
JFP 15 (1): 101–127, 2005. c© 2004 Cambridge University Press

DOI: 10.1017/S0956796804005386 Printed in the United Kingdom

101

Lambda and pi calculi, CAM and SECD
machines

VASCO THUDICHUM VASCONCELOS

Department of Informatics, Faculty of Sciences, University of Lisbon, Lisbon, Portugal

(e-mail: vv@di.fc.ul.pt)

Abstract

We analyse machines that implement the call-by-value reduction strategy of the λ-calculus:

two environment machines – CAM and SECD – and two encodings into the π-calculus –

due to Milner and Vasconcelos. To establish the relation between the various machines, we

setup a notion of reduction machine and two notions of correspondences: operational – in

which a reduction step in the source machine is mimicked by a sequence of steps in the target

machine – and convergent – where only reduction to normal form is simulated. We show

that there are operational correspondences from the λ-calculus into CAM, and from CAM

and from SECD into the π-calculus. Plotkin completes the picture by showing that there is a

convergent correspondence from the λ-calculus into SECD.

Capsule Review

Vasconcelos brings an interesting new perspective to the relationship between the call-by-value

λ-calculus and its encodings into the π-calculus. The present paper studies some of the existing

informative intuitions behind these encodings in a methodical way. First, a framework of

general reduction machines is defined. And call-by-value λ-calculus, its two abstract machines

(called CAM and SECD), and two π-calculus machines (called Process and Context) are

given in terms of a reduction machine. Then, a correspondence based on Milner’s encoding is

shown between CAM and Process, and a correspondence based on author’s existing encoding

is shown between SECD and Context. The correspondences clearly point out the difference

between the two encodings, too. The relation between λ-calculus and its two abstract machines

is summarised as well. In the end, the paper leaves only one relation unstudied: the relation

between the two encodings in the context of the π-calculus.

1 Introduction

The call-by-value reduction strategy of the λ-calculus equips a large number of

today’s programming languages. To study the operational aspects of this reduction

strategy Plotkin used Landin’s SECD, a stack-based, environment machine (Landin,

1964; Plotkin, 1975). Based on the Categorical Abstract Machine and inspired

by the Krivine’s lazy abstract machine, Curien proposed a different environment

machine, which we call CAM throughout this paper (Curien, 1991). From a different

community, two interpretations of the call-by-value λ-calculus into the π-calculus are

known: one proposed by Milner, and further studied by Pierce & Sangiorgi (Milner,

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

102 V. Thudichum Vasconcelos

1990; Milner, 1992; Pierce & Sangiorgi, 1996), the other proposed by the author,

but to date lacking a systematic study (Vasconcelos, 1994).

In his paper on encodings of the λ-calculus into the π-calculus, Milner uses the

term ‘environment entry’ to describe a process simulating the behaviour of some

function on a given channel (Milner, 1990; Milner, 1992). The term comes probably

from the so called environment machines, devices that describe implementations of

the λ-calculus, capable of efficiently performing substitutions by maintaining a map

from variables to function closures (the environment). The natural question arises,

“What is the relation between the π-encodings of the λ-calculus and the environment

machines?”. We answer the question by showing that there is a close correspondence

(indeed, an operational correspondence) between the CAM machine and Milner’s

encoding, and between the SECD machine and current author’s encoding. Also,

because there is an operational correspondence from the λ-calculus into CAM, but

no such correspondence into SECD learn that the two encodings are quite different.

In fact, our study reveals:

1. How close the π-encodings are to the environment machines: Milner’s encoding

mimics step-by-step the CAM machine; Vasconcelos’ does the same for the

SECD machine;

2. The inherent difference between the two encodings: Milner’s follows the

reduction of a λ-term step-by-step; Vasconcelos’ cannot follow intermediate

steps.

To establish the correspondences between the various machines, we setup a

notion of reduction machine – composed of a set of states, a reduction relation,

and an equivalence relation, satisfying some simple conditions – and a notion

of correspondence – a partial function on states that preserves equivalence. We

identify two kinds of correspondences: operational where a reduction step in the

source machine is mimicked by a sequence of steps in the target machine, modulo

equivalence; and convergent where reduction to normal form in the source machine

is mimicked by reduction to normal form in the target machine, again modulo

equivalence. Reduction machines and correspondences are then studied on their

own, paving way for the results on the particular correspondences studied in the

paper.

Equipped with the notion of reduction machines we set up five concrete machines:

the usual λ-calculus with the call-by-value reduction strategy (Plotkin, 1975), the

CAM machine (Curien, 1991), the SECD machine (Plotkin, 1975), and two π-

calculus based machines. For the first π-based machine, we pick processes of the

asynchronous π-calculus (Boudol, 1992; Honda & Tokoro, 1991) typable under the

input/output type system, together with deterministic reduction, and strong barbed

congruence (Pierce & Sangiorgi, 1996).

For the second π-based machine, we pick contexts for states. A notion of reduction

and equivalence for π-calculus contexts is then defined. A (typed) context performs

a (deterministic) reduction step if the (typed) process in the hole plays no rôle in

reduction, that is, if the reduction step of the filled-in context is independent of the

process that fills the hole. For the equivalence, we isolate a subset of names that

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

Lambda and pi calculi, CAM and SECD machines 103

cannot be free in the hole. Then, we play the same game as for reduction: two

contexts are strong barbed congruent if the processes obtained by filling the hole

with the same process are strong barbed congruent. In our particular case, the set

of names that cannot be free in the hole corresponds to the λ-variables (which form

a subset of the π-names).

