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A class of replacement systems with

simple optimality theory

John Staples

A class of replacement systems is studied which satisfies a

"subcommutativity" condition. Examples of systems satisfying

this condition are many of the systems of graph-like expressions

which have recently been studied in connection with the

efficient evaluation of recursive definitions. An optimality

theory of subcommutative systems is developed and is used to give

conditions which are sufficient to ensure that an evaluation

(reduction) procedure is optimal. The optimality theory is also

applied to develop conditions under which a given subcommutative

system speeds up, in a natural sense, another replacement system.

1 . I introduction

It has been understood for several years (see for example [9]) that

efficient evaluation of expressions is often facilitated by graph-like

representations of the expressions. For particular simple systems of

graph-like expressions, for example [Z, 3, 6~], certain outermost evaluation

procedures have been noticed to be optimal. In this paper the underlying

structure which is the source of this increased efficiency is exposed

through a generalisation of the theory to abstract replacement systems.

This generalisation is being used by the author in a study of optimal

evaluation algorithms for systems of graph-like expressions; see for

example [7]. It promises to be applicable also to the still more general,

category-theoretic, approach to graph-like expressions which is being

undertaken by Ehrig and Rosen in, for example, ['].
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2. Subcommutative systems

2.1. We consider replacement systems (B, -»•) in the sense of Rosen

[4]. That is, B is a set and + is a subset of B x B . We write

a •* b to denote that (a, b) 6 + , and in that case say that a contracts

to b , and that a •* b is a contraction. A sequence

ai "* a2 ~* ' • • * an ' n ~ X '

of contractions is called a reduction from a to a and may be

indicated briefly by a^-*-* a . The number of contractions in a reduction

is called the length of the reduction. If a € B is such that there is no

b such that a -*• b then a is said to be in normal form. If a -*•* b

where b is in normal form then a is said to have the normal form b .

We write B.. for the set of a € B which have normal forms. If a € B ,

then there is a least number n 5 0 which is the length of some reduction

of a to some normal form; we denote this least number \a\ , and may

call it the norm of a .

2.2. We call a replacement system (B, •+) subcommutative if for all

a € B and all a -»• b , a •+• c , either

(i) b = a , or

(ii) i> •* a , or

(iii) a •* b , or

(iv) there is d -*• B such that b •+ d and c -»• d .

A published example of a system with this property is given in Pacini

[2] and in Pacini et al [3]. The discussion of it given there appears

technically inadequate, but is nevertheless stimulating.

2.3. Since the above definition of subcommutativity places

restrictions only on points a d B~ , such systems need not have the Church-

Rosser property; that is they need not satisfy the condition:

for all a •*•* b , a -*•* a , there is d -*• B such that b -*•* d , a •*•* d .

In particular, any replacement system without any normal forms is

subcommutative.
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2.4. We shall see however that subcommutativity is enough to give the

normal form theorem for (B, -»•) ; that is, every a f B has just one

normal form. It will also be made clear that, writing -»•„ for the

restriction of -»• to B x B , that •+ is just

{(a, b) £ -* : a Z BN} ,

and that [̂ .TJ ~*n) n a s 'the Church-Rosser property.

3. The normal form theorem and related results

Throughout this section we assume that (B, ->) is subcommutative.

3.1. The key lemma is:

If a € B has a reduction R of length n to normal form f , and

if a -* b , then b has a reduction to f , so in -particular b € B .

Proof. By induction on n . The case n = 0 is vacuously true, so

suppose that n > 0 . Say that the first contraction of R is a •*• a' .

If a' = b or b •* a' then it is clear that b has a reduction to / .

If a' •*• b then the inductive hypothesis applies to a' to show that b

has a reduction to f . The remaining possibility is that there is d (• B

such that a' -*• d and b -»• d ; in that case the inductive hypothesis

applies to a' to show that d has a reduction to f , so as b -*• d , b

has a reduction to / .

