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The modelling of natural convection in porous media is receiving increased interest due to
its significance in environmental and engineering problems. State-of-the-art simulations
are based on the classic macroscopic Darcy–Oberbeck–Boussinesq (DOB) equations,
which are widely accepted to capture the underlying physics of convection in porous
media provided the Darcy number, Da, is small. In this paper we analyse and extend the
recent pore-resolved direct numerical simulations (DNS) of Gasow et al. (J. Fluid Mech,
vol. 891, 2020, p. A25) and show that the macroscopic diffusion, which is neglected in
DOB, is of the same order (with respect to Da) as the buoyancy force and the Darcy
drag. Consequently, the macroscopic diffusion must be modelled even if the value of Da
is small. We propose a ‘two-length-scale diffusion’ model, in which the effect of the pore
scale on the momentum transport is approximated with a macroscopic diffusion term. This
term is determined by both the macroscopic length scale and the pore scale. It includes a
transport coefficient that solely depends on the pore-scale geometry. Simulations of our
model render a more accurate Sherwood number, root mean square (r.m.s.) of the mass
concentration and r.m.s. of the velocity than simulations that employ the DOB equations.
In particular, we find that the Sherwood number Sh increases with decreasing porosity
and with increasing Schmidt number (Sc). In addition, for high values of Ra and high
porosities, Sh scales nonlinearly. These trends agree with the DNS, but are not captured in
the DOB simulations.
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1. Introduction

The realization of long-term storage of CO2 in deep saline aquifers (Metz, Davidson &
De Coninck 2005; Basbug & Gumrah 2009; Michael et al. 2009; Orr 2009; Pamukcu
& Gumrah 2009; Huppert & Neufeld 2014), the provision of large-scale thermal-energy
storage systems (Singh, Saini & Saini 2010; Heyde & Schmitz 2017) and the increase in
the efficiency of geothermal energy extraction (Ghoreishi-Madiseh et al. 2013; Böttcher
et al. 2016) are examples of emerging engineering technologies that have the potential to
slow down climate change. Natural convection in porous media is a fundamental process
relevant to these applications (Hewitt, Neufeld & Lister 2012; Liang et al. 2018; Wen
et al. 2018a; Hewitt 2020; Liu et al. 2020a). In general, it describes the flow of fluid in a
saturated porous medium between two infinite horizontal plates driven by a temperature
or species concentration difference. The variation of temperature or species concentration
results in the variation of the density, which induces the buoyancy force.

In this paper, we focus on the natural convection in porous media driven by a species
concentration gradient. Compared with convective heat transfer, convective mass transfer
is usually characterized by high Schmidt numbers (Sc) and, unlike thermal energy, the
mass cannot penetrate the surfaces of solid obstacles. In the absence of a porous medium,
the natural convective fluid flow is governed by the dimensionless Rayleigh number,
which describes the buoyancy-to-diffusion ratio (Kunes 2012). In the presence of a porous
medium, a Rayleigh–Darcy number (hereafter Rayleigh number, Ra) is introduced; it is a
modification of the conventional Rayleigh number, which takes the effect of the porous
matrix into account (Nield 1994). Mass transfer in natural convection is characterized
by the Sherwood number (Sh), which is the ratio of the total mass transfer rate (by
convection and mass diffusion) to the diffusive mass transfer rate. The onset of natural
convection occurs when Sh exceeds unity; Sh quantifies the efficiency of the mass transfer
enhancement due to natural convection.

Besides field research studies (Arts et al. 2008) and laboratory experiments
(Kneafsey & Pruess 2010; Faisal et al. 2015), numerical simulation is another
established tool for understanding convection in porous media. Two approaches are
available for the simulation of convection in porous media: pore-scale-resolving
direct numerical simulations (DNS) and macroscopic (volume-averaged) simulations.
Macroscopic simulations are widely employed in modelling convection in porous
media (Nield & Bejan 2017), due to their significantly lower computational costs.
The first macroscopic model for fluid flow in porous media was proposed by Darcy
(1856). Whitaker (1969) proposed the most commonly used macroscopic equations
for the conservation of volume-averaged quantities. Using Whitaker’s approach, the
Darcy–Oberbeck–Boussinesq (DOB) equations can be derived, as shown in Nield & Bejan
(2017). This set of equations has often been used in recent studies; see Hewitt et al. (2012),
Hewitt, Neufeld & Lister (2013, 2014), Wen, Corson & Chini (2015), De Paoli Zonta &
Soldati (2016) and Pirozzoli et al. (2021) as examples.

A deficiency of the DOB equations is the underlying assumption that convection in
porous media is uniquely determined by the Rayleigh number, in which the pore scale
is combined with the macroscopic length scale. This simplification could, however, be
at the root of reported discrepancies between numerical simulations and experiments.
For example, most numerical studies based on the DOB equations indicate a linear
scaling of Sh versus Ra in the ultimate regime (Ra ≥ 5000), whereas the experiments
by Neufeld et al. (2010) and Keene & Goldstein (2015) exhibited a nonlinear scaling.
The experiments by Backhaus, Turitsyn & Ecke (2011) in a Hele-Shaw cell, where the
flow obeys the Darcy law but there is no porous matrix, also exhibited a nonlinear scaling.
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However, recent studies showed that nonlinear scaling observed in Hele-Shaw experiments
may be related to the three-dimensionality of the flow (Letelier, Mujica & Ortega
2019; De Paoli, Alipour & Soldati 2020). In a recent study of three-dimensional DOB
simulation, Pirozzoli et al. (2021) indicated that the nonlinear scaling can occur in
three-dimensional flows at very high Rayleigh numbers. This could be related to supercells
at the boundary, which are the footprint of mega-plumes dominating the interior part of the
flow.

Another possible reason for the nonlinear scaling is related to non-Darcy effects induced
by the porous matrix. Various studies have been performed to analyse non-Darcy effects
in natural convection in porous media. For example, Shao et al. (2016) and Wang &
Tan (2009) included the Brinkman term (which is a Laplacian term that is included
to model the effect of macroscopic velocity gradients on the momentum transport) in
their simulations of convection at low Ra numbers (Ra ≤ 5000). However, the study of
Vasseur, Wang & Sen (1989) concluded that the Brinkman term is significant only for
large Darcy numbers. Mijic, Laforce & Muggeridge (2014) and Das et al. (2016) included
the Forchheimer term in their models to account for the effect of turbulence. In recent
years, increasing attention has been paid to hydrodynamic dispersion in porous media;
see Hidalgo & Carrera (2009), Ghesmat, Hassanzadeh & Abedi (2011), Yang & Vafai
(2011), MacMinn et al. (2012), Wang et al. (2016), Liang et al. (2018), Wen, Chang &
Hesse (2018b), Fahs et al. (2020), Jouybari, Lundström & Hellström (2020) and Liu et al.
(2020b). It is sometimes also referred to as thermal dispersion for heat transfer problems
(Pedras & de Lemos 2008), or mass dispersion for mass transfer problems (Mesquita &
de Lemos 2004). A Fickian dispersion tensor introduced by Bear (1961) is often used to
model the hydrodynamic dispersion. These studies show that hydrodynamic dispersion
can have significant effects on convection in porous media, at least for high-Darcy-number
problems. Gelhar, Welty & Rehfeldt (1992), Neuman (1990) and Liang et al. (2018)
indicated that the hydrodynamic dispersion is also important at low Darcy numbers, since
dispersion at the macroscale (macrodispersivity) is dependent on the scale of the system,
rather than the grain size. In a recent study, however, Zech et al. (2019) showed that
dispersion at the macroscale varied widely and did not show any clear effect on the scale
of solute plumes.

