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RELATIVE ABELIAN K E R N E L S OF SOME CLASSES O F
T R A N S F O R M A T I O N M O N O I D S

E. CORDEIRO, M. DELGADO AND V.H. FERNANDES

We consider the symmetric inverse monoid Zn of an n-element chain and its in-
verse submonoids VOIn, VOVIn, VOVln and VO1Hn of all order-preserving,
order-preserving or order-reversing, orientation-preserving and orientation-preserving
or orientation-reversing transformations, respectively, and give descriptions of their
Abelian kernels relative to decidable pseudovarieties of Abelian groups.

INTRODUCTION

The computability of kernels of finite monoids became a popular problem in Finite
Semigroup Theory after a paper of Rhodes and Tilson [23]. Independent solutions were
given by Ash [3] and Ribes and Zalesskii [24]. Both solutions contains deep results which
led to the development of the theory in various directions. See for instance [19, 2]. Com-
puting kernels relative to other pseudovarieties had then interested various researchers;
for examples, see Ribes and Zalesskii [25], the second author [5] or Steinberg [26]. As
computing kernels are directly connected with the Mal'cev product of pseudovarieties
of monoids where the second factor is a pseudovariety of groups (see [18]), decidability
results can be obtained in this way.

The interest of the second author in using in practice the algorithm to compute the
Abelian kernel of a finite monoid obtained in [5] led him to work towards a concrete
implementation. Having this idea in mind, by detailing some aspects and improving the
efficiency of that algorithm (see [6]) a concrete implementation in GAP [27] was then
produced.

Following this, the second and third authors [7, 9] achieved fruitful computations
involving classes of monoids for which extremely simple presentations were previously
determined by the third author [14, 15, 16] or by third author together with Gomes and
Jesus [17].
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We observe that the interest of this kind of computations goes far beyond the com-
putations themselves. For example, they have been at the basis of theoretical results
such as those obtained by the second and third authors in [8], which extend the no-
tion of solvability of groups, and later generalised with the collaboration of Margolis and
Steinberg [10].

In this work we consider kernels relative to decidable pseudovarieties of Abelian
groups. An algorithm was obtained by Steinberg [26], from which the first and second
authors [4] described the necessary details to achieve an implementation using GAP.
The implementation used to perform tests that led us to get a better intuition and,
ultimately, to the results presented in this paper, was achieved by the second author with
the collaboration of Jose Morais, using the GAP language. The GAP package SgpViz [11]
has been very useful to visualise the results.

Besides this brief introduction, this paper is divided into four main sections. A fifth
section containing a few consequences and conjectures is also included.

The first section contains the preliminaries and is divided into several subsections.
Notation and definitions are given. Several results are recalled and some others are new
and proved here. These results are to be used in Sections 2 and 4.

In Section 2 we compute the relative Abelian kernels of finite cyclic, dihedral and
symmetric groups. These are the maximal subgroups of the monoids considered in this
paper.

Aiming to keep the paper as self-contained as possible, we present in Section 3 a
summary of the relevant results on presentations of the transformation monoids VOIn,
VOVln, VOVln, VOnin and In.

In Section 4 we give descriptions of the kernels relative to all decidable pseudovari-
eties of Abelian groups of the transformation monoids considered in Section 3.

1. PRELIMINARIES

A pseudovariety of groups is a class of finite groups closed under formation of finite
direct products, subgroups and homomorphic images. In this paper we are particularly
interested in the class Ab of all finite Abelian groups, which is clearly a pseudovariety,
and its subpseudovarieties.

It is well known that the computation of the kernel of a finite semigroup relative
to a pseudovariety of groups can be reduced to the computation of the kernel of a finite
monoid relative to the same pseudovariety of groups, so we shall mainly be concerned
with monoids, as is usual.

For general background on Green relations and inverse semigroups, we refer the
reader to Howie's book [20]. For general notions on profinite topologies and finite semi-
groups, Almeida's book [1] is our reference.

This section is divided into several subsections. The first one recalls a connection
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between supernatural numbers and pseudovarieties of Abelian groups. Then we introduce
some notation. The third subsection recalls an algorithm due to Steinberg [26] to compute
the closure of a subgroup of a finitely generated free Abelian group relative to the profinite
topology of the free Abelian group given by a decidable pseudovariety of Abelian groups.
The definition of relative kernel of a finite monoid is recalled in Subsection 1.4. In
Subsection 1.5 we prove two general results that will be applied in Section 2 to the
groups considered in this paper. In Subsection 1.6 we prove a combinatorial result that
will be used in Subsection 4.4 to describe the relative Abelian kernels of the monoids

vonin.
1.1. SUPERNATURAL NUMBERS AND PSEUDOVARIETIES OF ABELIAN GROUPS. A su-

pernatural number is a formal product of the form TT = Upp"" where p runs over all
natural prime numbers and 0 ^ np ^ +oo.

We say that a supernatural number Up'1' has finite support if all np, except possibly
a finite number, are zero. There is an obvious notion of division of supernatural numbers,
which in turn leads to the notion of greatest common divisor of two supernatural num-
bers. A supernatural number is said to be recursive if the set of all natural numbers which
divide it is recursive. In particular, supernatural numbers of finite support are recursive.
A supernatural number rip"" of finite support such that all the exponents np are finite
is said to be finite and is naturally identified with a positive natural number. All other
supernatural numbers are said to be infinite. In general we use the Greek letter n for
a (possibly infinite) supernatural number, but when the supernatural number is known
to be finite, we prefer to use a roman letter, for example, k. We say that the supernat-
ural number n is odd when gcd(2, n) = 1 and that it is even otherwise, that is, when
gcd(2,7r) = 2.

To a supernatural number TT we associate the pseudovariety of Abelian groups Hff

of all finite Abelian groups whose torsion coefficients divide ir (that is, Hn = ({Z/mZ |
m divides n})). See Steinberg's paper [26] for details. Notice that the pseudovariety
of Abelian groups associated to a natural number k is just (Z/fcZ), the pseudovariety
generated by the cyclic group of order k. In particular, the pseudovariety of groups
corresponding to the natural number 1 is the trivial pseudovariety. Observe that to the
supernatural number lip00, where p runs over all positive prime numbers, is associated the
pseudovariety Ab of all finite Abelian groups. Observe also that decidable pseudovarieties
of Abelian groups correspond to recursive supernatural numbers and that the converse
is also true. All supernatural numbers considered in this paper are recursive.

For a pseudovariety H of groups and a finite set A, we denote by FH{A) the relatively
free group on A in the variety of groups (in the Birkhoff sense) generated by H.

Let 7r be a supernatural number and HT the corresponding pseudovariety of Abelian
groups. The following holds:

PROPOSITION 1 . 1 . ([26]) Let n be a positive integer and let A be a finite set
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of cardinality n. Then ifn is a naturai number, Fnn(A) = (Z/TTZ)". Otherwise, that is,
when n is infinite, Fn^(A) = Z", the free Abelian group on n generators.

It turns out that the pseudovarieties of Abelian groups corresponding to natural
numbers are locally finite, while those corresponding to infinite supernatural numbers
are non locally finite. The relatively free groups appearing in the last proposition will be
turned into topological spaces, the finite ones being discrete.

1.2. NOTATION. Throughout the paper n will denote a positive integer. Without sur-
prise, after Proposition 1.1, the free Abelian group Zn plays a fundamental role here.

In order to render our notation more understandable, we shall use subscripts in some
components of the elements of Z". For instance, we write (0, . . . , 0,1(,), 0, . . . , 0) with the
meaning of "(0,..., 0,1,0,... , 0) (1 is in the position i)". We adopt the usual notation
for the neutral element of an Abelian group: (0, . . . , 0) € Zn is simply denoted by 0. The
set of non-negative integers, also named natural numbers, is a monoid under addition
and is denoted by N.

Let A = {ai,..., an} be a finite ordered alphabet. The canonical homomorphism
7 : A* —> Zn, from the free monoid on A into the n-generated free Abelian group, defined
by l(ai) = (0, • • •, 0, l(i), 0,. . . , 0) will be widely used (for the alphabets in the context).
The image under 7 of a rational language of A* is a rational subset of Nn (C Z"), thus it
is a semilinear set, that is, a finite union of sets of the form a + biN + • • • + 6rN. There
exists an algorithm (see, for instance, [5, 6]) to compute (a semilinear expression for)
the image of a rational language of A* by 7, when it is given by means of a rational
expression.