3.2. We now define a binary relation -»• on B by: a -• b if and

only if a = b or a -*• b . We can now show the

3.3. Church-Rosser Theorem for (B , •*•„)• If a +* b , a •*•* c ,

then there is d € B such that b -*•* d , c •** d .

It is immediate from 3.1 and the definition of subcommutativity that

if a € B and a •*• b , a •*• c , then b, c € B and there is d

such that b •*• d , c •*• d . As "*« E "*<i » t h e Church-Rosser Theorem

follows by a standard (Rosen [4]) and elementary argument.

As usual, the normal form theorem for l̂ ,., •+) is a corollary of the
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Church-Rosser Theorem, so we have the

3.4. Normal form theorem for (B, -*) . If a £ #„ then a has just

one normal form.

Proof. Any two reductions in (S, -»•) of a Z B to normal forms are

evidently re^-otions in (s , -+^\ to normal forms, so the normal form

theorem for ^d , -*-„) applies to assert that the two normal forms are the

same.

4. Optimal and dummy contractions in subcommutative systems

4 . 1 . The results of th is section up to and including i».3 apply to any

replacement system which has the normal form property, and property 3.1.

If a € B and a -*• b , we may write a •* b and ca l l a -*• b an

o-contraction if there is a reduction of a to normal form of length \a\

whose f i r s t contraction is a -*• b . If a -+• b is not an o-contraction we

may write a ->v b and may cal l a -»• b a dummy contraction. We may also

write a •** b and a -*•{ b to denote reductions comprising o-contractions
o o

and dummy contractions respectively.

The following lemma is "basic.

4 . 2 . If a € BN and a -+ b then

(I) \a\ < \b\ + 1 ,

(ii) a •* b if and only if \a\ = \b\ + 1 ,

(Hi) a •+•. b if and only if \a\ 5 \b\ ,

(iv) there is c such that a -*• o .
o

Proofs. (i) is clear, since from 3.1, b € B , and a •+ b followed

by a reduction of b to normal form of length \b \ is a reduction of a

to normal form.

(ii) is also elementary. If a -*• b then a -*• b begins a reduction

R of a of length \a\ to normal form, and the remainder of R
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constitutes a reduction of b to normal form which must be of minimal

length (or else R is not a reduction of a to normal form of minimal

length). That is,

\a\ = |*| + i .

If conversely |<z| = \b\ + 1 , then no reduction of a to normal form has

a length which is shorter than the reduction which begins a -*• b and

concludes with a reduction of b to normal form of length \b\ ; hence by

definition of o- con traction, a -*• b .

(iii) is immediate from (i) and (ii) .

(iv) is immediate from the definition of o-contraction.

4.3. It follows immediately from 1+.2 (ii) that the c-reductions of

a of length \a\ are just the reductions of a to normal form of minimal

length.

The next result, which is basic to what follows, makes use of the

subcommutativity hypothesis.

4.4. If a (. B and a •+ b then a •*•- b if and only if \a\ = \b\ .

Proof. One part is clear from h.2 (iii), so we argue by induction on

\a\ that if a •+•- b then |a| = \b\ . The case \a\ = 0 is vacuously

true so we suppose that \a\ > 0 . Then there is a such that a -*• a ,

so that \o\ = \a\ - 1 and b # a . Moreover it is not the case that

c -*• b , for that would imply either o •*• b , when \b\ = \a\ - 2 ,

contradicting a •* b , or else a •+•. b , when by inductive hypothesis

\b\ = \o\ = |a| - 1 , so that a •* b , a contradiction. Hence in view of

subcommutativity there are two remaining cases, as follows.

CASE 1. b •* a . Then \b\ £ |e| + 1 = a , so from k.2 (iii) ,

CASE 2. There is d such that b •* d , a •* d . It is not the case

that c •+ d , or else \d\ = \a\ - 2 , so that a -*• b -»• d ,

contradicting a •*- i> ; hence c -N d . Then by inductive hypothesis

|d| = |c| = \a\ - 1 . Thus it is not the case that b •+« d , or else from
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I t .2 (Hi), \b\ 5 \d\ = \a\ - 1 , so a p p l y i n g k.2 (iii) a g a i n ,

\a\ 5 \b\ •S \a\ - 1 , a c o n t r a d i c t i o n . So b -*• d , so

|£>| = \d\ + l = | a | , a s r e q u i r e d .