In the DNS, the Navier–Stokes equations coupled to a convection–diffusion equation
for the species concentration (or temperature for heat transfer) are solved, whereby
the smallest scale of the porous matrix is resolved. Owing to the high computational
costs, this approach has so far only been used for simple geometries of porous matrices
(Minkowycz et al. 2006; Torabi et al. 2017). Although DNS is too expensive for
engineering applications, it is a powerful tool to gain a better understanding of the physics
of convection in porous media and serves as a foundation for developing macroscopic
models. Recently, we performed pore-scale-resolving DNS of natural convection in porous
media composed of a simple porous matrix (Gasow et al. 2020). Our DNS results showed
that the boundary layer thickness for convection in porous media is determined by the
pore size instead of the Rayleigh number. This is distinctly different from classical
DOB simulations (Huppert & Neufeld 2014). We also showed that the scaling for the
Sherwood number depends on the porosity and the pore-scale parameters and observed
that the scaling law becomes nonlinear for porous media with sufficiently high porosity.
Furthermore, the computed flow patterns exhibited motions with large length scales, close
to the size of the whole domain, which were not found in DOB simulations. In another
recent numerical study, Liu et al. (2020a) observed that the Nusselt number increases
with a decrease in the porosity, while the Rayleigh–Darcy number is kept constant.
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This trend cannot be captured by the DOB equations. Liu et al. (2020a) also indicated that
the ratio of the pore scale to the thickness of the thermal boundary layer has a significant
effect on the scaling of the Nusselt number versus Ra. A scaling crossover occurs when
the thickness of the thermal boundary is comparable to the pore scale. Therefore, the
discrepancy between the DOB solutions and the experiments could arise due to pore-scale
effects.

In this paper, we develop a new macroscopic model for natural convection in porous
media, which accounts for pore-scale effects. Our model is based on a detailed analysis
of the DNS simulations of Gasow et al. (2020) and additional DNS carried out here.
The model involves a coefficient that depends solely on the pore-scale geometry. This
coefficient must be determined a priori. For each pore-scale geometry, this coefficient is
determined with a single DNS performed with a fixed set of parameters. Subsequently, we
show that the simulations of the model agree with our DNS results (e.g. results with respect
to the Sherwood number, mean species concentration, root-mean-square (r.m.s.) species
concentration and velocity) in wide ranges of pore size, Rayleigh, Schmidt and Darcy
numbers.

2. Governing equations and numerical methods

We consider natural convection in a porous medium domain bounded by two walls
(figure 1), which is the porous equivalent to the classical Raleigh–Bénard cell (Hewitt
2020). The computational domain is two-dimensional, and it has a width-to-height ratio
L/H = 2. Two different geometries of the generic porous matrix are studied. They are
composed of aligned (figure 1b) or staggered (figure 1c) square obstacles. The analysis in
this study is mainly based on the results of the first porous matrix, while the sensitivity
of our model coefficient to the pore-scale geometry is examined with the second porous
matrix. In both cases, the periodically arranged square obstacles with the size d are a
distance s apart in the horizontal and vertical directions. The geometry of a representative
elementary volume (REV) of the simulated porous medium is a square with a side length
s, containing one obstacle.

Constant species concentrations, c1 and c0, are maintained at the upper and lower
walls of the domain, respectively. The difference of the species concentrations at the
upper and lower walls leads to density differences, which drive natural convection
in the domain. The horizontal boundary conditions are periodic, whereas the no-slip
boundary condition is used at the upper and lower walls and on the surfaces of the
obstacles. And because mass cannot penetrate the solid matrix of the porous medium,
no mass transfer is assumed at the interface, hence homogeneous Neumann boundary
conditions are used at the obstacles for the species concentration. Similar set-ups have been
adopted in other numerical studies of convection in porous media; see Javaheri, Abedi
& Hassanzadeh (2010), Hewitt et al. (2012), Wen et al. (2018b), and Hewitt (2020) as
examples.

2.1. Governing equations for DNS
DNS studies were performed to gain insights into the physics of natural convection in
the porous medium, to determine the coefficients for the macroscopic model, as well as
to obtain the validation data. The governing equations for DNS of natural convection in
porous media are the Navier–Stokes equations and the species transport equation. In the
flow field, the local species concentration differences are small; hence, the Boussinesq
approximation is used to account for the buoyancy force (Herwig 2013). Using Einstein’s
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L = 2H
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Figure 1. Structure of the computational domain occupied by a regular porous matrix, with a magnified view
of a single REV, used for the DNS (a). A constant species concentration difference at the top and bottom walls
and periodic boundary conditions in the horizontal direction are utilized. The porous matrix inside the domain
is composed of aligned (b) or staggered square obstacles (c).

summation convention, the governing microscopic equations for natural convection in
porous media are as follows:

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ ∂(uiuj)

∂xj
= − ∂p

∂xi
+ ν

∂2ui

∂x2
j

+ βgi(c − c0), (2.2)

∂c
∂t

+ ∂(uic)
∂xi

= Df
∂2c

∂x2
j
, (2.3)

where ν, Df , ui, p, gi and c are the kinematic viscosity, the mass diffusivity, the ith
component of the velocity vector, the pressure, the ith component of the gravity vector and
the species concentration, respectively. The concentration expansion coefficient is defined
as β = β(c0) = −(1/ρ0)(∂ρ/∂c)c0 (see Herwig & Moschallski, 2009), where ρ is the
fluid density.

The Sherwood number Sh is calculated from the DNS as the ratio of the total mass
transfer rate ṁ (by convection and diffusion) to the mass transfer rate ṁdiff (by diffusion
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only) across the lower or upper wall (Baehr & Stephan 2006):

Sh = ṁ
ṁdiff

=

∫
w

∂c
∂x2

dA

∫
w

∂c
∂x2

∣∣∣∣∣
Raf =0

dA

, (2.4)

where the bar denotes the time-averaging operator, while the subscript w denotes either
the upper or lower wall surface.