Suppose that M is an vl-generated finite monoid and let y> : A* —> M be an onto
homomorphism. We say that an element x € M can be represented by a word w € A*
(or that w is a representation of x) if <p(w) = x.

When a monoid M is given through a monoid presentation (A | R), we always assume
that A is an ordered alphabet and <p denotes the homomorphism ip : A* -» M associated
to the presentation. Thus, a presentation of a monoid determines two homomorphisms
which will be represented throughout the paper by the Greek letters <p and 7.

1.3. TOPOLOGIES FOR THE FREE ABELIAN GROUP. Let it be an infinite supernatural
number and Hn the corresponding pseudovariety of Abelian groups.

The pro-H,r topology on Z" is the least topology rendering continuous all homomor-
phisms of Z" into groups of HT. The free Abelian group Z" endowed with this topology
is a topological group. When H* = Ab, the pseudovariety of all finite Abelian groups,
the pro-H,r topology is usually referred simply as profinite topology.

For a subset X of Zn, we denote by OH^(X) the pro-H^ closure of X. The pro-Ab
closure will in general be referred as the profinite closure. The following holds [5].

PROPOSITION 1 . 2 . For a, bu ..., br e N n , the profinite closure of the subset
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a + & i N + • • • + b T n o f Z n i s a + b{L +••• + i

Next we recall an algorithm to compute the pro-H^ closure of a subgroup G of the
free Abelian group Z". See [4, 26] for details.

Let M be a matrix whose rows generate G. We say that M represents G. Notice
that, by adding rows of zeros when necessary, we may suppose that M is an n x n matrix.

ALGORITHM 1.3. INPUT: a subgroup G of Zn given through an integer n x n matrix
M.
OUTPUT: a matrix representing the pro-H^ closure of G.

(1) Compute invertible integer matrices P and Q such that

PMQ=S=

<H 0 0

0 a2 0

0 0 0

is a diagonal matrix. Notice that if, for 1 ^ z < n — 1, a* | ai+i, then the
matrix 5 is in Smith Normal Form.

(2) For each a*, compute 6, = gcd(aj,7r) (note that we are assuming that ir is
recursive) and consider the matrix

S =

(3) Return the matrix SQ~l.

The matrix returned represents the pro-H* closure of G.
Next example illustrates the usage of the algorithm. It will be referred in Section 2.2.

EXAMPLE 1.4. (1) Let G = ni. Then CIH,(G) = gcd(n,7r)Z. More generally, let G
be a subgroup of Z" represented by a diagonal matrix. A matrix representing the pro-H^
closure of G can be obtained from M by replacing each nonzero entry a with gcd(a, TT).

0

0

0

0

0 ..
0 ..

0 ..

. 0

. 0

b

(2) Let G be the subgroup of Z2 represented by the matrix M — n . Then

0 1
- 1 2

2 0
1 1

1 0
0 2

In order to use the notation of the algorithm just stated, we write 5 =

Q =
i - i
o I

. We thus have Q~l =
0 1

and
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If 7r is even, then gcd(2, TT) = 2. So, in this case, S =

represented by
0 2

and CIH, (G) can be

SQ~l =
1 1
0 1

and therefore OH,(G) = G.

If 7r is odd, then gcd(2, TT) = 1 and we get SQ~l =
1 1
0 1

Thus {(1,1), (0,1)} is a

basis of the pro-H* closure of G and it follows that CIH, {G) = I?.

1.4. RELATIVE KERNELS OF FINITE MONOIDS. Let M and TV be finite monoids. A
relational morphism of monoids r : M-e-» TV is a function from M into V{N), the power
set of TV, such that:

(a) For all s € M, T{S) ^ 0;

(b) For all Si,s2 S M, r(si)r(s2) C r(sis2);

(c) l € r ( l ) .

A relational morphism r : M-&-¥ TV is, in particular, a relation in M x TV. Thus, com-
position of relational morphisms is naturally defined. Homomorphisms, seen as relations,
and inverses of onto homomorphisms are examples of relational morphisms.

Given a pseudovariety H of groups, the H-kernel of a finite monoid M is the sub-
monoid K H ( M ) = C\T~1(1), with the intersection being taken over all groups G e H and
all relational morphisms of monoids r : M-e-t G. Sometimes we refer to the H-kernel sim-
ply as relative kernel. When H is Ab, we use the terminology Abelian kernel. Accordingly,
when H is a subpseudovariety of Ab, we say relative Abelian kernel.

As an example we can state the following proposition which was proved in a slightly
more general form in [5]. See also [7].

PROPOSITION 1 . 5 . The Abelian kernel of a finite group is precisely its derived

subgroup.

All statements of the following remark follow directly from the definition or are easy
to prove (and well known, in any case).

REMARK 1.6. Let H and H' be pseudovarieties of groups and let M be a finite monoid.
Then

(1) If H C H', then KH-(M) C KH(M).

(2) If TV is a subsemigroup of M that is a monoid, then KH (TV) C KH (M) n TV.

(3) KH(M) contains the idempotents of M.

When the subsemigroup of M mentioned in the second statement of previous remark

is the group of units, the inclusion can be replaced by an equality, as stated in the following

lemma.
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LEMMA 1 . 7 . ([7, Lemma 4.8]) Let G be the group of units of a finite monoid

M. Then K H (M) n G = K H ( G ) , for any pseudovariety of groups H. In particular,

K A b (M)nG = G'.

As a consequence of Proposition 1.5 and the first step of Remark 1.6 we get the
following.

COROLLARY 1 . 8 . Any relative Abelian kernel of a finite group contains its de-

rived subgroup.

Let 7r be an even supernatural number. It is clear that H2 C H,, thus, for any finite
monoid M, KAb(M) C KH,(M) C KH2(M). Consequently we have the following.

PROPOSITION 1 . 9 . Let M be a finite monoid such that KH2(M) = KAb(M).
Then, for any even supernatural number -n, K H , ( M ) = KAb(M).

1.5. SOME RESULTS CONCERNING RELATIVE ABELIAN KERNELS. Let vr be an infinite

supernatural number, let Hff be the corresponding pseudovariety of Abelian groups and
let M be a finite yl-generated monoid. The following result was proved by the second
author [5] for the case Hn = Ab and generalised by Steinberg [26] to cover all other cases.

P R O P O S I T I O N 1 . 1 0 . Let x e M. Then x e KH,(M) if and only if

)

Next we recall some facts proved by the first and second authors [4], In order to

compute CIHT (7((P~1(a;))) w e c a n calculate CIAb( 7(y>~1(:E)) J in an intermediate step, as
the next result shows.

P R O P O S I T I O N 1 . 1 1 . Let x&M. Then

Now let A; be a finite supernatural number and Hk be the corresponding pseudova-
riety of Abelian groups. We consider the projection ĉ  : Zn -¥ (Z/fcZ)n (defined by:
Ck{T\, • • • ,rn) = (rl mod k,...,rn mod k)) and the homomorphism 7* = ck o 7 : A'
-¥ (Z/kZ)n. Note that for a word w € A*, the ith component of jkiiv) is the number of
occurrences modulo k of the ith letter of A in w.

The next proposition is similar to Proposition 1.11. It allows us to compute
7fc(^r1(:r)) using C\M(j((f~1(x))) in an intermediate step.

PROPOSITION 1.12. Let x & M. Then jkif'1^)) =Ck(oAb('y(<p~1{x)))').

An analog to Proposition 1.10 was also stated in [4].

PROPOSITION 1 .13 . Let x e M. Then x e KHk(M) if and only if

The following is another simple and useful characterisation of the Hk-kernel proved

in the same paper.
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PROPOSITION 1 . 1 4 . Let x G M. Then x G KHk(M) if and only ifx can be

represented by a word w € A* such that, for any letter a G A, \w\a = 0 mod k.

Note that, as a consequence, we get that if x G KHk(M), then x can be represented
by a word whose length is a multiple of k. The following result and its proof is similar
to [9, Theorem 3.4].

THEOREM 1 . 1 5 . Let T be a monoid, let Xi,x2,.. .,xs,y be a set of generators
ofT such that yk = 1 and let S be the submonoid ofT generated by x\, x2, • • •, xs. If for
each i G { 1 , . . . , s} there exists Ui G S such that yxi = U{y, then Knk(T) C 5.