5. A p r a c t i c a b l e s u f f i c i e n t c o n d i t i o n for o p t i m a l i t y
o f a r e d u c t i o n p r o c e d u r e

5.1 . Although the foregoing provides a convenient framework for

discussion of optimal reductions, by itself it does little to help

recognize optimal reductions in practice. A typical practical problem is:

given •* c •*• , give practicable conditions which are sufficient to ensure
u. —

that -> is optimal. That is, the conditions should ensure that -»• is

both

(i) complete; that is if a € B then a •*•* f where / is

in normal form; and

(ii) minimal; that is if a •** f has length n , where / is

in normal form, then every reduction a -*•* f has length at

most n .

The following result is suitable for the purpose.

5.2. If (B, ->•) is a suboommutative system, if -* c -»• y and if •*•

satisfies the following conditions, then -*• is optimal:

(i) for all a € B such that a is not in normal form, there

is b sush that a -*• b ,

(ii) whenever a € B ,̂ . a •* b end a •* c there is d such
N u

that c •*•* d , b •** d , and if b -** d comprises k

contractions then a -*•* d includes at least k contractions

from -+u .

Proof. We prove by induction on \a\ that if a £ B and a •* b

t h e n a •*• b .
o

The case \a\ = 0 is vacuously true, so suppose that |a| > 0 .

There is c such that a -*• c . From (ii) there is d such that
o
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b •** d , a -*•* d and, writing k -for the length of b -*•* d , o •*•* d

includes a t l eas t k contractions from -> . Since | e | < \a\ i t follows

from ^ . 2 , h.h, and the inductive hypothesis that a l l u-contractions in

a •*•* d are o-contractions, so \d\ 2 \a\ - k - 1 = \a\ - (k+l) . Now

a -*• b •*•* d i s a reduction of length k + l , so a l l of i t s contractions

are o-contractions; in pa r t i cu la r , a •* b as required.

The resul t 5.2 i s applied to a theory of graph-like expressions in

in-

6. Normal representations and speedups

6.1 . In this section we define notions of normal representation of a

system B by a system _C , and notions of speedup of a system B by a

system J , and we give some of their elementary properties.

All the systems to be studied in this and the following sections are

assumed to have the normal form property. The hypothesis of sub-

commutativity will be mentioned when it is required.

Given a replacement system B = (B, +) , we may write n{a) for the

normal form of an element a of B . Since this notation does not specify

the system J with respect to which n(a) is the normal form of a , it

is potentially ambiguous; but the ambiguity will not cause confusion here.

6.2. A weak normal representation S of a system B = (B, •+) by a

system £ = (C, -»•) is a relation S c B x C s u c h that:

(i) for all b € B there is o d C^ such that {b, a) € S ;

(ii) for all (2>, e) € 5 , [n(b) , n(a)) € S (see Figure l).

Evidently 5 can be regarded as a multivalued function from £„ to

CN

a
I
I

i

4-
• n(e) . FIGURE 1
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We may say, when (b, a) (. S , that a represents b . Note that if

S is a weak normal representation and b € S then we can calculate a

representation of n{b) in the system _C by choosing e such that

(b, c) € S and calculating n[a) . However we do not generally have the

means to recover n(b) from n{a) ; hence the following stronger notion.

6.3. A normal representation S of B t>y _C is a weak normal

representation which also has the property:

for all a' £ C.. there is at most one b' € B such that for

some (b, a) € 5 , b' = nib) , a' = n(a) .

Notice that if S is a normal representation and b Z B then we can

calculate n{b) by computing in C ; that is, choose a such that

(fc, a) i S , reduce e to n{o) , and then recover n{b) as the unique

element b" such that [b" , n(a)) (. S .

6.4. In applications normal representations may have an additional

property as follows.