We then study four correspondences: two from the call-by-value λ-calculus into

the environment machines (CAM and SECD), another two from each environment

machine into a π-based machine. The encoding of the CAM machine into the π-

calculus is based on a variant of Milner’s encoding (Milner, 1990; Pierce & Sangiorgi,

1996; Sangiorgi & Walker, 2001), obtained by partially evaluating applications whose

left operand (the function) is already a value. The encoding of the SECD machine

into π-calculus contexts is based on current author’s encoding (Vasconcelos, 1994;

Vasconcelos, 2000). The advantage of proceeding through environment machines

is that proofs of the operational correspondences are quite simple: in each case

it resumes to a simple analysis of the reduction rules, appealing directly to the

Replication Theorems (Pierce & Sangiorgi, 1996; Sangiorgi & Walker, 2001).

We also study direct interpretations of the λ-calculus into the π-calculus, and

show that they are sound. The direct encodings allow to quantify the number of π-

reduction steps needed to mimic a λ-step: exactly two for the variant of the Milner’s

encoding (but not for the original version), and two (in average, for one can only

compare values) in the case of the context encoding.

As mentioned above, the two encodings are quite different, for one reflects the

CAM machine, while the other the SECD machine. The process-machine mimics,

one-by-one, the λ-steps of a term (Theorem 32):

M →v N implies [[M]] →2
d� [[N]].

The context translation mimics λ-reduction to a value (theorem 34),

M ↓nv N implies [[M]] ↓2n
d � [[N]].

but cannot follow the intermediate steps:

(λxIx)V →v IV , but [[(λxIx)V]] �→∗
d� [[IV]].

The big picture

The five machines studied in this paper are Lambda (section 3.1), CAM (section 3.2),

SECD (section 3.3), Process (section 3.5), and Context (section 3.6). For M1,M2 two

machines, we write M1 → M2 if there is a correspondence from M1 to M2. For the

operational case, we have the following scenario.

Lambda
Theorem 18

������������

Theorem 31.1

����
��

��
��

��
��

��
��

�

CAM

Theorem 24
��

SECD

Theorem 29
��

Process Context

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

104 V. Thudichum Vasconcelos

The Lambda to CAM to Process operational correspondences are the object of

sections 4.1, and 4.3. Then, we may obtain the Lambda to Process correspondence

by composition (section 4.5). In a different partition of the diagram, the SECD to

Context machine is the object of section 4.4.

For the convergent case, Plotkin provides the missing link, thus completing the

puzzle.

Lambda
Corollary 19

������������ Plotkin (Plotkin, 1975)

������������

T 31.3

����
��

��
��

��
��

��
��

�

T 31.2

���
��

��
��

��
��

��
��

��

CAM

Corollary 25
��

SECD

Corollary 30
��

Process Context

The arrows in the operational diagram are inherited, since operational correspond-

ences are also convergent (theorem 5). The Lambda to SECD correspondence is the

object of section 4.2, the result is by Plotkin (Plotkin, 1975). Then, we bridge the

Lambda and the Context machines via composition (section 4.5).

The next section introduces the notions of reduction machine and correspondence,

together with basic results on these. Section 3 introduces the five machines mentioned

above, and section 4 studies the correspondences. Section 5 concludes the paper.

2 Correspondences

This section introduces the notion of reduction machine, and two kinds of corres-

pondences between them. Reduction machines are given by a set of states, a transition

relation on states, and an equivalence relation also on states.

Definition 1 (Reduction machine)

A reduction machine is a triple 〈S,→,∼〉, where S is a set (the set of states), → is a

relation in S × S (the reduction relation), and ∼ is an equivalence relation in S × S ,

such that

1. s → s′, s → s′′ implies s′ ∼ s′′, and

2. the relation ∼→ is contained in the relation →∗∼.

Notice that we do not require that ∼ and → commute, not even that ∼→ is

contained in →∼. Both the CAM and the SECD reduction machines defined in

sections 3.2, 3.3 do not satisfy the latter condition. Also, a simple induction on the

length of the reduction shows that ∼→∗ is contained in →∗∼ as well.

For a given machine 〈S,→,∼〉, we say that: (a) state s reduces, and write s →, to

mean s → s′ for some s′; (b) state s reduces in n steps to state s′ (n � 0), and write

s →n s′, if s → s1 → . . . → sn = s′; when n is not important we write s →∗ s′; (c)

state s converges in n steps to s′ (n � 0), and write s ↓n s′, if s →n s′ �→; when n is

not important, we write s ↓ s′; and when s′ is also not important, we write s ↓.

Correspondences are functions from machine states into machine states that

preserve state equivalence. We distinguish two kinds of correspondences.

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

Lambda and pi calculi, CAM and SECD machines 105

Definition 2 (Correspondences)

Given two reduction machines 〈S,→S ,∼S 〉, 〈R,→R,∼R〉, and a partial function

load : S → R, we say that

1. load is a correspondence if s ∼ s′ implies load(s) ∼ load(s′);

2. load is operational if it is a correspondence, and

(a) s → s′ implies load(s) →∗∼ load(s′);

(b) load(s) ↓ implies s ↓; and

(c) load(s) → implies s →.