P R O O F : Let x € KHk(T). Then, by Proposition 1.14, we can represent x as a word
w G {xi, X2, • • • ,x3, y}* with a number of occurrences of the generator y that is a multiple
of k. Then, applying the relations yxi = Ujj/, i G { 1 , . . . , s} from the left hand side to
the right hand side of w and the relation yk = 1 whenever possible, we can represent x
without any occurrence of y, thus x € S. 0

Another important result of this subsection is Proposition 1.17 that gives a simple
and efficient way to compute the H^-kernel of a finite group. In order to state it, we need
to introduce a subgroup of a group containing the derived subgroup.

Given a finite group G, denote by G'*' the subgroup of G generated by the commu-
tators of G (that is, the elements of the form xyx~ly~l, x,y G G) and by the ^-powers
of G (that is, the elements of the form xk, x G G). In other words, G^ is the smallest
subgroup of G containing the derived subgroup G' and the fc-powers.

LEMMA 1 . 1 6 . The subgroup G'k' is normal in G.

PROOF: Let G\ and G2 be finite groups and let <p : G\ -> Gi be a homomorphism.

We have that

i p { x y x ~ l y ~ l ) = < p l l l

and v(xk) = {<P(x))\ thus <p{G^) C G2^.
In particular, taking the inner automorphism <pg : G —• G defined by ipg{x) = gxg~l,

we have that, for any g € G, gG^g~l C (?'*', concluding the proof. D

Since G' C G^k\ we have that the factor group G/G^ is Abelian. Furthermore, the
order of any element xG'fc) of G/G^ divides k, which implies that G/G^ g Hk.

PROPOSITION 1 . 1 7 . For a finite group G, we have: KHk(G) = G'*'.

P R O O F : The projection p : G -> G/G^ is such that p~l{l) = G^, thus KHk(G)

C G'*'.

Conversely, by Corollary 1.8, G' C KHk(G). Since the elements of the form xk may

be written involving each generator of G a multiple of k times, the result follows from

Proposition 1.14. D
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1.6. A COMBINATORIAL RESULT. We end the section of preliminaries with a combina-

torial result (Proposition 1.22) to be used in Section 4.3.

Let j be an integer. Consider the set

B(j) = {r(n - 1) - i + j | (i,r) 6 {1,. . . , n - 1} x {0,..., n - 1}}.

LEMMA 1.18. B(j) consists ofn(n - 1) consecutive integers.

PROOF: Denote by m and M, respectively, the minimum and the maximum of B(j).
Clearly m - 0 ( n - l ) - ( n - l ) + j and M = (n-l)(n-l)-l+j. As M - m + l = n(n- l ) ,
it suffices to prove B(j) has cardinality n(n — 1) to conclude that all integers between m
and M belong to B(j).

On the other hand, as n(n — 1) is precisely the cardinality of {1,. . . ,n — 1}
x {0,..., n — 1}, to prove that B(j) has also cardinality n(n — 1) it is enough to observe
that, for (i,r),(z',r') <E {1, . . . , n - l } x {0,... , n - l } , if r ( n - l ) - i + j = r'{n-l)-i'+j,
then i = i' and r = r'. Now observe that —(n — 1) <i — i' < n — 1 and r(n — 1) — i + j
= r'{n - 1) - i' + j «• (r - r')(n - 1) - (t - i') = 0. But this implies that r = r', from
what follows that also i = i'. D

As an immediate consequence of the preceding lemma we get the following corollary.

COROLLARY 1 . 1 9 . If d is a divisor ofn(n - 1), Chen B(j) contains n(n - l)/d
multiples ofd.

The proof of Lemma 1.18 has also the following corollary as an immediate conse-
quence.

COROLLARY 1 . 2 0 . The function g : { 1 , . . . , n - 1} x {0 , . . . , n - 1} ->• B(j)
defined by g(i, r) = r(n — 1) - i + j is a bijection.

Let X — { 1 , . . . , n - l } x { 1 , . . . ,n} x {0 , . . . , n - l } and suppose now that 1 ̂  j < n.

Denote by U = [ J B(j) x {j} the disjoint union of the B(j)'s. From the preceding
je{i "}

corollary we get immediately the following.

COROLLARY 1 . 2 1 . The function f : X -> U defined by f(i,j, r) = (r(n - 1)

— i + j , j) is a. bijection.

Denote by A(n, d) the set of elements of X corresponding, via the bijection of the
preceding corollary, to elements of U whose first component is a multiple of d, that is

A(n,d) = {(i,j,r) &X:d\ (r(n - 1) + j - i ) } .

As a consequence of Corollary 1.19 we get the main result of this section.

PROPOSITION 1.22. Ifdisadivisorofn(n-l), then \A(n,d)\ =n2(n-l)/d.
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2. RELATIVE ABELIAN KERNELS OF SOME FINITE GROUPS

As already observed, in this paper, cyclic, dihedral and symmetric groups appear
frequently. This section provides the computations of relative Abelian kernels of finite
groups of these kinds. We shall consider them as given by the monoid presentations of
the following example. In this section n is a positive integer.

EXAMPLE 2.1.

1. Cn = (g | gn — 1) (the cyclic group of order n);

2. D2n = (h,g\h2 = gn = hgn-xhgn~l = 1) (the dihedral group of order 2n);

3. Sn = (a,g\a2 = gn = (ga)n~l = (agn-lag)3 = (ag^ag^)2 = 1 (2 < j

^ n — 2)) (the symmetric group on a base set with n elements).

The presentation given for Sn requires some explanation. Consider the transposition
o = (1 2) and the n-cycle g = (12 • • • n) of «Sn. Then, it is well known that {a, g} is a
set of generators of Sn and, from a group presentation due to Moore [21], one can easily
deduce [16] the monoid presentation for Sn given in the above example.

As Proposition 1.10 (together with Proposition 1.11 or even Proposition 1.12) makes
clear, one possible strategy to compute relative Abelian kernels is to start computing
profinite closures. This is what we do in this section for the cases of kernels relative to
pseudovarieties corresponding to infinite supernatural numbers.

2.1. PROFINITE CLOSURES. In this subsection the n-generated free Abelian group Z"

is considered endowed with the profinite topology.

Let G = (A | ri = r2 = • • • = rs = 1) be a monoid presentation of a finite group. As

any word in v'~1(l) c a n o e obtained from the empty word by inserting or removing some
relators, we have that 7(rx)NH h7(r,)NC 7((^~1(1)) C j(rx)Z+ hj(rs)Z. Using
Proposition 1.2 we have the following lemma.

LEMMA 2 . 2 . With the above notation, C\M(y{<p-l[l))\ = i(r1)Z + - • •+'y(r,)Z,

that is, CIAb(7(v~1(1))) is tae subgroup oilT generated by 7(n),7(^)> • • -,l(rs)-

Next result shows, in particular, that to compute ClAb(7(v~1(x)))> where x is an
element of the group G, it is not important which representative of x is used.

LEMMA 2 . 3 . Let wx e A* be a representative ofxeG. Then

PROOF: Observe that

since addition in Zn is continuous. As wx<p~l(l) C <p~l(x), we have that
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which implies that

For the reverse inclusion it suffices to observe that

But this is immediate, since any word w representing i can be obtained from wx by
inserting or removing the relators a finite number of times, thus

= 7K) + CIAb(7(^(l))).

Next we apply the results just obtained to the groups Cn, D2n and Sn.

T H E CASE OF THE CYCLIC GROUP Cn. Let x e Cn and let r be a non negative integer

such that gT is a word representing x (that is, x = y{gT))- By Lemma 2.2 we have
= n^ anc* t n e n Lemma 2.3 shows that

THE CASE OF THE DIHEDRAL GROUP D2n- Let x € An and let wx G i4* be a represen-
tative of x. By Lemma 2.2,

ClAb(7(¥> (1))) = (2,0)Z + (0,n)Z + (2,2n - 2)Z.

Using now Lemma 2.3 we have that

CUb (i{<P~l(x))) = l(wx) + (2,0)Z + (0, n)Z + (2,2n - 2)Z

- 7(«;x) + (2,0)Z + (0, n)Z + (0, - 2 ) Z

7(u>x) + (2 ,0 )Z+(0 ,1 )Z if n is odd

7(u/x) + (2,0)Z + (0,2)Z if n is even.