2.2. Macroscopic equations
The macroscopic equations are obtained by averaging the Navier–Stokes equations and
the species transport equations (2.1)–(2.3) over each REV (see figure 1). This method of
averaging is similar to that used in de Lemos (2012); however, de Lemos (2012) carried out
a time and volume averaging over each respective REV, while we performed only volume
averaging. The macroscopic equations read:

∂
�ui

∂
�xi

= 0, (2.5)

∂
�ui

∂
�t

+ ∂(
�ui

�ui/φ)

∂
�xj

+ ∂(φ〈iui
iuj〉i

)

∂
�xj

= −∂(φ〈p〉i)

∂
�xi

+ ν
∂2 �ui

∂
�x2

j
− φβgi(

�c − c0) − φ
�

Ri,

(2.6)

∂(φ
�c)

∂
�t

+ ∂(
�ui

�c)
∂

�xi
+ ∂(φ〈iui

ic〉i
)

∂
�xj

= Dm
∂2 �c

∂
�x2

j
, (2.7)

where the sign � denotes an REV-averaged quantity. The operator 〈 〉i denotes the
intrinsic volume averaging in the fluid phase, which is adopted from Whitaker (1986).
The left superscript i denotes the intrinsic deviation of a volume-averaged quantity,
e.g. iui = ui − 〈 ui〉i. The porosity φ is defined as φ = Vvoid space/Vtotal,

�ui = φ〈ui〉i is
the volume-averaged velocity, which is often referred to as the superficial velocity, and
�c = 〈c〉i is the intrinsic averaged mass concentration. The subscript m denotes an effective
property in the volume-averaged equations, e.g. Dm is the effective mass diffusivity.
Simulations of small domains are needed to determine the value of Dm for a specific
pore-scale geometry (see Gasow et al. 2020).

The terms φ〈iui
iuj〉i, φ〈iui

ic〉i and
�

Ri are the momentum dispersion, mass dispersion and
total drag, respectively. The momentum and mass dispersion terms have been neglected in
our model due to the underlying assumptions for convection in porous media with low
Darcy numbers (see Appendix A1). Since the local Reynolds number ReK = | �u|√K/ν

in our simulations is generally smaller than unity (Gasow et al. 2020), the Forchheimer
term in

�

Ri can also be neglected (Nield & Bejan 2017). The effects of the macroscopic
velocity gradient on

�

Ri can be modelled with a Laplacian term, which was first proposed
by Brinkman (1949) and then was extensively studied and improved; see Rao, Kuznetsov
& Jin (2020), Zaripov, Mardanov & Sharafutdinov (2019), Zhao et al. (2018), Liu, Patil &
Narusawa (2007), Valdes-Parada, Ochoa-Tapia & Alvarez-Ramirez (2007), Vafai (2005),
Starov & Zhdanov (2001) and Ochoa-Tapia & Whitaker (1995) as examples. Here, we
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model the sum of the total drag
�

Ri and the diffusion term ν(∂2 �ui/∂
�x2

j ) in (2.6) as

ν
∂2 �ui

∂
�x2

j
+ �

Ri = ν

K
�ui + νm

∂2 �ui

∂
�x2

j
, (2.8)

where K and νm are the permeability and effective viscosity of the porous medium.
Simulations of small domains are needed to determine their values a priori (see Gasow
et al. (2020) for details of how they were determined). The macroscopic momentum
equation (2.6) is hence simplified to

∂
�ui

∂
�t

+ ∂(
�ui

�ui/φ)

∂
�xj

= −∂(φ〈p〉i)

∂
�xi

+ νm
∂2 �ui

∂
�x2

j
− φβgi(

�c − c0) − φ
ν

K
�ui. (2.9)

2.3. Two-length-scale diffusion assumption
Normalizing the governing equations (2.5), (2.9) and (2.7) using the characteristic
concentration difference �c = c1 − c0, velocity um = β�cgK/ν, length H and time
tm = H/um, the following dimensionless macroscopic equations are obtained:

∂ ûi

∂ x̂i
= 0, (2.10)

∂ ûi

∂ t̂
+ ∂(ûiûi/φ)

∂ x̂j
= −∂(φ〈p̃〉i)

∂ x̂i
+ aνSc

γmRa
∂2ûi

∂ x̂2
j

− φSc
γmRaDa

ziĉ − φSc
γmRaDa

ûi, (2.11)

∂(φĉ)
∂ t̂

+ ∂(ûiĉ)
∂ x̂i

= 1
Ra

∂2ĉ

∂ x̂2
j
. (2.12)

Here ˆ denotes a dimensionless volume-averaged quantity, ĉ is the dimensionless
volume-averaged species concentration defined as ĉ = (〈c〉i − c0)/(c1 − c0), aν = νm/ν

is the ratio of the effective viscosity νm to the molecular viscosity of the fluid ν, and
γm = Dm/Df is the ratio of the effective mass diffusivity Dm to the mass diffusivity of the
fluid Df .

The Rayleigh number in (2.11) and (2.12) is defined by using the common definition of
this parameter for natural convection in porous media, as in Nield (1994):

Ra ≡ Raf Da
γm

= Hβ�cgK
Dmν

. (2.13)

The Schmidt number is defined as

Sc = ν

Df
. (2.14)

The Darcy number is defined as

Da = K
H2 . (2.15)

By assuming that aν is independent of Da and taking the leading-order terms with respect
to 1/Da in (2.11), one obtains the well-known DOB equations. However, we reported in
our recent DNS study (Gasow et al. 2020) that the boundary layer thickness is determined
by the pore size, which is characterized by

√
K. In addition, similar profiles for temporally
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and horizontally averaged quantities are observed when the distance from the wall is
normalized with the pore size. Therefore, the Laplacian term (aνSc/γmRa)(∂2ûi/∂ x̂2

j ) in
(2.11) is expected to scale as 1/K and should be of order 1/Da, exactly as the Darcy
term −(φSc/γmRaDa)ûi and the buoyancy force term −(φSc/γmRaDa)ziĉ. Hence, the
Laplacian term in the macroscopic equation cannot be neglected even if the Darcy number
is small.

We here propose a model for the effective viscosity νm based on a two-length-scale
diffusion (TLSD) hypothesis, in which the macroscopic diffusion is determined by
the pore size, characterized by

√
K, and the distance between the lower and upper

boundaries H. Our TLSD hypothesis is supported by our recent DNS (Gasow et al.
2020), where we showed that natural convection in porous media is determined by these
two length scales. The pore size characterizes the boundary layer thickness and the size
of proto-plumes, whereas the distance between the two walls determines the size of
mega-plumes.

Based on the TLSD assumption stated above, aν is modelled as

aν = νm

ν
= a∗

ν

Da
, (2.16)

where a∗
ν is a constant assumed to be solely determined by the pore-scale geometry of the

porous matrix. Note that the two length scales
√

K and H are combined in Da. At the upper
and lower walls, we imposed constant species concentrations, c1 and c0, respectively, and
the no-slip boundary condition.