A strong normal representation S of B by _C is a normal

representation such that for all a (. C.. there is exactly one b ? B

such that (b, a) •€ 5 .

Each of the above notions of normal representation leads to a

corresponding notion of speedup, as follows.

6.5. A weak speedup (respectively speedup, strong speedup) S of B

by ^ is a weak normal representation (respectively normal representation,

strong normal representation) such that for all (b, a) € S ,

\°\ * \b\ .

6.6. It is convenient for applications to notice that the above

notions of normal representation and speedup are transitive. Indeed, given

systems B = (B, -»•) , £ = (C, -+) , J) = (D, •*) , and relations

S c_B x C , 51 c C x n , we denote by S' ° S the relation

S' o s = {{b, d) : for some a £ C , (b, a) € S , and (c, d) (. S1)

* DN

and we have:
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6.7. If S, S' are both weak normal representations (respectively

normal representations, strong normal representations, weak speedups,

speedups, strong speedups) then so is S' ° S .

P r o o f . Each o f t h e c o n d i t i o n s of 6 . 2 ( i ) , 6 . 2 ( i i ) , 6 . 3 , 6.**, and

6 . 5 f o l l o w s f o r S' ° S from t h e same c o n d i t i o n s s a t i s f i e d by b o t h S'

and S .

7. Weak speedup by a subcommutative system

7.1 . Throughout this section we consider a system B = (fl, -*•) with

normal form property, a subcommutative system _C = (C, -*•) , and a relation

S c B x C , and we give conditions which are sufficient to ensure that the

restriction 5 of S to (s x C) u [B X C) is a speedup of B by

C . In particular the conditions ensure that S c B x C . The

conditions are applicable in at least one case of practical interest [61.

7.2. If the following conditions are satisfied, then for all a € C

and all (b, a) € S we have b € B^ and [nib), n(c)) € 5 .

( i J Fo r aZZ- c £ C in normal form and all {b, c) € 5 , b is in

normal form in 13 .

(ii) For all a 6 C , all (b, c) € S and all contractions c •* a'

in £ , there is b' € B such that b •** b' in 13 and ib', c') f 5

(see Figure 2).

b •* b'
I

c »• c' .

FIGURE 2

Proof. We prove by induction on \c\ that if a € C~ and

(b, c) i S then b € B and [Mb], Me)) (. S .

CASE 1. |e| = 0 . In this case the result follows from hypothesis

(i).

CASE 2. |c| > 0 . There is c' such that c •* c' , so from
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hypothesis (ii) there i s b' € B such that b +* b' and (b' , a') ES .

Now | e ' | = \c\ - 1 , so by inductive hypothesis b' € BN and

(n(i>'), n(c)) f S . Thus fc € B and n(b) = n(b') , so we have the

r e s u l t .

7.3. For the remainder of th i s section we suppose, in addition to the

hypotheses of 7 - 1 , that for each b t B an ordering relat ion 5, (or

br ie f ly , > ) i s given on

S(b) = {c t C : (6, e) € S)

which is reflexive, antisymmetric and transitive, and is such that for all

b € BN , S(b) is nonempty and has a greatest element. That greatest

element may be denoted g(b) ; thus g denotes a singlevalued function

which is a restriction of S and has domain B,, .

N

7 .4 . If the following conditions are satisfied then [b, e.) € S ,

[b, a ) i S , a > a , and a £ C together imply that c € C and

(i) For all {b, a) € S , b is in normal form in B if and only if

o is in normal form in C .

(ii) [b, a^] E S , [b, c^ € S , ^ f C^ , and ax -*Q a' together

imply that there are [b', e.) , [b', e ] € S such that e > e2 ,

o' -** e , and a -*• e^ (see Figure 3 ) .

:t
a'

'I
I

+

FIGURE 3

Proof. By induction on \c \ .

CASE 1. \c | = 0 . From (i) , b is in normal form, so from (i)
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again so i s a ; thus |e | = |e | = 0 .