T H E CASE OF THE SYMMETRIC GROUP <Sn. Using similar notation and arguments we

have

= l(wx) + (2,0)Z + (0, n)Z + (n - 1, n - 1)Z + (6,3n)Z + (4, 2n)Z

= j{wx) + (2,0)Z + (0, n)Z + (n - 1, n - 1)Z

7(u/x) + (2,0)Z + (0, n)Z + (0, n - 1)Z if n is odd

•y(wx) + (2,0)Z + (0, n)Z + (1,1)Z if n is even

7(twz) + (2,0)Z + (0,1)Z if n is odd

7(t«x) + (2,0)Z + (1,1)Z if n is even.
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2.2. RELATIVE ABELIAN KERNELS. Next we compute relative Abelian kernels of cyclic,
dihedral and symmetric groups.

We start by applying to these particular cases the fact that the Abelian kernel of a
finite group is its derived subgroup (Proposition 1.5). One can easily compute the derived
subgroup of a dihedral group (see [12]) and it is well known that the derived subgroup
of the symmetric group is the alternating subgroup. We thus have the following lemma.

LEMMA 2 . 4 .

(1) The Abelian kernel of a finite Abelian group is the trivial subgroup;

(2) Tie Abelian kernel of the dihedral group D2n of order 2n is the subgroup

_ l(g) if n is odd

I \92' I 0 ^ l ^ 77 f ifnis even

of D2n, where g is the generator of order n;

(3) The Abeiian Jcernei ofSn is the alternating subgroup An-

For kernels relative to proper subpseudovarieties of Ab we shall distinguish the cases
of pseudovarieties corresponding to infinite supernatural numbers and those correspond-
ing to natural numbers.

Let n be an infinite supernatural number and let HT be the corresponding pseu-
dovariety of Abelian groups. Recall (Proposition 1.10) that for x 6 G, x € KH.(C?) if
and only if 0 G CIH,(7(v~1(:r)) )• Note also that Proposition 1.11 allows us to use the

computations of Subsection 2.1 to calculate CIH, (y(<p~l(x))).

THE CASE OF THE CYCLIC GROUP Cn. Let x = <p(gT) e Cn and let d = gcd(n,n). By

the Example 1.4 we have CIH, (7(^~1(i)) J = r + dZ.
Since there exists t € Z such that 0 = r + dt if and only if r is a multiple of d, we

have

where d = gcd(n, w).

THE CASE OF THE DIHEDRAL GROUP D2n. Let x e D2n. Then

CIH. (7(i0x) + (2,0)Z + (0,1)Z) if n is odd

k (7(i"x) + (2,0)Z -I- (0,2)Z) if n is even.

We shall consider two sub-cases according to whether n is even or -K is odd.
Subcase 1. n even. As gcd(2,7r) = 2, by making use of Example 1.4, we have that

ifniseven
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Therefore
KH,(£>2n) = KAb(D2n) = D'2n = (g2).

Subcase 2. IT odd. As gcd(2, it) = 1, by making again use of Example 1.4, we have

C\H,[j(ip-l(x)))=Z2. Thus

K ( i > )

T H E CASE OF THE SYMMETRIC GROUP Sn. Let x € 5 n . Then

n ( I -U \\\ / a H .
C I H . I T I V \X))) = \V ' (CIH

ifnisodd

if n is even.

We consider again two subcases and make use of Example 1.4.
Subcase 1. ?r even. We have

CIH f 7 (^() ) ) {
*V ' ^ ( ) (0,2)Z+(l,l)Z if n is even

thus, also in this case, C\H,\I(>P~1{X))) = ClAbfT^"1^))) aQd therefore,

Subcase 2. X odd. Again CIHir(liv^ix))) = Z2 and therefore

Similar results for finite supernatural numbers could be attained in an entirely anal-
ogous way, but here we prefer to observe that these correspond to particular cases of
Proposition 1.17 and give alternative proofs. Let A; be a natural number and let Hk be
the corresponding pseudovariety of Abelian groups.

THE CASE OF THE CYCLIC GROUP Cn. Let G - Cn. Since Cn is Abelian, there is
no need to consider the commutators. Let d — gcd(n, k). As d \ k, we have that (?'*'
= (9k) Q (9d)- Let r and s be integers such that d = rk + sn. Thus gd = gTkgsn — grk

€ GW. Thus (gd) C G'fc', and therefore G^ = (gd).

THE CASE OF THE DIHEDRAL GROUP D2n. Let G - D2n. As {g2) = G', we have
that (g2) C G'*'. Note that the relation hgn~l = gh follows from the defining relations
for D2n and therefore the elements of D2n may be written in the form gl or hg%, with
i 6 {1, . . . ,n}. We consider again two subcases, according to whether A; is even or odd.

Subcase 1. k even. As hghg = h2gn~lg = h2g" = 1, we may conclude that,
for » e { l , . . . , n} , ( V ) 2 = W = hg^hg^g1 = hg^hg*'1 = 1. It follows that

= (g2) = G'.
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Subcase 2. k odd. Note that, as k - 2r + 1, for some r, (hg')k - {hg')2r+l = hg\

for i e { 1 , . . . , n}. In particular, h, hg € G'*', thus g = h • hg e G'*>. It follows that
= G.

T H E CASE OF THE SYMMETRIC GROUP «Sn. Let a € 5 n . Once again, we consider two
subcases, according to whether k is even or odd.

Subcase 1. k even. It is clear that ak € An and therefore Sn = An = S'n.

Subcase 2. k odd. In this case, ak has the same parity than a, thus <Sn'
fc' cannot

be contained in An- Since An has index 2 in Sn, Sn must be 5 n .

Summarising, we have:

THEOREM 2 . 5 . Let n be a (finite or infinite) supernatural number and let HT

be the corresponding pseudovariety of Abelian groups. Then:

(1) KH,(CB) = (ffd); where d = gcd(n, TT).

(2) If IT is even, then KH^(D2n) = KAb(D2n) = D'2n = (g2).

If ir is odd, then KH,(r)2n) = D^n-

(3) Ifn is even, KH,(5n) = KAb(«Sn) = An-

Ifir is odd, KHw{Sn) = Sn.

Since any relative kernel of a finite monoid M is a submonoid of M, as a consequence
of Remark 1.6 and previous theorem we have:

COROLLARY 2 . 6 . Let w be an odd supernatural number and let Hn be the

corresponding pseudovariety of Abelian groups. Let M be a finite monoid all of whose

maximal subgroups are symmetric or dihedral groups. If M is generated by its group-

elements, then KH,(M) = M.

3. O N PRESENTATIONS OF SOME TRANSFORMATION MONOIDS

In this section we give some background on the inverse monoids whose relative

Abelian kernels will be described.

To avoid ambiguities, from now on we take n ^ 4. Notice that, for n ^ 3, the relative

Abelian kernels of the finitely many semigroups under consideration can be easily com-

puted using the already referred implementation in GAP [27] of the algorithm presented

in [4].

The reader can find more details and the proofs of the facts presented in this section

in [13, 14, 15, 16, 17].

3 .1 . T H E INVERSE SYMMETRIC MONOID In- We begin by recalling some well known
facts on the symmetric inverse monoid 2^ on a base set with n elements, that is, the
inverse monoid (under composition) of all injective partial transformations on a set with
n elements.

Notice that the symmetric group <Sn is the group of units of the monoid 2,, and
that two elements of 2^ are 91-related or £-related if they have the same domain or
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the same image, respectively. Moreover, given s,t G 2,,, we have s < 3 t if and only if

| lm(s ) | ^ | lm(t ) | . Hence, for k G { 0 , 1 , . . . , n } , being Jk = | s G 2« | | lm(s ) | = fcj, we

have

Since |J*| = (t)2*!, for A; G {0 ,1 , . . . , n} , it follows that Z,, has £ (l)2^- elements.
k=0

Observe that Jn — Sn. Moreover, the maximal subgroups of 2 ,̂ contained in J* are
isomorphic to <S*, for 1 ^ k ^ n. We obtain a generating set of Z,,, with three elements,
by joining to the permutations a — (12) and g = (1 2 • • • n), which generate Sn, any
injective partial transformation of rank n — 1. For instance, if

c =

then the set {a,g,c} generates the monoid Zi,. In particular, we have the following:

COROLLARY 3 . 1 . Tie inverse symmetric monoid !„ is generated by its group-
elements.