3. load is convergent if it is a correspondence, and

(a) s ↓ s′ implies load(s) ↓∼ load(s′); and

(b) load(s) ↓ implies s ↓.

Operational correspondences are not adequate, but, given a mild condition on the

target machine, the correspondences become adequate.

Proposition 3

Given two reduction machines 〈S,→S ,∼S 〉, 〈R,→R,∼R〉 such that r ∼R r′ �→R implies

r �→R , and an operational correspondence load : S → R,

1. s →∗ s′ implies load(s) →∗∼ load(s′);

2. s ↓ s′ implies load(s) ↓∼ load(s′);

3. (Adequacy) s ↓ iff load(s) ↓.

Proof

(1) Induction on the length of reduction. When s = s′, we know that load(s) =

load(s′). Otherwise suppose that s →∗ s′ → s′′. By induction we know that

load(s) →∗∼ load(s′), and from the definition of operational correspondence, that

load(s′) →∗∼ load(s′′). Conclude with the fact that ∼→∗ is contained in →∗∼.

(2) Use the above clause and the contrapositive of 2.2c to obtain load(s) →∗ r ∼
load(s′), for some r. Use the hypothesis to conclude that r �→.

(3) Clause above and definition 2.2b. �

Adequacy in the convergence scenario is easier to establish.

Proposition 4

Given two reduction machines 〈S,→S ,∼S 〉, 〈R,→R,∼R〉, and a convergence corres-

pondence load : S → R,

1. load(s) ↓ r implies s ↓ s′ and r ∼ load(s′);

2. s ↓ implies load(s) ↓;

3. (Adequacy) s ↓ iff load(s) ↓.

Proof

(1), (2) Directly from the definition.

(3) Definition and clause 2. �

The main result concerning correspondences says that operational correspond-

ences are also convergence correspondences, and that the composition of corres-

pondences is also a correspondence.

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

106 V. Thudichum Vasconcelos

States: term
variable u, v, w, x, y, z

value V ::= x | λxM

term M ::= V | (MN)

Reduction: →v

(λxM)V →v M{V/x} (β)

VM →v VM ′ if M →v M ′ (ν)

MN →v M ′N if M →v M ′ (µ)

Equivalence: ≡α

Fig. 1. The call-by-value Lambda machine.

Theorem 5

1. Operational correspondences are convergent;

2. The composition of two operational correspondences is operational;

3. The composition of two convergence correspondences is convergent;

4. The composition of a convergent with an operational correspondence is

convergent.

Proof

(1) Proposition 3.2 and definition 2.2b. (2) The second and the third clauses in the

definition of operational correspondences are direct. For the first, let R, S, T be the

three machines involved. Using proposition 3.1 on R, we have load(s) →∗
R r ∼R

load(s′); using the same proposition on S , we have load(load(s)) →∗
T∼T load(r). By

definition of correspondence load(r) ∼T load(load(s′)); hence load(load(s)) →∗
T∼T

load(load(s′)), as required. (3) Easy. (4) Clauses 1 and 3 above. �

3 Five reduction machines

This section presents the following machines, all taken from the literature: the λ-

calculus equipped with the call-by-value strategy, the CAM machine, the SECD

machine, and two machines based on the π-calculus.

3.1 The call-by-value machine

This section introduces Plotkin’s call-by-value λ-calculus (Plotkin, 1975). We presup-

pose a countable set variable of variables. The sets of values and terms are defined

in figure 1. We say that a variable x occurs free in a term M is x is not in the

scope of a λx; x occurs bound otherwise. The set fv(M) of the free variables in M

is defined accordingly, and so is the result of substituting N for the free occurrences

of x in M, denoted by M{N/x}, as well as the alpha equivalence, denoted by ≡α. A

term M is closed if fv(M) = ∅. The set of closed λ-terms is denoted by term0. The

reduction relation over term, written →v, is the smallest relation satisfying the rules

in figure 1.

The →v relation is Plotkin’s left reduction: “If M →v N, then N is gotten from

M by reducing the leftmost redex, not in the scope of a λ” (Plotkin, 1975). Notice

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

Lambda and pi calculi, CAM and SECD machines 107

that, since states are closed terms, saying that M ↓n N amounts to say that M →n N

and N is a value.

The reduction machine we are interested in operates on closed terms and is defined

in figure 1.

Proposition 6

The triple 〈term0,→v,≡α〉 is a reduction machine.

Proof

For the first clause in definition 1 we know that s′ = s′′. For the second, →v

commutes with ≡α. �

Example 7

Consider the term (λxIx)V , where V is a closed value, and I the λyy combinator.

We have:

(λxIx)V →v IV →v V .

3.2 The CAM machine

This section introduces the CAM machine (Curien, 1991), following the presentation

of Amadio & Curien (1998). We start with environments and closures, two notions

mutually defined; closure is the set of closures, and environment the set of

environments. An environment is a partial function of finite domain from variables

into closures. A closure c is a pair M[e] in term×environment. We evaluate closures

M[e] such that fv(M) ⊆ dom(e). Notice that an empty environment constitutes the

base of the recursive definition: if M is a closed term, then M[∅] is a closure.

Environment update is captured by the operation e{x := vc}, denoting the unique

environment e′ such that e′(y) = e(y) if y �= x, and e′(x) = vc otherwise.