CASE 2. \o | > 0 . Then for some a' f C , a -*• a' , so from

(ii) there are [b' , e j , [b' , e^ € S such that e 2 e 2 , c' •+* e ,

Now since c -»•* e and ^ is sub commutative, from 3.1, e € C«

and from k.2 and U.U,

\e±\ S |e'| = 1^1 - 1 ,

so the inductive hypothesis applies to e . We conclude that e ? € C«

and |e | 2 |e | . As a •+. e it then follows that e € C and

lc-2' ~ 2 — l' ~ ' l' '

as required.

7.5. Jf t/te following conditions are satisfied then in the notation
of 7 .3, /o r all b € S^ , g{2>) € Cff and |b | > \gib) \ :

(i) as in 1 .h (i) ;

(ii) as in 7.h (ii); see Figure 3;

(Hi) for all b d B,, and all b -*• b' there is c' Z C such that
N O

(b\ a') € S and gib) - ^ a' (see Figure k).

gib)
i

'si
i

i

FIGURE 4

Proof. By induction on |fc| .

CASE 1. |i>| = 0 . From 7.1* (i) , gib) is in normal form, so

= \g&)\ =o .

CASE 2. \b\ > 0 . Although B̂  is not assumed sub commutative, it is
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immediate from b 6 B t h a t there i s some b' (. B such t h a t b -»• b' in

B , so t h a t \b'\ = \b\ - 1 . Thus by induc t ive hypothes is g(b') 6 C

a n d \g(b')\ < \b'\ .

From (iii) t h e r e i s c 1 U such t h a t g(b) •+, c' and

(&' , e 1 ) € 5 , so from T.h, a' f C , and from 7.h and t h e maximality

(7 .3) of g(b') ,

\g(b')\ > | c ' | -

A s g ( f e ) + 5 1 e 1 , gr(fc) € CN a n d | g - ( i ) | S | e ' | + 1 , s o

|2>| = \b'\ + 1

> \g(b')\ + 1

- 1 + 1

= \g(b) | as required.

7.6. We now come to the main result of this section. We recall that

C. = (C, -»•) is assumed subcommutative, 13 = (B, •*•) has the normal form

property, and S c B x C has for each b i. B a partial ordering < on

Sib) = {a € C : ib, a) £ S]

such that for a l l b € B , S(b) is nonempty and has a greatest element

gib) . Now the result is as follows.

If the following conditions are satisfied then the restriction S of

S to {B., x C] u (B x C.,) is a subset of B., x C,, and is a weak speedup

of B fci/ £ .

(•£>> f o r aZ-Z- a f C , aZZ (£, e) € 5 j an<f aZ-Z. contractions c •* c'

in g , there is b' € B such that b •** &' i n £ and (Z?1, e ' ) € S

(that is, J.h Cii); see Figure 2).

(ii) For all ib, c) $. S , b is in normal form in 15 if and only

if a is in normal form in £ (that is, T.h (i)).

(iii) [b, c±) e 5 , 0 , c2) t S , c1 € CN , ex> o2 t and

c -»• c' together imply that there are [b1, e ) , [b', e ) € 5 such that

https://doi.org/10.1017/S0004972700010625 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700010625


Replacement systems 347

e± > <?2 , a' •** e , and c^ •* e2 (that is, 7.h (ii); see Figure 3).

(iv) For all b i 5^ and all b -* b' there is a' f C such that

(b1, a') € S and gib) •*<1 e' (that is, 7.5 (Hi); see Figure k).

Proof. I t follows from 1.h and 7.5 that i f b € B and [b, a) € S ,

then gib) , a (. C and \gib) \ > \a\ . If conversely e f C and

( i , e) € 5 , i t follows from 7-2 that b i B . Thus S <= B * C , as

required for a weak normal representation.

Further, since for a l l b f B , [b, gib)) € S , then 6.2 (i) i s

sat isf ied by 5 . Since S cB x C , 7.2 shows that for a l l

(b, o) € 5 , nib), nia) € 5 , as required for 6.2 (ii) . Hence S is

a weak normal representation of B by _C .