Combining the monoid presentation for Sn given in Example 2.1 with the Popova
presentation of Z,, [22], one can deduce [16] the following presentation of In, in terms of
the generators a, g and c:

( a, g, c | a2 = gn = (pa)""1 = (ag^ag)3 = {ag^ag^f = 1 (2 ^ j < n - 2),

gn~1agcgn~1ag - gacagn~l =c = c2, (ca)2 = cac = (ac)2 ) .

3.2. SOME INVERSE SUBMONOIDS OF ! „ . A partial transformation a of a chain Xn

with n elements, say Xn = {1 < 2 < • • • < n}, is called order-preserving [order-reversing]
if, x ^ y implies xa ^ ya [xa ^ ya], for all x, y G Dom(a). We denote by VOln

the inverse submonoid of Zn of all order-preserving transformations and by VOVIn the
inverse submonoid of 2« whose elements are all order-preserving or order-reversing trans-
formations.

Let c = (ci, c2, • • •, ct) be a sequence of t (t ^ 0) elements from the chain Xn. We
say that c is cj/c/ic [anti-cj/c/ic] if there exists no more than one index i G { 1 , . . .,t}
such that Cj > Cj+i [CJ < Cj+J, where Q+I = cx. Then, given a partial transformation
a on the chain Xn such that Dom(cr) = {a i , . . . , at}, with i ^ 0 and ai < • • • < ot, we
say that a is orientation-preserving [orientation-reversing] if the sequence of its images
(ai<7,... ,ata) is cyclic [anti-cyclic]. We denote by VOVIn the inverse submonoid of In
of all orientation-preserving transformations and by VO1ZIn the inverse submonoid of
In of all orientation-preserving transformations together with all orientation-reversing
transformations.

Notice that, VOIn C VOVIn c VOTHn and VOIn C VOVIn C VOTZIn, by
definition.
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Let M be one of the monoids VOIn, VOT>Xn, VOVXn or VOTZln. As for In, given
two elements s,t € M, we have s ^3 t if and only if |lm(s)| < |lm(t)|, hence

— {̂ 0 <3 J\ <Z " ' ' <3 Jn},

where Jk = < s € M : | lm(s)| = A: \, for 0 ^ k ^ n.

Concerning maximal subgroups, the monoid VOXn is aperiodic, while each f)-class
of an element s € VOT>In has exactly two elements (an order-preserving one and another
being order-reversing), unless the rank of s is one or zero, in which case its 5>class is
trivial. On the other hand, for 1 < k < n, the i>class of an element s 6 VOVXn of
rank A; has precisely k elements, being a cyclic group of order k if s is a group-element.
Finally, given s € VOlZIn, if |lm(s)| = A: ^ 3, then the ij-class of s has 2A; elements and,
if s is a group-element, it is isomorphic to the dihedral group D^k and if |lm(s)| = 2 then
ij-class of s has precisely two elements, otherwise it has just one element.

Next, let us consider the elements XQ,XI,. ..,xn_i of VOXn defined by:

_ f 2 ••• n - l n \

\ 1 ••• n - 2 n — 1 / '

2. x i = r •• n~i~i

1 ••• n - i - l

n — i

n- i +1
n-i + 2
n-i + 2

for 1 ^ i ^ n — 1.

Consider also the permutation (that reverts the order)

h-

of VOVXn and the n-cycle

9 =

which is an element of VOV Xn. Hence, A- {xo,xi,... ,xn_i}, B = Au{h}, C - Au{g}
and D = A U {h,g} are sets of generators of VOXn, VOT>Xn, VOVXn and VOTlIn,
respectively.

Furthermore, consider the following set of monoid relations:

Ri XiXo = xoXi+i, 1 ^ i $J n — 2;

x i + 1x,Xi+ 1 = Xj+iXj = XjXj+iXj, 1 ^ i ^ n - 2;

XiXi+i • • • x n _ 1 x o x i • • • Xj-iXj - Xi, 0 < i ^ n - 1;

=xf, 1 ̂  i ^ n -
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R7

R8 = x \ a n d x n _

Rio h2 = l-

Rn hxQ = Xi • • • xn-ih and hxt = x n _ i + 1 • • • i n -

for 1 ^ i ^ n - 1;

R l 2 Xo~1h = x n - i - l

n - 2 n - l

Observe that, we are adopting the following convention: given i, j € {0 , . . . , n — 1}, if
i ^ j the expression X{ • • • Xj represents the word of length j — i + 1 such that the letter in
the position p €. {1,... ,j — i + 1} is £i+p-i (that is, the indices of the letters are ordered
in the usual way and are consecutive), and if j < i the expression x, • • • Xj represents the
empty word. For example, the expression X3 • • • 12 denotes the empty word.

Hence, (A \ R, - Jfe), (B | Rt - R,, R10 - Ru), {C \ Rx - Rg) and (D | ^ - Ru)
are presentations of the monoids VOIn, VOVln, VOVXn and VOKIn, respectively.

Next, we recall a set of canonical words associated to each of these presentations.

Let k € { 1 , . . . , n — 1}, I = n — k (1 ^ £ ^ n — 1) and Wj = £<_j+i • • • xi-j+k, for
1 < j ^ t- Notice that |w,| = k, for 1 ̂  j ^ £. Let At [Ck] be the set of all words

where [0 ^ i ^ n — 1], Uj is a suffix of Wj and Vj is a prefix of Wj, for 1 ^ j ^ £,

0 ^ |ui| ^ • • • ^ \ut\ < * [1 ^ |ui| ^ ^ \ui\ ^ k] and k > \Vl\ > ^ |w«| ^ 0.
Also, define Ao = Co = {xj}, An = {1} and Cn = {g* | 0 ^ i ^ n - 1}. Then
~A - Ao U AI U • • • U An and C = Co U C! U • • • U Cn are sets of canonical words for VOIn

and VOVln, respectively.

Now, let Bk = Ak U {w/i | u; 6 /!«;}, for 2
define Dk - Ck U {wh | u; £ C t } , for 3 ^ A;
B = Bo U Si U • • • U Bn and D = Do U A U
VOVXn and VOTZIn, respectively.

Notice that, for 0 ^ k < n, the sets of words Ak, Bk, Ck and Dk represent the

transformations of rank A; of VOIn, VOVIn, VOVln and VOTZXn, respectively.

Of particular interest for us, are the words corresponding to elements of rank n - l :

An-i = {xiXi+l • • • Zn^xoZi • • • i j - i I 1 s* i < n, 1 < j ' ^ n},

•Bn_i = {xjXi+i • • • in-iioZi • • • Xj-ih1 I 1 ^ i ^ n, 1 ^ j ^ n, t = 0,1},

A: ̂  n, and Bk = Ak, for A; = 0 ,1 . Also,
n, and Dk - Ck, for 0 ^ k < 2. Then
• • U Dn are sets of canonical words for
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{ - - x j - i h t | 1 ^ t ^ n - l , U j 0 , 0 ^ r

Again, let M be one of the monoids VOIn, VOVln, VOVXn or VOTlln. Denote
by X the set of generators of M and by W the set of canonical words of M considered
above. Let y? : X' —> M be the onto homomorphism extending the map X —> M,

x >—¥ x .

Given an element s € M, we denote by ws the (unique) element of <p~l{s) n W,

called the canonical word associated to s.

R E M A R K 3.2. Let M e {VOXn, VOVln) and let s € M be an element of rank n - 1.
Then s is an idempotent if and only if there exists i € {0 , . . . , n — 1} such that

Ws = Xi • • -Xn-iX0Xi • • -Z i_ i .

Notice that, if s is not an idempotent, then |w,|l0 = 1 and there exists i € { 1 , . . . , n
— 1} such that either |ws|Xi = 0 or Ivv^^ = 2.

On the other hand, if M € {VOVTn,VGHTn} and s e M is an element of rank
n — 1, then s is an idempotent if and only if ws = gn~1xx • • • xn_i (which corresponds to
the same element of M that the word xoxi • • • xn_i) or there exists i e { 1 , . . . , n — 1}
such that

w s = x i - - - a ; n _ 1 x o x i •••xi_l.

It is known (see [17]) that VOTZTn is generated by the transformations g, h and x\.
Therefore {g, h,Xig} is also a set of generators of VOTtln. As

is a partial permutation, we obtain the following:

COROLLARY 3 . 3 . The monoid VOIZIn is generated by its group-elements.