The CAM machine uses a stack to keep track of terms waiting to be evaluated or

waiting for their arguments to be evaluated. In order to distinguish what is on top

of the stack, the machine uses two markers, l and r, specifying whether the next term

in the stack is the left side of an application (function) or the right side (argument).

Elements in the stack are separated by a colon, the top of the stack is at the left;

the empty stack is denoted by nil. We often omit the trailing : nil in a stack.

The CAM machine is defined in figure 2: the reduction function, written →k, is

the smallest relation satisfying the rules in the figure; the equivalence relation on

states, written ∼k, is the smallest equivalence relation that contains the equalities in

the same figure.

Given a closed term M, the machine starts with state 〈M[∅], nil〉. We can easily

check that terminal states are of the form 〈vc, nil〉.

Example 8

Recall the term (λxIx)V from example 7. We have:

〈(λxIx)V [], nil〉 → (App)

〈(λxIx)[], r : V []〉 → (Exch)

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

108 V. Thudichum Vasconcelos

States: cam
environment e ::= {x1 := vc1, . . . , xn := vcn} n � 0, xi distinct

valueclosure vc ::= (λxM)[e] if fv(λxM) ⊆ dom(e)

closure c ::= M[e] if fv(M) ⊆ dom(e)

stack s ::= l : vc : s | r : c : s | nil

cam k ::= 〈c, s〉
Reduction: →k

〈x[e], s〉 →k 〈e(x), s〉 (Var)

〈(MN)[e], s〉 →k 〈M[e], r : N[e] : s〉 (App)

〈vc, r : c : s〉 →k 〈c, l : vc : s〉 (Exch)

〈vc, l : (λxM)[e] : s〉 →k 〈M[e{x := vc}], s〉 (Call)

Equivalence: ∼k

〈(VN)[], s〉 ∼k 〈N[], l : V [] : s〉
〈(MN)[], s〉 ∼k 〈M[], r : N[] : s〉

〈M[x := V []], s〉 ∼k 〈(M{V/x})[], s〉

Fig. 2. The CAM reduction machine.

〈V [], l : (λxIx)[]〉 → (Call)

〈(Ix)[x := V []], nil〉 →3 (App,Exch,Var)

〈V [][x := V []], l : I[x := V []]〉 → (Call)

〈y[y := V [], x := V []], nil〉 → (Var)

〈V [], nil〉

Notice that the state 〈(Ix)[x := V []], nil〉 above is equivalent to 〈IV [], nil〉, hence

〈(λxIx)V [], nil〉 →∗
k∼ 〈IV [], nil〉 →∗

k 〈V [], nil〉 (cf. example 7). In section 4.1 we show

that there is an operational correspondence from Lambda to CAM.

Proposition 9

The triple 〈cam,→k,∼k〉 is a reduction machine.

Proof

For the first clause in definition 1 notice that s′ = s′′. For the second, a routine

inspection of the rules shows that s ∼k→k s
′ implies s →∗

k s
′. �

All reduction steps but Call are administrative: looking up values for variables

in the environment (Var), and descending on a term, looking for the next redex

(App, Exch). The following result says that, on each run of the CAM machine, the

number of consecutive administrative steps is finite. Such a result is used in the CAM

to Process encoding (section 4.3) to establish the second clause in the definition of

operational correspondence (2.2).

Lemma 10

The CAM machine without the Call rule terminates on every input.

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

Lambda and pi calculi, CAM and SECD machines 109

Proof

Let k be the state 〈M0[e0], rl1 : M1[e1] : . . . rlk : Mk[ek] : nil〉, where rl denotes an r

or an l. Define the size of k as follows.

size(k)
def
= size{M0, . . . ,Mk} + size{e0, . . . , ek} +

∑

1�i�k

size(rli)

size(A)
def
=

∑

a∈A
size(a)

size(l)
def
= 1

size(r)
def
= 2

size(MN)
def
= 3 + size(M) + size(N)

size(λxM)
def
= 1 + size(M)

size(x)
def
= 1

size(e)
def
=

∑

x:=M[e′]∈e
size(M) + size(e′)

It is easy to see that the size of a state decreases for each application of rules Var,

App, and Exch. �

3.3 The SECD machine

This section presents the SECD machine as studied by Plotkin (Plotkin, 1975).

Machine states, or dumps, are quadruples 〈s, e, C, D〉 composed of a stack of closures,

an environment, a control string, and a dump. The sets of closures and environments

are those of the CAM machine (figure 2).

The stack is used in the SECD machine to hold value closures only: evaluated

functions and arguments. The rôle of the stack in the CAM machine is played here

by the control string: it holds functions and arguments waiting for evaluation.

Values at the head of the control string get transferred to the stack. Since the

stack contains only value closures, rule Var looks in the environment for the value

closure associated to the variable at the head of the stack, and pushes it into the

stack. On the other hand, rule Abs forms a value closure with the abstraction at the

top of the stack and the current environment, and pushes the closure into the stack.

Rule App replaces an application MN at the head of the control string by M, N,

and ap, meaning that M and N should be evaluated in that order, and then rule

Call should be used. The ap mark at the head of the control string triggers rule

Call. At the top of the stack one finds the argument (since it was evaluated last),

and, just beneath, one finds the function. The machine gets ready for the evaluation

of a new term (the body of the function) with an empty stack (meaning no subterms

evaluated so far), an updated environment, the body of the function, and for dump,

“what remains to be done”.