It should be noted that only the leading-order terms of Da for diffusion are kept in the
macroscopic equations (2.10)–(2.12). As Da → 0, the macroscopic governing equations
can be further simplified to

∂ ûi

∂ x̂i
= 0, (2.17)

∂ p̂
∂ x̂i

+ ĉzi + ûi = a∗
ν

φ

∂2ûi

∂ x̂2
j

, (2.18)

∂ ĉ
∂ t̂∗

+ ∂(ûiĉ)
∂ x̂i

= 1
Ra

∂2ĉ

∂ x̂2
j
, (2.19)

where p̂ = RaDa〈p̃〉i/γmSc is the normalized pressure. The dimensionless time is modified
to be t̂∗ = �t/φ. These macroscopic equations (2.17)–(2.19) become the DOB equations if
a∗
ν is set to zero. When the DOB equations are solved, only the velocity component in the

wall-normal direction is set to zero at the upper and lower walls. This boundary condition
was also used in other DOB simulations; see Hewitt et al. (2014) and Wen et al. (2015) as
examples. In this paper, the macroscopic simulations were carried out by solving equations
(2.10)–(2.12), so that the effect of the Darcy number can be assessed. The Sherwood
number for the macroscopic model simulations is defined using the same definition as
for the DNS, which is given in (2.4).

2.4. Numerical method
For the simulations, a finite-volume method (FVM) was utilized. The solvers were
developed by using the open-source code package OpenFoam 6. The spatial discretization
was implemented by a second-order central-difference scheme. For time derivatives,
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s/d 1.175–5
φ 0.28–0.96
γm 0.16–0.92
a∗
v 2.4 × 10−9–5.18 × 10−5

H/s 10–100
Da 7 × 10−8–1.7 × 10−4

Table 1. Ranges of geometrical parameters for the studied test cases.

the second-order implicit backward method was used. For the correction and coupling
of the pressure and velocity fields, the pressure-implicit scheme with splitting of operators
(PISO) algorithm was used (Versteeg & Malalasekera 2007). A stabilized preconditioned
(bi)conjugate gradient solver was utilized to solve the pressure field and the momentum
and species concentration equations. We have performed the code validation for our DNS
solver extensively in our previous studies (Jin et al. 2015; Uth et al. 2016; Jin & Kuznetsov
2017; Gasow et al. 2020).

3. Studied test cases

3.1. Description of the test cases
We continued selected DNS cases of Gasow et al. (2020) to improve the statistics and
thus to allow a more thorough validation of our hypothesis. In addition, we also computed
these cases by solving the macroscopic equations (2.10)–(2.12) with our two-length-scale
diffusion model. The Rayleigh numbers Ra are up to 20 000 and the Schmidt numbers Sc
are 1 and 250. The ranges of geometrical parameters of the studied test cases are given in
table 1. For both DNS and macroscopic simulation cases ui = 0 and c = (c1 − c0)/2 were
used as initial conditions.

To obtain representative statistical results, the time averaging, denoted by the bar over,
of the respective variable was performed after the flow and mass concentration fields
reached a statistically steady state. As an example, the time evolutions of the instantaneous
Sherwood number for the DNS case with H/s = 100, s/d = 1.5, Ra = 20 000 and
Sc = 250 are shown in figure 2. The time averaging of the Sherwood number has been
started after the time marked by the red dashed line. At least 200 dimensionless time units
H/um are calculated to obtain the statistical results.

3.2. Determination of the model coefficient
The coefficient a∗

ν for a specific pore-scale geometry cannot be computed a priori with
simulations of small domains (as for the other model parameters). Here, we empirically
determine a∗

ν by simulating natural convection within the specific pore-scale geometry
with fixed values of H/s, Sc and Ra. Since we only keep the leading-order terms of the
order Da in our model equations, a test case with a sufficiently small Darcy number
should be used to ensure that the higher-order terms of Da are negligible. In particular,
we performed a parametric study for a∗

ν(φ) while keeping H/s = 20, Sc = 250 and
Ra = 20 000 fixed. These parameter values were selected because the Sherwood number
from DNS marginally changes as H/s is increased (i.e. as the pore size is decreased);
hence the effect of higher-order terms of Da on Sh can be safely neglected. The value of
a∗
ν is selected for each considered porosity value, so that the Sherwood number from the

926 A8-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

69
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.691


S. Gasow, A.V. Kuznetsov, M. Avila and Y. Jin

140

135

130

125

120

115

110

105
0 50 100 150 200 250 300 350

Sh

t̂
Figure 2. The time evolution of the instantaneous Sherwood number for the DNS case with H/s = 50, s/d =
1.5, Ra = 20 000 and Sc = 250. The dashed red line marks the time at which the time averaging is started; and
t̂ = tum/H is the dimensionless time.
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Figure 3. Dependence of the model coefficient a∗
ν on the porosity φ, for porous matrices composed of

aligned and staggered square obstacles.

macroscopic simulation matches the DNS results. Figure 3 shows the dependence of a∗
ν on

the porosity φ.
We expect that a∗

ν is a geometrical parameter that is independent of Sc, Ra and Da. This
will be examined later in § 5. The value of a∗

ν only mildly changes when the porous matrix
is switched from aligned squares to staggered squares. According to our DNS results, a∗

ν
can be well correlated by

a∗
v(φ) = 7.5 × 10−5φ9. (3.1)

This correlation has reasonable accuracy for 0.28 < φ < 0.95. However, the variations
of pore-scale geometries used in this study are limited. In particular, the flow structures
in randomly packed porous matrices may be distinctly different from those in regularly
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ID Mesh resolution (Nx × Ny) Mesh size Comax Sh

a 800 × 1200 960 000 0.2 105.3
b 1000 × 1600 1600 000 0.2 110.1
c 2000 × 3000 6400 000 0.2 120.1
d 3200 × 2200 7040 000 0.2 122
e 2000 × 3200 6400 000 0.6 122.4
f 2000 × 3200 6400 000 0.8 121.5
g 2000 × 3200 6400 000 1.1 115.8

Table 2. Influence of mesh and time step on the Sherwood number Sh. The test case with H/s = 50, s/d = 1.5,
Ra = 20 000 and Sc = 250 is used in the parametric study. The cases c, d, e and f are considered to be mesh-
and time-step-independent. The mesh resolution and maximum Courant number of the case f (in italic) are
used in all cases of macroscopic simulation.

packed porous matrices (Liu et al. 2020a). Studies with more pore-scale geometries are
needed to test the generality of (3.1).

3.3. Mesh and time-step independence studies
The mesh and time-step independence studies for the DNS cases have already been
performed in our previous work (see Gasow et al. 2020). Here we focus on the influence of
the mesh and time step on the macroscopic simulation results (solution of (2.10)–(2.12)).
The numerical results for the Sherwood number are shown in table 2. At least 200
dimensionless time units H/um were calculated to obtain the statistical results.