4. MAIN RESULTS

This section is devoted to our main results. We give descriptions of the kernels
relative to decidable pseudovarieties of Abelian groups of the monoids VOXn, VOVXn,

VOVXn, VO7lIn and Xn for which we already recalled simple presentations. As the
kernel of a finite monoid relative to the trivial pseudovariety is the monoid itself, we just
need to consider pseudovarieties of Abelian groups corresponding to infinite recursive
supernatural numbers or to natural numbers greater than 1.

4 . 1 . T H E CASE OF VOXn. In this subsection we show that any relative Abelian kernel

of VOXn equals the Abelian kernel of V01n.
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THEOREM 4 . 1 . ([7]) The Abelian kernel of VOXn consists of all idempotents

and all elements of rank less than n — 1.

The Abelian kernel of VOXn contains all elements of rank less than n - 1, so it must

be the case of any relative Abelian kernel of VOXn.

Now, let x € VOXn be an element of rank n - 1 . In [7, p. 445] it was proved that

(considering the letters ordered as follows: x0 < xt < • • • < i n - i )

thus, using Proposition 1.12, for any k > 1, we have

By Remark 3.2, if x is not idempotent, then 7(wx) has the first component 1 and the
other components are 0 or 2, thus the same happens with 7t(wx) (except that if k = 2
none of the components is 2) and so 0 £ T*^"1^))- I* follows that the KHk(VOIn)
= K-kb(VOXn). Moreover, this equality holds even when the supernatural number under
consideration is not finite:

THEOREM 4 . 2 . Let n ^ 1 be a supernatural number. Then KHn(VOln)

PROOF: Suppose that k > 1 is a finite divisor of IT. As H* C HT, we have that

KMCPOIn) C KHwCPOIn) C KHv{VOXn) = KM(POXn).

Thus the inclusions must in fact be equalities, concluding the proof. D

4.2. THE CASE OF VOVXn. In this subsection we compute the relative Abelian kernels
of the monoid VOVXn.

First we recall:

THEOREM 4 . 3 . [9] Ifn is an even integer, the Abelian kernel ofVOVXn consists
precisely of the elements of the Abelian kernel ofVOXn. Ifn is an odd integer, then the
Abelian kernel ofPOVXn consists of the Abelian kernel ofVOXn united with the set of
elements corresponding to words of the form x< • • • Xn-xXo î • • • i n- i , for 1 ̂  i ^ n.

Considering the presentation of VOVXn recalled in Section 3, as an immediate
consequence of Theorem 1.15, we have the following corollary.

COROLLARY 4 . 4 . Ifkis even, then Knk(VOVXn) c VOXn.

Let 7r be a supernatural number.
Let Ji denote the 3-class of VOVXn of the elements of rank i, for 0 < i < n.
As the group of units Jn of VOVXn is the cyclic group generated by the permutation

of order two
, ( 1 2 ••• n - 1 n \

h = [ n n - 1 ••• 2 1 '
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by Theorem 2.5 and Lemma 1.7, we have

KHAvovTn) n Jn = KH.(J,) = (^ . - )> = (<1}- ^ if 2 divides *

l{ l , / i } , otherwise.

Next, we concentrate on the elements of rank less than n — 1. First, we notice that,
/n-2 \

by Theorems 4.3 and 4.1, VOXnn (J Ji is contained in the Abelian kernel of VOVXn
\i=o /

and so it is contained in KH,(POVXn).
Suppose that n is divisible by 2. Then, as KH2(POVln) C VOXn (by Corollary 4.4),

we have
VOln n (\J jt) c KHr(VOVln)n ({J A c KH2(VOVln)n (T) jt)

hence KH.(VOVXn) n U Ji I = P O I n n
\i=0 /

On the other hand, admit that 2 does not divide n. Then

(voxnn(\Jjt)]u{h}cKH,
t=0

and, since any element of VOVXn can be factorised as a product of a certain element of
n-2

VOXn (with the same rank) by h, it follows that [j Jj C KH,r('P0DIn).
:=0

Summarising, we have

n - 2 N | V O X n n [ \ J J i ] , i f 2 d i v i d e s TT
i = 0 /

otherwise.

Now, we just have to determine which elements of Jn_i belong to KH^CPOVIn).

We recall that

• Xj-ih* | K i < n, 1 < > < n,0 ^ t < 1}

is a set of canonical words for Jn-\.

It is clear that

( ( l , . . . , l , 0 ( i + 1 ) , . . . , 0 ( i ) , l , . . . , M ) ,

I ( I , - - - , l , 2 ( j + 1 ) , . . . , 2 ( j ) , ! , . . . , ! , t),
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for t = 0,1 (considering the letters ordered as follows: x0 < X\ < • • • < xn-i < h).

Let x € VOVXn be an element of rank n — 1. The second and third authors showed
in [9] that x <E KAbCPOVIn) if and only if

7 (w x ) 6 ( l , l , . . . , l ,

+ (0, 1, 0, . . . , 0, 1, 0)Z + • • • + (0, . . . , 0, l((n-l)/2+l), l((n+l)/2+l), 0, . . . , 0)Z,

if n is odd, and

7(wx) e ( l , l ,

+ (0, 1, 0, . . . , 0, 1, 0)Z + • • • + (0, . . . , 0, ln /2, 0, l(n/2+2), 0, . . . ,

if n is even. Notice that these expressions were deduced from the presentation oiVOVXn

[17] recalled in Section 3.

Hence, x € KHl(POVIn) if and only if 72 (wx) belongs to

( 0 , 1 , 0 , . . . . 0 , 1 , 0 ) Z / 2 Z + • • • + ( 0 , . . . , 0, l ( ( n - i ) /2 + i ) , l((n+i)/2+i), 0 , . . . ,

if n is odd, and to

(0 ,1 ,0 , . . . . 0,1,0)Z/2Z + • • • + ( 0 , . . . , 0, l n / 2 ,0 , l(n/2+2), 0 , . . . , 0)Z/2Z,

if n is even.

Now, suppose that wx = Wij,t, for some l ^ i ^ n , I ^ j ^ n and 0 < t ^ 1. If
n is even, then it is clear that x € KH2(POVTn) if and only if i = j and t = 0, that is,
x 6 KH2(POVIn) if and only if 1 is an idempotent of Jn_i. Thus KH2{VOT>ln) n Jn_i
= KM(VOVIn) n Jn_i. On the other hand, if n is odd, then it is easy to show that
x e Kn2(VOVXn) if and only if t = 0 and i = j or i = n-j + 1. That is, x € KH2(VOVln)
if and only if x is an idempotent of 7n_i or x = XiXi+\ • • -Xn^iXoXi • • •£„_*, for some
1 ^ t < n. Thus we also have in this case, KH2(POVIn) n Jn_i = KAb(PODJn) n Jn_i.

Hence KH2(PO2?Jn) = KAb(^OX>Xn), for all n € N, and so, using Proposition 1.9,
we get the following result:

THEOREM 4 . 5 . If -n is an even supernatural number, then Kn^(VOVln)

Next, let k be an odd natural number and consider again an element x € VOVIn

of rank n - 1. As 2Z/fcZ = Z/fcZ, we have:
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(1) If n is odd, then x € KHk(VOVln) if and only if

7*(wx) 6 ( l , l , . . . , l ,0 )Z/ /cZ+(0 ,0 , . . . ,0 ,2)Z/A:Z + (2,0,... ,0)Z/fcZ

+ (0, 1, 0, . . . , 0, 1, 0)Z/*Z + • • • + (0, . . . , 0, l((B-l)/2+l), l((n+l)/2+l), 0, . . . ,

= ( 1 , 1 , . . . , 1,0)Z/fcZ + (0 ,0 , . . . . 0, 1)Z/*Z + (1 ,0 , . . . , 0)Z/fcZ

+ (0 ,1 ,0 , . . . , 0,1, 0)Z/fcZ + • • • + ( 0 , . . . , 0, l((n-i)/2+i), l((»+i)/2+i), 0,

= ( 1 , 1 , . . . , 1,0)Z/fcZ + (0 ,0 , . . . , 0, l)Z/JfcZ

+ (0 ,1 ,0 , . . . , 0,1,0)Z/fcZ + • • • + (0 , . . . , 0, l((B-i)/2+i), l((B+i)/2+i), 0,. • •,

(2) If n is even, then x £ KHk(VOVln) if and only if

7 * K ) € ( 1 , 1 , . . . . 1,0)Z/fcZ + (0 ,0 , . . . , 0,2)Z/fcZ + (2 ,0 , . . . , 0)Z/fcZ

+ (0 ,1 ,0 , . . . , 0,1,0)Z/A;Z + • • • + (0 , . . . , 0, l n / 2 ,0 , l(B/2+2), 0 , . . . , 0)Z/A:Z

= ( 1 , 1 , . . . , 1,0)Z/fcZ + (0 ,0 , . . . , 0, l)Z/AZ + (1 ,0 , . . . , 0)Z/fcZ

= ( 1 , 1 , . . . , 1,0)Z/fcZ + (0 ,0 , . . . , 0,

+ (0 ,1 ,0 , . . . , 0,1,0)Z/*Z + • • • + (0 , . . . , 0, l n / 2 ,0 , l(B/2+2), 0 , . . . ,

Then, supposing that wz = Wjjit, for some 1 ̂  i < n, 1 ^ j < n and 0 < t < 1, it is
easy to show that, for both n odd and even, we have x € KHk (POVln) if and only if i = j
or i — n—j +1. Hence, x £ K»y{VOVXn) if and only if x — XiXi+\ • • -xn-ixoxi • • -Xi^ih1

or x = XjXi+i • • -xn-\XQX\ • • • xn-ih
l, for some 1 < i ^ n and 0 < t < 1.

