

(2) There exists g ∈ GF satisfying (A1) and (A2) if and only if p+ splits in L ′/L+

and Im(ψ(p)) ⊂ (L+
p

+
)× × (L+

p
+
)× contains an open subgroup of Z×

p × Z×
p ,

if and only if p+ splits in L ′/L+ and ψ(p)
= ψ1 ⊕ ψ2, where the characters

ψi : A×
K(π)Fϕ

/
(

K(π)Fϕ
)× → (L+

p
+
)× are such that ψ2

(
Ker(ψ1)

)
is infinite.

(3) If there exists g ∈ GF satisfying (A1)–(A3), then K 6⊂ FϕK(π) (⇔ K(π) 6⊂ FϕK),

p+ splits in L ′/L+ and Im(ψ(p)) contains an open subgroup of Z×
p × Z×

p .

(4) If K 6⊂ FϕK(π)F(Vp) and if there exists g ′ ∈ GF satisfying (A1) and (A2), then

there exists g ∈ GF satisfying (A1)–(A3).

(5) There exists a constant b(ψ) depending only onψ such that for each p for which there

exists g ∈ GF satisfying (A1) and (A2) the image Im(ψ(p)) contains a subgroup of

Z×
p × Z×

p of index≤ b(ψ).

(6) If p+ splits in L ′/L+ and L+
p

+

∼−→ Qp, then there exists g ∈ GF satisfying (A1) and

(A2).

(7) If K(π) 6⊂ FϕK, then K 6⊂ FϕK(π)F(Vp) holds for all but finitely many p.

(8) If K(π) 6⊂ FϕK, then for all but finitely many p for which there is g ′ ∈ GF satisfying

(A1) and (A2) there exists g ∈ GF satisfying (A1)–(A3).

Proof (1) If g ∈ GF satisfying (A1) and (A2) acts non-trivially on FϕK(π), then

ρp(g) lies in the normaliser of a Cartan subgroup C ⊂ GL2(L+
p

+
) but not in C itself.

This implies that Tr
(
ρp(g)

)
= 0, in contradiction with (A2).
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(2) If g ∈ GF satisfies (A1) and (A2), then both eigenvalues of ρp(g) belong to L+
p

+
,

since ±λ2 = det
(
ρp(g)

)
= χcycl,p(g)m−1 ∈ Zp. As a result, any Cartan subgroup of

GL2(L+
p

+
) containg ρp(g) must be split; thus p+ splits in L ′/L+. Furthermore, Im(ψ(p))

contains ρp(g2)Zp = {1} × (λ2
2)Zp and ρp(cg2c−1)Zp = (λ2

2)Zp × {1} (where c ∈ GFϕ ,

c /∈ GK(π)Fϕ), hence it contains an open subgroup of Z×
p ×Z×

p . The remaining impli-

cations are easy (using the fact that ψ1ψ2 = χm−1
cycl,p|GK(π)Fϕ

and ψ2(h) = ψ1(chc−1) for

all h ∈ GK(π)Fϕ).

(3) and (4) are immediate consequences of (1) and (2).

(5) This follows from [Ri5, Theorem 2.4] combined with B.6.3(2).

(6) If not, then ψ(p)
= ψ1 ⊕ ψ2 with ψi : GK(π)Fϕ → Z×

p such that ψ2

(
Ker(ψ1)

)

is finite. As ψ1ψ2 = χm−1
cycl,p|GK(π)Fϕ

, it follows that there exist integers a1, a2, b (b 6= 0)

such that ψb
i = χai

cycl,p|GK(π)Fϕ
, a1 + a2 = b(m − 1). On the other hand, ψ2(h) =

ψ1(chc−1) as in (2) above, which implies that a1 = a2, hence ψ2
i /χ

m−1
cycl,p is a character

of finite order of GK(π)Fϕ , which is impossible, since 2 ∤ (m−1) and ψi is a potentially

crystalline representation at each prime of K(π)Fϕ above p.

(7) The equivalences [K ⊂ FϕK(π) ⇐⇒ FϕK = FϕK(π) ⇐⇒ FϕK ⊃ K(π)]

imply that K 6⊂ FϕK(π). If p 6= 2 and K ⊂ FϕK(π)F(Vp), then FϕK(π) (
FϕK(π)K ⊂ FϕK(π)F(T/pT), as in the proof of B.5.5(7). The Galois group

Gal
(

FϕK(π)F(T/pT)/FϕK(π)
)

injects into k(p+)×× k(p+)× (k(p+) = OL+/p+), with

the non-trivial element of Gal
(

FϕK(π)/Fϕ
)

interchanging the two factors. It fol-

lows that FϕK(π)F(T/pT)/FϕK(π) has at most one quadratic subextension which is

a Galois extension of Fϕ, namely the one contained in Fϕ(µp)K(π). Consequently,

FϕK(π)K ⊂ Fϕ(µp)K(π), which is possible for only finitely many p.