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

110 V. Thudichum Vasconcelos

States: dump
stack s ::= vc : s | nil

controlstring C ::= M : C | ap : C | nil

dump D ::= 〈s, e, C, D〉 | nil

Reduction: →s

〈s, e, x : C,D〉 →s 〈e(x) : s, e, C, D〉 (Var)

〈s, e, λxM : C,D〉 →s 〈(λxM)[e] : s, e, C, D〉 (Abs)

〈s, e,MN : C,D〉 →s 〈s, e,M : N : ap : C,D〉 (App)

〈vc : (λxM)[e′] : s, e,ap : C,D〉 →s 〈nil, e′{x := vc},M, 〈s, e, C, D〉〉 (Call)

〈vc : , , nil, 〈s, e, C, D〉〉 →s 〈vc : s, e, C, D〉, (Ret)

Equivalence: ∼s

〈vc, ∅, nil, nil〉 ∼s 〈nil, ∅, real(vc), nil〉

Fig. 3. The SECD reduction machine.

To extract the term contained in a closure, we use the real function (Plotkin,

1975).

real(M[e])
def
= M{real(e(x1))/x1} . . . {real(e(xn))/xn}

where fv(M) = {x1, . . . , xn}.
The reduction function over dump, written →s, is the smallest relation satisfying

the rules in figure 3. With respect to Plotkin’s formulation we have changed rules

App and Call, so that the function gets evaluated prior to the argument, as required

by the reduction we have chosen for the call-by-value λ-calculus (section 3.1). The

equivalence relation over dump, written ∼s, is the smallest equivalence relation

containing the equality in figure 3.

Given a closed term M, the machine starts with the dump 〈nil, ∅,M, nil〉. It is easy

to check that terminal states are of the form 〈vc, ∅, nil, nil〉.

Example 11

Recall the term (λxIx)V from example 7. We have:

〈nil, ∅, (λxIx)V , nil〉 →3
s (App, Abs, Abs)

〈V [∅] : λxIx[∅], ∅, ap, nil〉 →4
s (Call, App, Var, Abs)

〈V [e] : I[e], e, ap, 〈nil, ∅, nil, nil〉〉 →2
s (Call, Var)

〈V [e], e{y := V [e]}, nil, 〈nil, e, nil, 〈nil, ∅, nil, nil〉〉〉 →s (Ret)

〈V [e], e, nil, 〈nil, ∅, nil, nil〉〉 →s (Ret)

〈V [e], ∅, nil, nil〉 ∼s

〈nil, ∅, V , nil〉

where e is the environment {x := V [∅]}. Notice that although (λxIx)V →v IV , there

is no state D, such that D ∼s 〈nil, ∅, (IV)[], nil〉 (cf. example 8). In section 4.2 we show

that there the Lambda to SECD correspondence is convergent (but not operational).

The property of being halted is not preserved by equivalence: there are equivalent

dumps D and D′, such that D is halted but D′ reduces (take 〈I[∅], ∅, nil, nil〉 for D,

and 〈nil, ∅, I, nil〉 for D′). The rule in the equivalence relation is needed in order to

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

Lambda and pi calculi, CAM and SECD machines 111

show that Lambda to SECD is convergent (Theorem 20). We have therefore chosen

not to incorporate such a (natural) condition in the definition of reduction machine

(definition 1). The condition is required on the target machine only; and the SECD

machine is involved as source in its main result (Theorem 29).

Proposition 12

The triple 〈dump,→s,∼s〉 is a reduction machine.

Proof

For the first clause in definition 1 we have that s′ = s′′. For the second, given

that dumps of the form 〈vc, ∅, nil, nil〉 do not reduce, the interesting case is when

D = 〈nil, ∅, real(vc), nil〉 ∼s D′. The only rule applicable to D′ is Abs, yielding

D′ →s D. Since ∼s is an equivalence relation, we have D ∼s D. �

All reduction steps but Call and Ret are administrative: looking values for

variables in the environment (Var), moving values from the control string into the

stack (Abs), and breaking applications in the control string (App). The following

result says that, on each run of the SECD machine, the number of consecutive

administrative steps is finite. Such a result is used in the SECD to Context

encoding (section 4.4) to establish the second clause in the definition of operational

correspondence (2.2).

Lemma 13

The SECD machine without rules Call and Ret terminates on every input.

Proof

Let D be the dump 〈V1[e1] : · · · : Vn[en] : nil, e0, C, D′〉. Define the size of a dump as

follows.

size(D)
def
=

∑
size(Vi) + size({e0, . . . , en}) + size(C) + size(D′)

size(nil)
def
= 0

size(M : C)
def
= 1 + size(M) + size(C)

size(ap : C)
def
= 1 + size(C)

size(MN)
def
= 1 + size(M) + size(N)

The remaining cases (set, λxM, x, and e) are as in the proof of lemma 10. It is easy

to see that the size of a dump decreases for each application of rules Var, App, and

Abs. �

3.4 Typed π-calculus

The π-calculus equipped with input/output types constitutes the basis of the next

two machines. Typed processes allow for a stronger form of the replication theorems

(Theorem 15 below), necessary to prove the correspondences (Pierce & Sangiorgi,

1996). The syntax of its asynchronous version is defined in figure 4, where the set

name \ variable is countable.