Now, let 7r be an odd supernatural. Then, IT is divisible by some odd natural number
k and we have KH, {VOVXn) C KHk(VOVln). In fact, the converse inclusion is also valid,
as we shall show below.

First, notice that, by relations Rn, we have xoh = hx\ • • • i n_ i and

Xn-lh = hxi+i • -Xn-iXoXi • • • Xi-i-

Hence

XiXi+i • • -Xn-iIoXi • • -Xn-ih — XiXi+x • • -Zn-iXoZi • ' ' Xn-i-lhxi+x • • • Xn-\X0X\ • • • ! { _ ! ,

for 1 ^ i < n - 1. It follows that, for 1 < i < n, X{Xi+i • • -xn^iXoXi • • -x^i and

• • • in-«/i are i^-related elements of VOVXn, thus

• • Xi-i,XiXi+i • • • Xn-XX0Xi • • • Xn-ih]

is a cyclic group of order two and so it is contained in K^(VOVln). Therefore, since
h e Kn,CPOVIn), we have proved:
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THEOREM 4 . 6 . If TT is an odd supernatural number, then KH. (VQVln) con-

sists of all permutations of VOVXn, of all elements of rank n — 1 of the forms

XiXi+i • • • in-iZoZi • • • x,_i/i' and X{Xi+i • • • in_!XOa;i • • • Zn-i/i', with 1 ^ i ^ n and

0 ^ t ^ 1, and all transformations with rank less than n - 1.

4.3. T H E CASE OF VOVIn. Let M be a monoid and let U be its group of units. Take
x e U and s € M. Then, it is easy to show that s£xs. Furthermore, as the Green
relation Sft is compatible with the multiplication on the left, the correspondence

Hs —> Hxs

t H-> Xt

is a bijection.

Next, let g be the n-cycle permutation and s any element of Xn with rank n - 1.
Then, s,gs,g2s,... ,g"~ls are n domain-distinct (and so each one lies in a different £ft-
class of Xn) £-related elements of Xn of rank n — 1. Hence, X, gX, g2X,..., gn~1X are n
pairwise disjoint subsets of Ls with |X| elements each, for any subset X of Hs.

Now, consider the monoid VOVIn and let TT be a supernatural number. Recall that:

THEOREM 4 . 7 . ([7]) The Abelian kernel ofVOVXn consists of all idempotents
and all elements of rank less than n — 1.

Let J{ denote the 3-class of VOVIn of the elements of rank i, for 0 ^ i ^ n.

As Jo, <Ai • • • i Jn-2 are contained in the Abelian kernel of VOVXn, we have also

n-2

«=o

On the other hand, as the group of units Jn of VOVln is the cyclic group generated by
the permutation g = (12 • • • n), by Theorem 2.5 and by Lemma 1.7, we have

KH,(VOVln) HJn = KHw(Jn) = (g*cdM).

Thus, it remains to decide which elements of Jn_! belong to Knw(VOVln).

Let H be a maximal subgroup of VOVIn contained in Jn-i- Then, H is a cyclic
group of order n - 1 and so, by Theorem 2.5, KH,(#) has (n - l)/(gcd(n - 1,TT)) ele-
ments. As

KH,{H) UgscdMKHAH) Ug2gcd{n'n)KHAH) U • • • U

is a subset of KH,(VOVIn) D Jn_i (contained in a single £-class of VOVln) with

cardinality n/(gcd(n, n)) • (n - l)/(gcd(n — 1, TT)) and Jn_i contains n distinct max-

imal subgroups of VOVXn (and VOVXn is an inverse monoid), we have at least

n • n/(gcd(n,n)) • (n - l)/(gcd(n - 1,ir)) elements in Kn,(VOVXn) D Jn_x.

Now, let A; be any natural number.
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Recall that

[24]

is a set of canonical words for Jn-\- Clearly, for all 0 < r < n — 1, we have

(considering the letters ordered as follows: xo < %i < • • • < i n - i < g)-
Let x 6 ./n_i. In [7, Corollary 4.7], the second and third authors showed that

n-2

i=l

where /{ = (0(i),... ,0, — l(i+i), l(i+2),0,.. .,0(n+i)), for all 1 ^ i ^ n - 2 . Notice that this
formula was deduced from the presentation of VOVIn [14] recalled in the Section 3. It
follows that

n - 2

i=l

Next, assume that x e KHy{VOVln). Hence 0 € lk{ip~l{xj) and so the system of
equations

n-2

7 ( w x ) + ( 1 , 1 , . . . , 1,0)z0 + Y^ f'z' + ( 1 , 0 , . . . , 0, l ) z n _ ! + ( 0 , 0 , . . . , 0, n)zn = 0 mod k,

with integer unknowns ZQ, Z\,..., zn, has a solution. Let 7(wx) = (ao, a\,..., an_!, a n ) .

Then, we have

z0 + zn_i = — a0 mod A;

ZQ — z\ = — ai mod fc

+ Zi_j — zt = —ai m o d &, 2 ^ i ^ n — 2

z0 + zn_2 = —a-n-i mod A;

zn_i + nzn = —an mod A:.

From this system it is easy to deduce the following equation:

(n - l ) (z n _ i + ao) = (ai + • • • + a n - i ) mod /t.

Suppose that wx = wi]7ir, for some l ^ i ^ n — 1, l ^ j ^ n and 0 ^ r ^ n — 1.

Then a0 = 1, ai + 1- an_i = n — i + j — 1 and an = r. Hence, the system of equations

modfe

zn_i + nzn = —r mod fc,
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with integer unknowns zn_i and zn, must have a solution. Now, from (1) we have

(n - l)zn_! = (j - i) mod k

(n - l)zn_i + n(n - l)zn = —r(n — 1) mod k

and so the equation

n(n - \)zn = -(r(n - 1) + j - i) mod k

has a solution, which implies that gcd(n(n — 1), A;) divides r(n - 1) + j — i. It follows, by
Proposition 1.22, that the set KH k(WP2n) n Jn_i has at most

n 2 ( n - l )
gcd(n (n - l),fc

elements. Since gcd(n, n - 1) = 1, then gcd(n(n — 1), k) = gcd(n, /c) gcd(n — 1, k) and so
we have precisely

\KHk(VOVln) n jn.x\ = , f ( . n~i } .
1 ' gcd(n(n-l),A;)

Therefore we have:

THEOREM 4 . 8 . For all k e N, the relative kernel KHk(VOVln) consists of
all permutations generated by g8cd(n,*)̂  of ^ elements of rank n — 1 of the form
grXiXi+i •• - x n - i x o x i •• - Z j - i , w i t h l ^ i < n - l , l ^ j ^ n , O ^ r < n - l a n d
gcd(n(n - 1), k) | r(n - 1) + j — i, and all transformations with rank less than n — 1.

Now, let k = gcd(n(n - l),7r). Notice that, clearly, gcd(n,7r) = gcd(n, k), g c d ( n -
1,7r) = gcd(n- l , k) and k = gcd(n(n-l) , A;) = gcd(n, k) gcd(n- l , A;) = gcd(n, TT) gcd(n-
1,TT), since gcd(n,n — 1) = 1. Thus, in particular, we have

) ( s ) ( g ) H k ( n ) n J n

and (as k divides TT)

KH,(VOVIn) C KHk(VOVIn).