(8) Combine (4) and (7).

Question B.6.6 Is there an explicit criterion for deciding whether Im(ψ(p)) contains

an open subgroup of Z×
p × Z×

p ?
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Festschrift I, Progr. Math. 86, Birkhäuser, Boston, Basel, Berlin, 1990, 333–400.

[Bo] M. V. Bondarko, The generic fiber of finite group schemes; a “finite wild” criterion for good
reduction of abelian varieties. (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 70(2006), 21–52;
English translation in: Izv. Math. 70(2006), 661–691.

[BLRa] S. Bosch, W. Lütkebohmert and M. Raynaud, Néron Models. Ergeb. Math. Grenzgeb. (3) 21,
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[Ra2] , Schémas en groupes de type (p, . . . , p). Bull. Soc. Math. France 102(1974), 241–280.
[Ri1] K. Ribet, On ℓ-adic representations attached to modular forms. Invent. Math. 28(1975),

245–275. http://dx.doi.org/10.1007/BF01425561

[Ri2] , Galois action on division points of Abelian varieties with real multiplications. Amer. J.
Math. 98(1976), 751–804. http://dx.doi.org/10.2307/2373815

[Ri3] , Galois representations attached to eigenforms with nebentypus. In: Modular forms in
one variable V (J.-P. Serre and D. B. Zagier, eds.), Lecture Notes in Math. 601, Springer, Berlin,
1977, 17–52.

[Ri4] , Twists of modular forms and endomorphisms of abelian varieties. Math. Ann.
253(1980), 43–62. http://dx.doi.org/10.1007/BF01457819

[Ri5] , Division fields of Abelian varieties with complex multiplication. Mém. Soc. Math. France
(2) 2(1980), 75–94.

[Ri6] , On ℓ-adic representations attached to modular forms II. Glasgow Math. J. 27(1985),
185–194. http://dx.doi.org/10.1017/S0017089500006170

[Ri7] , On modular representations of Gal(Q/Q) arising from modular forms. Invent. Math.
100(1990), 431–476. http://dx.doi.org/10.1007/BF01231195

[Ru] K. Rubin, Euler systems. Ann. of Math. Stud. 147, Princeton University Press, Princeton, 2000.
[S] C.-H. Sah, Automorphisms of finite groups. J. Algebra 10(1968), 47–68.

http://dx.doi.org/10.1016/0021-8693(68)90104-X

[Sa] H. Saito, On Tunnell’s formula for characters of GL(2). Compos. Math. 85(1993), 99–108.
[Sc] W. Scharlau, Quadratic and Hermitian Forms. Grundlehren Math. Wiss. 270, Springer, Berlin,

1985.
[Sk] C. Skinner, A note on p-adic Galois representations attached to Hilbert modular forms. Doc.

Math. 14(2009), 241–258.
[Ta] J. Tate, p-divisible groups. In: Proceedings of a conference on local fields (Driebergen, 1966),

Springer, Berlin, 1967, 158–183.
[T1] R. Taylor, On Galois representations associated to Hilbert modular forms. Invent. Math. 98

(1989), 265–280. http://dx.doi.org/10.1007/BF01388853

https://doi.org/10.4153/CJM-2011-077-6 Published online by Cambridge University Press

http://arxiv.org/abs/1004.3424
http://dx.doi.org/10.1016/j.jnt.2009.07.004
http://dx.doi.org/10.2307/2373327
http://dx.doi.org/10.1007/BF01446282
http://dx.doi.org/10.1515/crll.2001.058
http://dx.doi.org/10.1007/BF01425561
http://dx.doi.org/10.2307/2373815
http://dx.doi.org/10.1007/BF01457819
http://dx.doi.org/10.1017/S0017089500006170
http://dx.doi.org/10.1007/BF01231195
http://dx.doi.org/10.1016/0021-8693(68)90104-X
http://dx.doi.org/10.1007/BF01388853
https://doi.org/10.4153/CJM-2011-077-6


668 J. Nekovář

[T2] , On Galois representations associated to Hilbert modular forms II. In: Elliptic Curves,
Modular Forms and Fermat’s Last Theorem (J. Coates and S. T. Yau, eds.), International Press,
1997, 333–340.

[TZ] Y. Tian and S.-W. Zhang, in preparation.
[Tu] J. Tunnell, Local ε-factors and characters of GL2. Amer. J. Math. 105(1983), 1277–1308.

http://dx.doi.org/10.2307/2374441

[V] Y. Varshavsky, P-adic uniformization of unitary Shimura varieties II. J. Differential Geom.
49(1998), 75–113.

[VZ] A. Vasiu and T. Zink, Boundedness results for finite flat group schemes over discrete valuation
rings of mixed characteristics. arxiv:0911.2474.
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