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

112 V. Thudichum Vasconcelos

Processes
name p,q, r, u, v, w, x, y, z (variable ⊂ name)

process P ::= uṽ | u(x̃).P | P | Q | νxP | !u(x̃).P | 0

Structural congruence
P ≡ Q if P ≡α Q

P | 0 ≡ P , P | Q ≡ Q | P , P | (Q | R) ≡ (P | Q) | R
νx 0 ≡ 0, νxy P ≡ νyx P

P | νx Q ≡ νx (P | Q) if x �∈ fn(P)

Reduction
uṽ | u(x̃).P → P {ṽ/x̃} (Com)

uṽ | !u(x̃).P → !u(x̃).P | P {ṽ/x̃} (Rep)

νx P → νx P ′ if P → P ′ (Scop)

P | Q → P ′ | Q if P → P ′ (Par)

P ′ → Q′ if P ′ ≡ P , P → Q, and Q ≡ Q′ (Equiv)

Fig. 4. The asynchronous π-calculus, its syntax and reduction semantics.

Processes of the form uṽ are called messages; u is the target, whereas the sequence

of names ṽ represents the contents of the message. Receptors are processes of the

form u(x̃).P , where u is called the location of the receptor, x̃ the formal parameters,

and P its body. The interaction between a message uṽ and a receptor u(x̃).P is the

process P where names in ṽ replace those in x̃. The parallel composition of P and

Q is written P | Q. Processes of the form νxP introduce a new name x local, or

private, to P . A replicated receptor !u(x̃).P behaves as a persistent receptor surviving

interaction with messages. Finally, 0 represents the terminated process.

We say that a process P occurs under a prefix when P is in the scope of a u(x̃).

We say that a name x occurs free in a process P if x is not in the scope of a νx or a

u(ỹxz̃); x occurs bound otherwise. The set fn(P) of the free names in P ; the result of

simultaneously substituting ṽ for the free occurrences of ũ in P , denoted by P {ṽ/ũ};
and alpha equivalence, denoted by ≡α, are all defined in the standard way.

We follow the convention that, if P1, . . . , Pn occur in a certain mathematical

context, then in these processes all bound names are chosen to be different from the

free names (cf. the variable convention (Barendregt, 1974)), except when otherwise

mentioned.1

Processes of the form νx1 . . . νxnP are sometimes abbreviated to νx1 . . . xnP . As in

the λ-calculus, where the λ binds looser than application, we take the view that ν

binds looser than the parallel composition: νx P | Q means νx(P | Q). This saves us

a few parenthesis when writing complex process terms.

The operational semantics of processes is given by a reduction relation. Following

Milner (Milner, 1992), reduction exploits the structural congruence relation over

process, written ≡, and defined as the least congruence which is closed under the

rules in figure 4. The reduction relation over process, written →, is the smallest

relation satisfying the rules in the same figure.

1 A notable exception is the Replication Theorem 15.3.

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

Lambda and pi calculi, CAM and SECD machines 113

States: typedprocess

typedprocess
def
= {P ∈ process | Γ � P , for some Γ}

Reduction: →d

P →d P ′ def
= (P → P ′, P → P ′′ implies P ′ ≡ P ′′), and P ↓u

Equivalence: �
P � Q

def
= C[P]

.∼ C[Q] for every C ∈ typedcontext, where
.∼ is the

largest symmetric relation such that, whenever P
.∼ Q :

i. P ↓u implies Q ↓u, and

ii. P →d P ′ implies Q →d
.∼ P ′.

Fig. 5. The Process machine.

The processes we are interested in obey the input/output type discipline. The set

of input/output types is inductively defined as follows.

S ::= I〈S̃〉 | t | µt.S

I ::= o | i | b

Input/output types distinguish between the capability of reading a name (i〈S̃〉 is

the type of a name that may be used only for input, and that carries names of types

S̃), writing on a name (o〈S̃〉 is the type of a name that may be used only for output),

and reading and writing on a name (b〈S̃〉).
Type environments, or typings, denoted by Γ,∆, are finite maps from names to

types. A typing judgment Γ � P asserts that process P is well typed under the type

environment Γ, or that P obeys Γ. We omit the definition of the � relation, which

can be found in book (Sangiorgi & Walker, 2001). If X is the set {x1, . . . , xn}, we

write X : S to mean the typing x1 : S, . . . , xn : S .

3.5 The π-process machine

States of the Process machine (figure 5) are processes typable with the input/output

type assignment system.

Process reduction is nondeterministic. To conform to the requirement for reduction

machines (Definition 1), we use deterministic reduction, a notion based on structural

congruence and on an observation predicate. For any name u, the observation

predicate ↓u denotes the possibility of a process immediately performing an output

communication with the external environment along u. Thus, P ↓u holds if P has a

sub-term uṽ which is not underneath a prefix or in the scope of a restriction on u.

We write P ↓u to mean that P ↓u does not hold for any u. Deterministic reduction

is defined in figure 5.

A context is a process expression where the hole replaces an occurrence of 0.

Contexts are denoted by C; if C is a context and P a process, we denote by C[P]

the process obtained by replacing P for the hole in C . Similarly to processes, we

require contexts to be typed, as defined in figure 6. The equivalence for the Process

machine is strong barbed congruence over typed processes, defined in figure 5.