Finally, for a l l b i B , \b\ 2 |0(&)| , from 7.5, and as noted

above |^(i>)| - \o\ for all (i>, c) € 5^ , so we conclude, as required by

the definition of weak speedup, that \b\ 2 |c| .

8. Weak speedup of one subcommutative system by another

8.1. In this short section we give a simplified weak speedup result

which is applicable when the system B = (B, -*•) to be speeded up is also,

subcommutative.

As at the beginning of the previous section we assume that _C = (C, -»•)

is a subcommutative system and that S c_ B x C , and we give conditions

which are sufficient to ensure that 5 = S n ((s x c) u (s x Cff)) is a

weak speedup of J3 by <2 . The main lemmas are 7.2 and the following

modification of 7.k.

8.2. If the following conditions are satisfied, then for all b € B

and all c € C such that ib, c) € 5 we have c € C and \b\ t \c\ .

N

(i) If c t C , ib, c) ES and b is in normal foim, then e is

in normal form.

(ii) If c € C , ib, c) € 5 , b Z BN , and b +o b' in B , then
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there is b" € B and e d C such that b' -** b" in B , (b", e) d S ,

and a •+ e in C (see Figure 5)

b'
i
i

>• c

51

FIGURE 5

Proof. By induction on |i>| .

CASE 1. |fc| = 0 . Immediate from (i) .

CASE 2 . \b\ > 0 . For some b' € B.. , b •* b' , so
VI O

|fc'l = \b\ - 1 , and from (ii) , b' •** b" where (b", e) € 5 and

e - ^ e . Thus b" € 3^ , from 3 .1 , and \b"\ 5 | b ' j < | b | , so by

inductive hypothesis e € C-. As e •* e , then e € C , and

jc | £ | e | + 1

£ |&"| + 1 by inductive hypothesis

£ |fe'j + 1 from it.2 and U.I*

= |&| as required.

8 . 3 . Hence we have the main resu l t of th i s section, as follows.

For B, C* Sy S_ as in 8.1, if the following conditions are satisfied,

then S^ c B x p and S« i s a weafc speedup of 15 by ^ .

For aZZ fc € S „ i s (2>, e) € 5 .

For aZ-Z {b, e) £ S , b is in normal form in B if and only

if a is in normal form in £ (that is, 7.2 (i) and 8.2 (i)).

(iii) For all c $ C 3 all {b, e) € S , and all contractions a •* c'

in g , there is b' * B sueh that b +* b' in B and (b\ c') € S

(that is, 7.2 (ii); see Figure 2).
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(iv) If o i C , (b, c) £ S , b € B , and b •*• b' in B , then

there is b" € B and e € C such that b' •*•* b" in B , (b", e) € 5 ,

and a -*• e in C (that is, 8.2 (Hi); see Figure 5).
—-*- «

Proof. If (b , a) d S and b € B^ then e € C^ from 8.2. If

conversely (b, a) € S and a € C then b £ B from 7.2, so

Hence, and in view of condition (i) , 6.2 (i) is satisfied. Also 6.2

is given by 7-2, and 8.2 provides the inequality which is required by

6.5 to complete the verification that S is a weak speedup of B by C^ .

9. Discussion

9.1 . The term "dummy contraction", used in a specific sense in

Section 4, has also been used in [5] in an abstract sense. The concept of

Section 4 is an example of the abstract notion of [5] for subcommutative

systems, but not in general.

9.2. The hypotheses of 5.2 can be sharpened if one allows the mention

of o-contractions. The point however is that the hypotheses of 5-2 do not

mention them; for a, b i B , membership by (a , b) of •*• is generally

difficult to decide in practice, even given that a •*• b and the

information that a € B,, .
N

9.3. Although we have defined speedup and strong speedup in Section

6, the conditions of Sections 7 and 8 lead only to weak speedups. The

additional restrictions 6.3 and 6.h which strengthen weak speedup to

speedup and strong speedup are relatively elementary and may be left for

verification as required in particular applications.
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