The results of the resolution study show that the Sherwood number is under predicted
if the mesh resolution is too low (see table 2 cases a and b) or the maximum Courant
number is too high (see table 2 case g). According to the mesh/time-step independence
study, Comax = 0.8 and mesh resolution 2000×3200 (case f) were used for all cases of
macroscopic simulation. The numerical error of Sh in the macroscopic simulations is
estimated to be 2.8 %, which is the maximum variation of Sh in the cases c, d, e and f. All
simulations were performed on the clusters of the HLRN (North-German Supercomputing
Alliance), using 2× Intel Cascade Lake Platinum 9242 CPUs (CLX-AP) with 96 cores per
node. The DNS cases use up to 7.2 × 107 mesh cells, which requires a parallel computing
time of 1200 hours using 384 processors. The macroscopic simulation cases use up to
6.4 × 106 mesh cells.

4. DNS results

In this section, we focus on an a priori verification of the TLSD hypothesis. The model
results are compared with the DNS results in § 5.

4.1. Budget of the macroscopic kinetic energy

The budget for the time- and line-averaged macroscopic kinetic energy 〈K̄〉x1 = 1
2 〈 �u2

i 〉x1

was calculated from the DNS for Ra = 20 000, s/d = 1.5, s/d = 1.25, Sc = 250 and Da
in the range 3.5 × 10−7 to 3.5 × 10−5. By averaging the momentum equation (2.2) over
REVs, taking the dot product with the superficial velocity �ui = φ〈ui〉i, and then averaging
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in time and in the horizontal direction x1, we obtained the following equation for 〈K̄〉x1:

−
〈

�uiφ

〈
∂(uiuj)

∂xj

〉i
〉x1

−
〈

�uiφ

〈
∂p
∂xi

〉i
〉x1

+
〈

�uiφ

〈
ν
∂2ui

∂x2
j

〉i〉x1

+ 〈 �uiφ〈βgi(c − c0)〉i〉x1 = 0. (4.1)

Equation (4.1) shows that the budget for 〈K̄〉x1 includes:

• the production by the buoyancy force, Kbuoy = 〈 �uiφ〈βgi(c − c0)〉i〉x1;

• the loss due to viscous dissipation, Kdiff = 〈 �uiφ〈ν(∂2ui/∂x2
j )〉

i〉x1;

• the loss due to pressure gradient, Kpres = −〈 �uiφ〈∂p/∂xi〉i〉x1;

• the transport due to convection, Kconv = −〈 �uiφ〈∂(uiuj)/∂xj〉i〉x1.

In the DOB equations, the Darcy term (Darcy drag) is the only source of losses of
macroscopic kinetic energy. The Darcy losses read

KDarcy = −φ(ν/K)〈 �u2
i 〉x1. (4.2)

The budget of 〈K̄〉x1 is studied using the test case with s/d = 1.5 (φ = 0.56),
H/s = 20, Ra = 20 000, Da = 8.8 × 10−6 and Sc = 250. Figure 4 shows the distribution
of Kbuoy, Kdiff , Kpres and Kconv in the wall-normal direction. They are normalized with
the characteristic kinetic energy Kmean = 1

2 u2
m or Kbuoy. The distance from the lower wall

is normalized with the pore size s. It is evident that more macroscopic kinetic energy
is produced by the buoyancy force in the central region than in the region close to the
wall. The transport of 〈K̄〉x1 due to convection is much smaller than Kbuoy, so it can be
neglected. Here −Kdiff and −Kpres are the losses of the macroscopic kinetic energy. Both
−Kdiff and −Kpres increase with increasing distance from the wall x2/s. The loss of 〈K̄〉x1

in the region close to the wall is mainly due to the pressure gradient −Kpres.
Figure 5 shows the loss of the macroscopic kinetic energy due to the Darcy drag KDarcy

(assuming that the superficial velocity calculated from the macroscopic simulation is
identical to the DNS solution). The drag KDarcy is normalized by Kmean or Kbuoy. It can be
seen that KDarcy is close to Kbuoy in the region away from the wall (x2/s 
 0). However,
KDarcy/Kbuoy is smaller than 0.85 in the first three REVs adjacent to the wall (x2/s < 3).
The DNS results confirm that the Darcy term, which accounts for the losses due to the
Darcy drag, cannot account for all the losses of the macroscopic kinetic energy.

The question arises of whether the difference between KDarcy and Kbuoy shown in
figure 5 is because the Darcy number in the DNS case is not small enough. To answer this
question, Kpres/Kbuoy, Kdiff /Kbuoy, Kconv/Kbuoy and Kdarcy/Kbuoy in the first REV cell next
to the bottom wall for different Darcy numbers are compared in figure 6. It is evident from
this figure that all of these quantities stay almost constant as the Darcy number is decreased
from 3.5 × 10−5 to 3.5 × 10−7, suggesting that the Darcy numbers in our DNS cases are
small enough for the presented analysis. The Darcy number has a noticeable effect as it
is increased to ∼3 × 10−5. In this case, Kpres/Kbuoy and KDarcy/Kbuoy become smaller,
Kdiff /Kbuoy becomes larger, whereas Kconv/Kbuoy is still negligibly small. We speculate
that higher Kdiff at very large Darcy numbers is due to the mass dispersion, which is
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Figure 4. Distribution of the budget of the macroscopic kinetic energy 〈K̄〉x1 in the wall-normal direction.
Here s/d = 1.5 (φ = 0.56), H/s = 20 (Da = 8.8 × 10−6), Ra = 20 000 and Sc = 250.
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Figure 5. Distribution of the loss of the macroscopic kinetic energy 〈K̄〉x1 due to the Darcy drag. Here
s/d = 1.5 (φ = 0.56), H/s = 20 (Da = 8.8 × 10−6), Ra = 20 000 and Sc = 250.

neglected in our macroscopic model (convection with very large Darcy numbers is out of
the scope of this study).

Our budget analysis shows that, in the near-wall region, there is a difference between
the loss due to the Darcy drag KDarcy and the overall loss, which is identical to −Kbuoy.
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Figure 6. Plots of Kpres/Kbuoy (a), Kdiff /Kbuoy (b), Kconv/Kbuoy(c) and KDarcy/Kbuoy (d) in the first REV cell
next to the bottom wall versus the Darcy number. Here s/d = 1.5 (φ = 0.56) with H/s = 10, 20, 50, 100 and
s/d = 1.25 (φ = 0.36) with H/s = 10, 20, 50, Ra = 20 000 and Sc = 250.

Since the transport of 〈K̄〉x1 is negligibly small, this suggests that another source for the
loss of 〈K̄〉x1 should be considered in the macroscopic equations.