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

114 V. Thudichum Vasconcelos

States: typedcontext

typedcontext
def
= {C | C[P] ∈ typedprocess, for all P ∈ typedprocess}

Reduction: →d

C →d C ′ def
= C[P] →d C ′[P] for all P s.t. fn(P) ∩ variable = ∅

Equivalence: �
C � C ′ def

= C[P] � C ′[P] for all P s.t. fn(P) ∩ variable = ∅

Fig. 6. The Context machine.

Proposition 14

The triple 〈typedprocess,→d,�〉 is a reduction machine.

Proof

For the first clause in Definition 1, we know that ≡⊆� ((Sangiorgi & Walker, 2001),

exercise 2.1.10). For the second, we show that →d commutes with �, by recalling

that strong barbed congruence coincides with strong barbed bisimulation in the

asynchronous setting ((Sangiorgi & Walker, 2001), Theorem 5.4.10), and that the

commutation is part of the definition of the latter. �

In proofs, as in examples, we sometimes use a stronger equivalence relation,

contained in �. The garbage collection relation is the equivalence that includes

structural congruence and the following equality.

(νu !u(x̃).P) | Q ∼gc Q.

At the basis of the proofs of the correspondences from CAM and SECD into the

π-calculus lie the (sharpened) replication theorems. We say that u, a name free in P ,

is used as a trigger, if P obeys a typing Γ, and the tag of the type of u in Γ is o.

Theorem 15 (Replication theorems, (Sangiorgi & Walker, 2001) 10.5.1(2)

and (1), 2.2.28(4))

If u is used as a trigger in P ,Q, R, then

1. νu !u(x̃).P | v(ỹ).Q � v(ỹ).(νu !u(x̃).P | Q) for u �= v;

2. νu !u(x̃).P | !v(ỹ).Q � !v(ỹ).(νu !u(x̃).P | Q);

3. νu !u(x̃).P | Q | R � (νu !u(x̃).P | Q) | (νu !u(x̃).P | R).

3.6 The π-context machine

The notions of reduction and equivalence for typed contexts are derived from those

of typed process, by taking the view that the process in the hole must not play any

rôle; their definitions are in figure 6. The symbols for reduction and equivalence

are those of the process machine; in each particular case, it should be clear which

definition to use.

Proposition 16

The triple 〈typedcontext,→d,�〉 is a reduction machine.

Proof

Follows from the fact that 〈typedprocess,→d,�〉 is a reduction machine. �

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

Lambda and pi calculi, CAM and SECD machines 115

load : term0 → cam

load(M)
def
= 〈M[], nil〉

Fig. 7. The Lambda to CAM correspondence.

4 Four correspondences

This section presents three operational correspondences (Lambda into CAM, CAM

into Process, and SECD into Context), and one convergence correspondence

(Lambda into SECD). It concludes by deriving direct translations from Lambda

into Process and into Context.

4.1 The Lambda to CAM correspondence

The call-by-value lambda machine and the CAM machine are defined in figures 1

and 2. The Lambda to CAM map is defined in figure 7. Since alpha-equivalent terms

are loaded into CAM-equivalent states, load is a correspondence.

Lemma 17

M →v N implies 〈M[], s〉 →∗
k∼k 〈N[], s〉.

Proof

By induction on the derivation of the lambda reduction step.

Case the last rule is β: apply reduction rules App, Exch, and Call, followed by the

last rule in the equivalence.

〈((λxM)V)[], s〉 →k 〈(λxM)[], r : V [] : s〉 →k 〈V [], l : (λxM)[] : s〉 →k

〈M[x := V []], s〉 ∼k 〈(M{V/x})[], s〉

Case the last rule is ν: apply reduction rules App, Exch, followed by induction, and

by the first rule in equivalence.

〈(VM)[], s〉 →k 〈V [], r : M[] : s〉 →k 〈M[], l : V [] : s〉 →∗
k∼k

〈M ′[], l : V [] : s〉 ∼k 〈(VM ′)[], s〉

Case the last rule is µ: apply reduction rule App, followed by induction; conclude

with the second rule in equivalence.

〈(MN)[], s〉 →k 〈M[], r : N[] : s〉 →∗
k∼k 〈M ′[], r : N[] : s〉 ∼k 〈(M ′N)[], s〉

�

Theorem 18

The load correspondence is operational.

Proof

We show that the three clauses of definition 2.2 hold. (a) A corollary of lemma 17.

(b) We show the contrapositive, namely, that if M diverges, then so does load(M).

If M diverges, then rule β is used an unbounded number of times. By analysing the

first case in the proof of Lemma 17, one concludes that rule Call is applied as many

times. (c) We again show the contrapositive, namely, M �→v implies load(M) �→k. If

M �→v, then M is a closed value, say V , and 〈V [], nil〉 �→k. �

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

116 V. Thudichum Vasconcelos

load : term0 → dump

load(M)
def
= 〈nil, ∅,M,nil〉

Fig. 8. The Lambda to SECD correspondence.

Theorem 5.1 allows us to conclude that load is convergent as well.

Corollary 19

The load correspondence is convergent.

4.2 The Lambda to SECD correspondence

Recall the call-by-value lambda machine and the SECD machine from figures 1

and 3. The Lambda to SECD map is defined in figure 8. Since alpha-equivalent

terms are loaded into SECD-equivalent dumps, load is a correspondence.

Theorem 20 (Plotkin (Plotkin, 1975), theorem 1)

The load correspondence is convergent.