Moreover, since

1 H k ( P ^ " j " ^ " gcd(n(n - 1),*) ~ gcd(n l 7 r )gcd(n- l l 7 r )

we have proved the following theorem.

THEOREM 4 . 9 . Let n be a supernatural number. Then KHw(VOVln) = KHk{VOVln),
with k = gcd(n(n - l),7r).
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4.4. T H E CASE OF VOTZXn. First notice that Corollaries 3.3 and 2.6 combined with
the fact that the maximal subgroups of V01ZXn are dihedral groups allow us to conclude
immediately:

PROPOSITION 4 . 1 0 . If n is an odd supernatural number, then KHn(VOTZXn)
= vonin.

Next we shall prove that KH2(POTlln) = Y,kb(VOHXn).
Recall that in [9] it was proved that the Abelian kernel of VOlZXn is contained in

VOVln. Denote by 7, the 3-class of V0KLn of all elements of rank i, for 0 ^ i ^ n.
The following result gives a description of the elements of VO1ZTn n Jn-\ that are in the
Abelian kernel of VOUXn.

Recall that {x0, X\,..., xn^i,h, g} is a set of generators of VOTZln.

THEOREM 4 . 1 1 . [9] Let X — {xu ... ,zn_i} and let x be the element of Jn_j
D VOVXn corresponding to the word w = gk(xn-i • • -xn_i)xo(xi • • -Xj), with 0 ^ k
^ n - l , l ^ i < n - l a n d O < j ^ n - l . Then x € KM(VO1lln) if and only if:

(i) \w\x is even, for n odd;
(ii) |tu| is even, for n even.

From Lemmas 1.7 and 2.4 we have that Kfi,b(VO1Zln) n Jn - (g2) and it was also
observed in [9] that, for k < n — 1, Kfi.bi'POTZXn) n Jk consists of the elements of J* that
belong to VOVln.

Now, using the presentation of VOHln recalled in Section 3, as an immediate con-
sequence of Theorem 1.15, we have:

COROLLARY 4 . 1 2 . If A; is even, then KHk(POnin) c VOVXn.

It follows from Proposition 1.14 that if x e KHl(VOTlXn) then there exists a word
w representing x such that \w\Y is even, for all subset Y of the set of generators, hence,
x e KAb(VOHXn), by Theorem 4.11. Therefore:

P R O P O S I T I O N 4 . 1 3 . KH2{VOTlln) = KAb(VOTlXn).

By Propositions 4.10, 4.13 and 1.9, we get the main result of this subsection:

THEOREM 4 . 1 4 . Let n be a supernatural number and HT the associated pseu-
dovariety of Abelian groups. Then KH^(VOTZXn) = KAb(VOnin) if IT is even and
KH,{VOnXn) = VO1lXn if-n is odd.

4.5. THE CASE OF Xn. We start this subsection, as the previous one, by noticing that
Corollaries 3.1 and 2.6 combined with the fact that the maximal subgroups of Xn are
symmetric groups imply the following:

PROPOSITION 4 . 1 5 . If -K is an odd supernatural number, then KH,(2n) = Xn.

Now recall a description of the Abelian kernel of X^ given by the second and third

authors [9].
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THEOREM 4 . 1 6 . Tie Abelian kernel of In consists of all even permutations of

Sn, of all the | J n_i | /2 elements (with rankn-l) ofAn-iH'An-i, where H is any maximal

subgroup of Jn-\, and of all transformations with rank less than n - 1.

Next we shall prove that KH2(2n) = KAb(2n). Notice that, by Theorem 2.5, the

elements of rank n belong to KH2(Z,,) exactly when they belong to KAb(ln). As KAb(Zn)

contains all transformations with rank less than ra — 1 and is contained in KH2(2,,), it

remains to check that KHj(2n) n Jn-X = KAb(ln) l~l Jn^. Since KAb(In) C KH2(In), can

be concluded by showing that both sets have the same number of elements, that is, by

showing that KH2(2TI) ("1 Jn-\ has |Jn_i | /2 elements. To achieve this we shall follow the

strategy used in [9] to prove part of Theorem 4.16. With the same proof as [9, Lemma

6.1], we have the following lemma, which implies that all ^-classes of Z,, n Jn_i have the

same number of elements in KH2(Zn)-

First we need some notation. Let 1 < r, s ^ n. We denote by HT
S the i>class of Jn_i

of the elements x such that Dom(z) = {1 ,2 , . . . , n} \ {r} and Im(x) = {1 ,2 , . . . , n) \ {s}.

We define Kr
s = Hr

s n KH2(In).

LEMMA 4 . 1 7 . For 1 ^ r , s ,u , t ^ n, there exist o, v e A . such Chat aKr
sv = K%

and oKy = K\.

Now we look at the relations of Zn given in Subsection 3.1. The word cac corresponds

to an element of rank n — 2. Then none of the relations (ca)2 = cac = (ac)2 can be

applied to an element of rank greater than n — 2. On the other hand, the words involved

in the relations a? = gn = (pa)""1 = (agn~1ag)3 = {ag"-jagj)2 = 1 and gn'lagcgn~lag

= gacagn~l — c = c2 correspond to elements of rank not smaller than n - 1. Then we

have:

LEMMA 4 . 1 8 . T ie element of Jn-i f~l Z,, represented by t ie word ac does not

belong toKH2(Xn).

PROOF: By Proposition 1.14, if an element x € In belongs to KH2(2n), then there

exists a word u representing x such that

f|u|a = 0 mod 2

1 \u\g = 0 mod 2

We shall conclude that no word representing the same element of In other than ac

satisfies the condition (2), which proves that the element of Z,, represented by ac does

not belong to KM,,(2,,).

We have to take the parity of n into account.

If n is even, then it is easy to check that any word u obtained from ac using the

relations above is such that |u|a and |u|9 have different parities. Thus |u|o mod 2 / \u\g

mod 2 and so the condition (2) is not satisfied.
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If n is odd, by applying to ac the relations above we only obtain words u such that
|u|a is odd. Thus also in this case condition (2) is not satisfied, as required. D

Let H be a maximal subgroup of Jn_i n ! „ . Then H is isomorphic to Sn-\ and
its derived subgroup, H', being isomorphic to Ai-i, has index 2 in H. Thus, the only
subgroups of H containing H' are H and H' itself. It follows from Lemma 4.18 there
exists an element in the 3-class Jn_i not belonging to KH2(Zn). As Lemma 4.17 guaranties
that all /j-classes have the same number of elements in KH2 (2n), then each i>class has
precisely half of the elements in KH2(2n)-

We have proved the result announced:

P R O P O S I T I O N 4 . 1 9 . KH2(2^) =KAb(2n)-

Finally, using Propositions 4.15, 4.19 and 1.9 we get the main result of this subsection:

THEOREM 4 . 20 . Let •K be a supernatural number and H^ t ie associated pseu-

dovariety of Abelian groups. Then KHl(2n) = KAb(Xn) if TT is even and KH,(2n) = %„. ifn

is odd.

5. CONSEQUENCES

The notion of H-kernel is closely related to an important operator of pseudovarieties:
the Mal'cev product (see [18]). Its definition, when the first factor is a pseudovariety V of
monoids and the second factor is a pseudovariety H of groups, may be given as follows:

V©H = {MeM:KH(M) e V}.

Let POI, PODI, POPI and PORI be the pseudovarieties of monoids generated re-
spectively by {VOIn | n € N}, {VOVIn | n £ N}, {VOVXn | n e N} and
{vonin | n e N}.

In [9, Corollaries 3.7 and 3.8] the second and third authors observed that PODI
C POI © Ab and that PORI C POPI © Ab. From the work done here, better bounds can
be stated. In fact, using Corollary 4.4 we obtain the following:

COROLLARY 5 . 1 . Tie inclusion PODI C POI © H2 ioJds.

Similarly, using Corollary 4.12, we have:

COROLLARY 5 . 2 . Tie inclusion PORI C POPI © H2 holds.

The work presented in this paper was originally motivated by an attempt to compare
these pseudovarieties. Although possibly far from obtaining a solution, we leave here the
following conjectures:

CONJECTURE 5.3. The equality PODI = POI © H2 holds.

CONJECTURE 5.4. The equality PORI = POPI © H2 holds.
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