4.2. Sh–Da dependence
According to our hypothesis, the macroscopic diffusion, the Darcy drag and the buoyancy
force are of the same order with respect to the Darcy number, so the macroscopic diffusion
cannot be neglected even if the Darcy number is small. To examine our hypothesis,
we investigated the relationship between the Sherwood number and the Darcy number.
We varied Da in the range 3.5 × 10−7 to 3.5 × 10−5 for s/d = 1.5 (φ = 0.56) and
2.8 × 10−7 to 7 × 10−6 for s/d = 1.25 (φ = 0.36); the corresponding H/s ratios are in
the range 10–100. If our hypothesis were true, the Sherwood number should gradually
become independent of Da and should not approach the DOB solution.

The DNS results shown in figure 7 generally support our assumption, i.e. the values
of Sh for Sc = 250 depend only weakly on Da, when Da is small enough. The values
of Sh are also different from the DOB solution. As shown in figure 7(a), the same trend
is found for s/d = 1.25 (φ = 0.36) and Sc = 1, where Sh depends weakly on Da. The
only exception is the case for s/d = 1.5 (φ = 0.56) and Sc = 1, where Sh still increases
with decreasing Da (but it is still far away from the DOB result). Test cases with even
smaller Darcy numbers could be computed to probe the Da dependence more thoroughly.
However, the calculation of these cases would be extremely expensive and hence out of
the scope of this study.
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Figure 7. The Sh(Da) dependence for the DNS and DOB cases. Here s/d = 1.5 (φ = 0.56) with H/s =
10, 20, 50, 100 and s/d = 1.25 (φ = 0.36) with H/s = 10, 20, 50 and Ra = 20 000, for (a) Sc = 1 and
(b) Sc = 250.

It should be noted that the Darcy numbers for real applications are much smaller than
the values used in the DNS cases. However, since our DNS results for the Sherwood
number are approximately Da-independent, we expect that it is possible to predict the
Sherwood numbers using DNS with relatively higher (computationally affordable) Darcy
numbers.

In a recent DNS study, Liu et al. (2020a) proposed the following correlation for
estimating the Nusselt number (equivalent to Sh in this study):

Sh ≈ cφ

(
H
l

)4

Sc2Re2
rmsRa−1

f + 1, (4.3)

where c is an undetermined constant according to the work of Grossmann & Lohse
(2000, 2001, 2004), l is the minimum spacing between the obstacles, Rerms = Urmsl/ν
is the Reynolds number based on the volume-averaged r.m.s. velocity magnitude,
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Figure 8. Sherwood number versus the Rayleigh number for Ra in the range 500–20 000 compared to the
correlation proposed by Liu et al. (2020a), with (a) Sc = 1 and (b) Sc = 250.

and Raf = H3β�cg/νDf is the Rayleigh number defined for the free fluid flow. If we
set the value of c to 1250 and determine Urms from our DNS results, the results of
(4.3) are in good agreement with our DNS results for different values of φ and Sc
(see figure 8). It should be noted that (4.3) is proposed based on the flow condition
that viscosity dominates; hence intense kinetic energy dissipation takes place within
the bulk domain and turbulence is suppressed in the pore canals. For the volume- and
time-averaged kinetic energy dissipation rate 〈εu〉v,t, the following proportionality is valid:
〈εu〉v,t ∼ φνU2

rms/l2. This corresponds to the ∞ regime of classical Rayleigh–Bénard
convection (without porous media) introduced by Grossmann & Lohse (2001) for large
Sc and small Raf . A good agreement between predictions obtained using (4.3) and
our DNS results indicates the significance of macroscopic diffusion in momentum
transport.
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5. Macroscopic modelling results

Since the leading-order terms of Da for diffusion are accounted for in the TLSD model,
this model can be used in principle to calculate cases characterized by small Darcy
numbers. In this section, we test whether and how the model results approach the DNS
results as Da → 0. In addition, we investigate the range of parameters for the validity of
the TLSD model.

5.1. Sherwood number
Figure 9 shows the relationship between the Sherwood number and the Rayleigh number
when H/s is 20 and Rayleigh numbers are up to 20 000. The results of our macroscopic
model are compared with the correlation obtained from the DNS results (see Gasow
et al. 2020) as well as the DOB results. In the DNS, Sh depends on s/d or φ for
Ra > 2000. The value of Sh increases as s/d or φ decreases, while the difference becomes
larger as Ra increases. In the large-Rayleigh-number regime (Ra ≥ 5000), the Sh = f (Ra)

scaling changes from a linear scaling Sh ∼ Ra for s/d = 1.25 (φ = 0.36) to a nonlinear
scaling Sh ∼ Ra0.8 for s/d = 1.5 (φ = 0.56), see figure 9(a). These characteristics are
not captured in DOB simulations but are well reproduced in our macroscopic model
simulations.

For the current small H/s (or Da) value, both DNS and model results show that the
Sherwood number increases as the Schmidt number is increased from 1 to 250. Similar to
Sc = 1, the scaling for Sc = 250 also changes from linear (Sh ∼ Ra) for s/d = 1.25 (φ =
0.36) to nonlinear (Sh ∼ Ra0.8) for s/d = 1.5 (φ = 0.56). This behaviour is reproduced
in our macroscopic model solution, whereas the effect of the Schmidt number is not
accounted for in the DOB equations.

We neglected the high-order terms with respect to Da when we proposed the TLSD
model. However, since the leading-order term with respect to Da is kept in the momentum
equation (2.11), the effect of Da on natural convection can still be accounted for when
its value is small enough. The relationship between the Sherwood number and the Darcy
number for Ra = 20 000, Sc = 1 or 250, and s/d = 1.5 or 1.25 (φ = 0.56 or 0.36) is
shown in figure 10. The macroscopic model results are compared with the DNS results
as well as with the DOB results. Recall that a∗

ν is only related to the pore-scale geometry
and is independent of the flow conditions and the Darcy number. The macroscopic model
simulations are in good agreement with the DNS for Da ≤ 2 × 10−6 and for different
Schmidt numbers. By contrast, the DOB results are independent of the Darcy and Schmidt
numbers. The DOB simulations overpredict the Sherwood number for s/d = 1.5 (φ =
0.56) and underpredict Sh for s/d = 1.25 (φ = 0.36).

5.2. Species concentration and velocity statistics
The vertical profiles of the temporally and horizontally averaged macroscopic quantities
(time- and line-averaged species concentration 〈ĉ〉x1, species concentration fluctuation
〈ĉrms〉x1, and velocity fluctuations 〈ûrms

1 〉x1 and 〈ûrms
2 〉x1) for s/d = 1.5 (φ = 0.56) and

Sc = 1 are shown in figure 11. The Rayleigh numbers are 5000 and 20 000. The results
of our macroscopic TLSD model are compared with the DNS results as well as the DOB
results. It is evident that our macroscopic TLSD modelling results for 〈ĉ〉x1, 〈ûrms

1 〉x1 and
〈ûrms

2 〉x1 are more accurate than the DOB results in the first REV next to the wall. The
DNS results show that all statistical results can be well scaled by the pore size s and that
the influence of the bounding walls is limited to within the first three REVs next to the
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Figure 9. Sherwood number versus the Rayleigh number with Ra in the range 500–20 000 and H/s = 20 for
three values of the Darcy number: Da = 8.8 × 10−6 (s/d = 1.5), Da = 5.4 × 10−6 (s/d = 1.4) and Da =
1.8 × 10−6 (s/d = 1.25), with (a) Sc = 1 and (b) Sc = 250.

wall (Gasow et al. 2020). Thus, the boundary layer thickness is determined by the pore
size s, instead of the Rayleigh number, as suggested in Huppert & Neufeld (2014). These
features are all well captured in the macroscopic simulation.

The same statistical quantities are shown in figure 12 for Sc = 250. It can be seen that
these statistical quantities are only marginally changed when a much higher Schmidt
number is used in the simulation. Similar to the results for Sc = 1, the macroscopic
modelling results are also in good agreement with the DNS results. The macroscopic
TLSD model simulation predicts higher mass concentration 〈ĉ〉x1 in the first REV next
to the wall and higher transverse velocity fluctuation 〈ûrms

2 〉x1. One possible reason for
this discrepancy is that the neglected high-order terms with respect to Da may lead to
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Figure 10. Sherwood number versus the Darcy number for s/d = 1.5 (φ = 0.56) with H/s =
10, 20, 50, 100 and s/d = 1.25 (φ = 0.36) with H/s = 10, 20, 50, Ra = 20 000, for (a) Sc = 1 and (b)
Sc = 250.

modelling errors in the boundary layer region. The TLSD model accuracy can be further
improved by decomposing the flow domain into a boundary layer region and a central
region, so the modelling in the boundary layer region can be improved. However, this
would make the model more complicated and difficult to apply. This modelling approach
is not adopted in our study to achieve a compromise between the accuracy and simplicity
of the macroscopic model.

5.3. Transient macroscopic fields
To validate the results of our macroscopic TLSD model, we first compare the transient
flow fields obtained from macroscopic simulations of (2.10)–(2.12) with those obtained
from the DNS results discussed in the previous section and the DOB simulations reported
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〈û 1
rm

s 〉x1

0.08

0.10

0.06

0.04

0.02

0

〈û 2
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Figure 11. The vertical profiles of the temporally and horizontally averaged macroscopic quantities for s/d =
1.5 (φ = 0.56), H/s = 20 (Da = 8.8 × 10−6) and Sc = 1. The Rayleigh number Ra is varied. The distance
from the wall is normalized by the pore size s. (a) Time- and line-averaged species concentration 〈ĉ〉x1; (b)
r.m.s. of the species concentration fluctuation 〈ĉrms〉x1; (c) streamwise velocity fluctuation 〈ûrms

1 〉x1; and (d)
wall-normal velocity fluctuation 〈ûrms

2 〉x1.

in Gasow et al. (2020). For this purpose, the velocity field and the species concentration
obtained with the macroscopic simulations and the DNS were volume-averaged (over each
REV).

The distribution of the instantaneous ReK = (|u|K1/2)/ν for Ra = 20 000, s/d =
1.5 (φ = 0.56), H/s = 100 and Sc = 250 is shown in figure 13. The macroscopic TLSD
solution (figure 13c) is qualitatively similar to the DNS solution (figure 13a) and DOB
solution (figure 13b). Both the DNS solution and macroscopic solutions indicate that
the local Reynolds number is ReK < 4 × 10−3. This shows that the studied parameter
range is well in the Darcy regime (ReK < 1), hence the Forchheimer term in the
momentum equation can be safely neglected. Despite the laminar flow in the pore scale,
the macroscopic flow field is transient and chaotic. However, the strong spatial variation
of the velocity field obtained from the DNS is captured neither in TLSD nor in the DOB
simulations.

Snapshots of the instantaneous species concentrations for H/s = 100, s/d = 1.5 (φ =
0.56), Ra = 20 000 and Sc = 250 are shown in figure 14. The DNS solution (figure 14a),
TLSD solution (figure 14c) and the DOB solution (figure 14b) all exhibit large mega-plume
structures in the internal region and small proto-plumes in the boundary layers. They occur
due to the rising of a fluid with low species concentration and the sinking of a fluid with
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〈û 2
rm

s 〉x1

(c)

0.08

0.12

0.06

0.04

0.02

〈û 1
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Figure 12. The vertical profiles of the temporally and horizontally averaged macroscopic quantities for s/d =
1.5 (φ = 0.56), H/s = 20 (Da = 8.8 × 10−6) and Sc = 250. The Rayleigh number Ra is varied. The distance
from the wall is normalized by the pore size s. (a) Time- and line-averaged species concentration 〈ĉ〉x1; (b)
r.m.s. of the species concentration fluctuation〈ĉrms〉x1; (c) streamwise velocity fluctuation 〈ûrms

1 〉x1; and (d)
wall-normal velocity fluctuation 〈ûrms

2 〉x1.

high species concentration, forming the instabilities in the boundary layer region (Hewitt
et al. 2012; Kränzien & Jin 2019).

While the macroscopic TLSD model and DOB solution exhibit relatively regular
mega-plumes, in the DNS solution the mega-plumes are more irregular and chaotic.
A possible reason is that the Darcy number in our simulation is still not small enough,
while the TLSD model is proposed for problems with low Darcy numbers. The transient
flow field from macroscopic simulation converges slower than the Sherwood number and
other statistical results with decreasing Da.

The DNS study reported in Gasow et al. (2020) shows that the number of mega-plumes
increases with the decrease of Da. Figure 15 shows the time-averaged fast Fourier
transform (FFT) of the dimensionless mass concentration ĉ along the centreline at x2 =
H/2. The peak wavenumber calculated from the TLSD simulation is still higher than the
DNS result, but it is lower than the DOB result. Figure 16 shows that the peak wavenumber
from DNS approaches the TLSD or DOB results as the Darcy number approaches 0.
However, DNS of natural convection with smaller Darcy numbers are still needed to
confirm that the peak wavenumber from DNS will not exceed the TLSD results and
approach the DOB results.

The three-dimensional DOB simulations by Pirozzoli et al. (2021) revealed the
supercells at the boundary, which are the footprints of mega-plumes dominating the
interior part of the flow. They suggest that these supercells might lead to the nonlinear
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Figure 13. Instantaneous volume-averaged Reynolds number ReK , H/s = 100 (Da = 3.5 × 10−7),
s/d = 1.5 (φ = 0.56), Ra = 20 000 and Sc = 250: (a) DNS, (b) DOB and (c) TLSD.

scaling of Sh(Ra) in the ultimate regime of high Ra numbers. Future work needs to
investigate whether these supercells will be also captured by three-dimensional TLSD
simulations. Elucidating how macroscopic diffusion affects the plume structures is also
a subject of future investigation.

6. Conclusions

The DNS results of Gasow et al. (2020) (extended in this study) show that the pore-scale
geometry also has significant effects on natural convection in porous media, in particular,
the boundary layer thickness is determined by the pore size instead of the Rayleigh
number. Based on this, we have proposed the following TLSD model: we assume that
pore-scale structures affect the momentum transport through macroscopic diffusion. The
macroscopic diffusion is of the same order with respect to the Darcy number as the Darcy
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Figure 14. Instantaneous volume-averaged species concentration ĉ, H/s = 100 (Da = 3.5 × 10−7),
s/d = 1.5 (φ = 0.56), Ra = 20 000 and Sc = 250: (a) DNS, (b) DOB and (c) TLSD.

drag and the buoyancy force; thus, it cannot be neglected even if the Darcy number is
small. It is determined by two length scales: the pore size characterized by

√
K and the

distance between the lower and upper boundaries H.
The DNS results show that the loss of the macroscopic kinetic energy is mainly due

to microscopic diffusion and the pressure gradient. The loss captured in Darcy’s law is
only part of the overall loss, even if the superficial velocity is accurately calculated in the
DOB equation. The macroscopic diffusion term added here to the momentum equation
accounts for the additional loss of the macroscopic kinetic energy. Our DNS results also
show that the Sherwood number is almost independent of the Darcy number when the
Darcy number is small enough. Thus, the diffusion term is of the same order of the Darcy
number (Da = K/H2) as the buoyancy force term and the Darcy term.

A new macroscopic model for simulating natural convection in porous media is
developed based on the TLSD assumption. The results of our model are validated
extensively by comparison with the DNS as well as the DOB results. The comparison
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Figure 15. Average spectra of the dimensionless mass concentration, ĉ, of the DNS, DOB and TLSD results
at mid-height x2 = H/2, H/s = 100 (Da = 3.5 × 10−7 ), s/d = 1.5 (φ = 0.56), Ra = 20 000 and Sc = 250.
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Figure 16. Peak wavenumber k for the mega-plumes of the DNS, DOB and TLSD results for different Darcy
numbers with s/d = 1.5 (φ = 0.56), Ra = 20 000 and Sc = 250.

shows that the new macroscopic model performs well as long as Da ≤ 2 × 10−6.
Simulations of the model predict a much more accurate Sherwood number, r.m.s. mass
concentration and r.m.s. velocity than simulations that employ the DOB equations. They
also predict the structures of mega-plumes and proto-plumes with reasonable accuracy.
In particular, the new model results show that the Sh = f (Ra) scaling changes from a
linear scaling to a nonlinear scaling as the porosity increases. If the Rayleigh number and
Darcy number are fixed, the Sherwood number increases with the increase of the Schmidt
number and the decrease of the porosity. These trends agree with the DNS results, whereas
they cannot be captured by the DOB simulations. We expect that these trends, as well as
the TLSD assumption, also apply to three-dimensional flows. However, how macroscopic
diffusion affects the plume structures remains an open question.

Some discrepancies between the new macroscopic modelling results and the DNS
results can be found in the boundary layer. The new macroscopic model over predicts the
mean mass concentration in the first REV next to the wall. This error may be reduced if the
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higher-order terms with respect to Da, e.g. the mass dispersion, are considered. However,
the current macroscopic model appears preferable due to its simplicity.

This work is the first step towards modelling fundamental issues arising at the pore scale
in CO2 sequestration processes. However, it should be noted that a real CO2 sequestration
process is much more complicated. It has been extensively investigated by numerical
modelling in the last two decades (Weir, White & Kissling 1995, 1996; Lindeberg &
Wessel-Berg 1997; Hassanzadeh, Pooladi-Darvish & Keith 2005, 2007; Bickle et al.
2007; Pruess & Zhang 2008; Chen et al. 2018). It is characterized by three-dimensional,
inherently transient multiphase flow with much more complicated pore-scale geometries
and much lower Darcy numbers than those studied in this research (Michael et al. 2010;
Riley 2010; Huppert & Neufeld 2014).
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Appendix A. Momentum dispersion and species concentration dispersion

Breugem, Boersma & Uittenbogaard (2006) argued that momentum dispersion has
negligible effects on convection in porous media. This agrees with the study by Rao et al.
(2020), who showed numerically that momentum dispersion should be accounted for only
when the local Reynolds number ReK 
 1. Hence, the momentum dispersion is neglected
here as well.

The effects of mass dispersion (or thermal dispersion for heat transfer problems) have
been extensively studied in recent years, as discussed in the Introduction (Liang et al. 2018;
Wen et al. 2018b; Alomar 2019; Fahs et al. 2020). The dispersion term in (2.7) is often
modelled using a Fickian dispersion tensor, first introduced by Bear (1961) and expressed
as

φ〈iui
ic〉i = Dij

∂
�c

∂
�xj

, (A1)

where the dispersion tensor Dij is calculated as

Dij = (αl − αt)
�ui

�uj/| �u| + αtδij| �u|, (A2)

with αl and αt the longitudinal and transverse diffusivities, respectively. They can be
determined from the numerical results for the flow and mass transfer in an REV with a
linear concentration gradient in the streamwise or transverse direction; see Nakayama &
Kuwahara (1999) and Pedras & de Lemos (2008). These studies suggest that Dij has a
scaling of the form Dij ∼ Pen

K , where the local Péclet number PeK is defined as

PeK = ReKSc = | �u|
um

RemDa1/2, (A3)

where ReK = | �u|√K/ν and Rem = umH/ν are the local and global Reynolds numbers,
respectively. Delgado (2007) and Nakayama & Kuwahara (1999) suggested that the scaling
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coefficient n is between 1 and 2. As a consequence, Dij is expected to be of order between
Da1/2 and Da, while Dm is of order Da0. When the Darcy number is small enough,
|Dij| � Dm. Since we are interested in natural convection with small Darcy numbers, we
only retain the leading-order terms with respect to Da for diffusion in (2.7). Thus, due to
this theoretical derivation, mass dispersion can also be neglected.

The dispersion at the macroscale (macrodispersivity) suggested by Gelhar et al. (1992),
Lallemand-Barres & Peaudecerf (1978), Neuman (1990) and Liang et al. (2018) is not
considered in this study since its effect on the plume scale has not yet been fully elucidated
(Zech et al. 2019). Instead, the effect of dispersion is modelled as macroscopic diffusion
in the momentum equation. The macroscopic diffusion affects the velocity field and then
accounts for the dispersion in the species concentration indirectly.
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