The only point worth notice is that Plotkin shows that if M ↓v M
′, then load(M) ↓s

〈vc, ∅, nil, nil〉 where real(vc) = M ′. We then apply the dump equivalence to obtain

load(M) ↓s∼s load(M ′), as required.

4.3 The CAM to Process correspondence

The CAM machine and the π-process machine are the objects of Definitions 2 and 5.

Based on a variant of Milner’s encoding, this section presents a translation of CAM

states into π-processes and proves that it constitutes an operational correspondence.

The encoding is described in figure 9. An environment entry u := (λxM)[e]

describes the encoding of an abstraction λxM with environment e located at name

u; it gets at u the argument x to the function as well as the channel p where to locate

the result; if the evaluation of the function converges, then this channel is written

with the location of the result. Replication allows the entry to be used multiple times.

Values write the name they are know by (either the variable x itself, or the location

of the environment entry u representing the abstraction) on the reply-to name p that

locates the value. In order to mimic an application MN, we consider three cases.

When M is an application, we first evaluate the function M on some fresh reply-to

name q, and wait for the result u on q. Then we do the same for the argument

N, thus obtaining its value v. All that remains is to invoke u with v, requesting

for the resulting value to be sent on p, the location of application MN. The cases

for applications xM and (λxM)N are obtained from the above encoding by partial

evaluation. One can easily see that, for example, νq [[x]]q | q(u).(νr [[M]]r | r(v).uvp)
reduces in one deterministic step to νr [[M]]r | r(v).xvp; so we set the latter to be the

image of [[xM]]p, rather than the general case as in Milner’s encoding.

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

Lambda and pi calculi, CAM and SECD machines 117

Term: term × name → typedprocess

[[x]]p
def
= px

[[V]]p
def
= νu u := V [∅] | pu

[[xM]]p
def
= νr [[M]]r | r(v).xvp

[[VM]]p
def
= νu u := V [∅] | νr [[M]]r | r(v).uvp

[[MN]]p
def
= νq [[M]]q | q(u).(νr [[N]]r | r(v).uvp)

Environment entry: name × valueclosure → typedprocess

u := (λxM)[e]
def
= [[e]][!u(xp).[[M]]p]

Environment: environment → typedcontext

[[{x1 := vc1, . . . , xn := vcn}]]
def
= νx1 x1 := vc1 | . . . | νxn xn := vcn | []

Stack: stack × name → typedcontext × name

[[nil]]p
def
= ([], p)

[[l : vc : s]]p
def
= ([[s]]p

p′ [νu u := vc | νr [] | r(v).uvp′], r)

[[r : M[e] : s]]p
def
= ([[s]]p

p′ [νq [] | q(u).(νr [[e]][[M]]r | r(v).uvp′)], q)

load : name → cam → typedprocess

loadp〈vc, r : M[e] : s〉 def
= [[s]]qp[νu u := vc | νr [[e]][[M]]r | r(v).uvp]

loadp〈c, s〉
def
= [[s]]qp[[c]]q

where names p, p′, q, r, u, v are taken freshly, and the rules in [[M]]p and in load must be tried

from the top.

Fig. 9. The CAM to Process correspondence.

An environment e is encoded by translating each of its entries (recursively for the

environments in the entries); the locations of the entries (the various xi) are then

made local to a hole where we place the encoding of a term M, thus providing for

the encoding of a closure M[e].

A stack s is compiled by orderly unstacking its elements. The result of encoding

a stack is a pair composed of a context and a name: the hole should be filled with

(the translation of) a term located at the name. If [[s]]p = (C, q), we write [[s]]qp to

denote the context C , and use name q wherever needed. So, for example,

[[s]]qp[[c]]q means ‘C[[[c]]q] where [[s]]p = (C, q)’.

The idea is that subscripts represent input to the encoding function, whereas

superscripts represent output. The translation of states should be easy to understand

by comparing the contexts in the hole of [[s]]p with the encodings for VM, and MN,

respectively. Notice that the hole in a context [[s]]p is under no prefix.

Finally, to compile a state 〈c, s〉, we compile the stack s into a context (whose hole

is to be located at q), and fill the hole with the encoding of closure c compiled at q.

Special care must be taken when the head of the stack is an r and the closure in the

state is a value closure, for the closure represents the argument to the function that

follows the r; the encoding of this case should be easy to understand by referring to

the encoding for VM and rule Exch in reduction (figure 2).

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

118 V. Thudichum Vasconcelos

We argue that the encoding yields typed processes. There are two kinds of names

involved:

1. value names comprising variables x, y, z, as well as locations of abstractions

u, v, w, all in variable; and

2. reply-to names p, q, r, names that return value names.

Let us call Val the type of the value names. Analysing the message uvp in the

encoding of an application, we see that Val must be of the form o〈Val, T 〉, for

T the type of the reply-to name p. Then, concentrating on the message px in the

encoding of a variable, we easily conclude that T is the type oVal. Type Val is then

µX.o〈X, oX〉. For terms, we know that ((Sangiorgi & Walker, 2001), lemma 15.3.14),

fv(M) : Val, p : oVal � [[M]]p.

For states, we can equally show that p : oVal � load(s)p, since states are closed (that

is, for each M[e] in a state, we have that fv(M) ⊆ dom(e), cf. figure 2).

In the rest of this section we show that load is an operational correspondence. Let

u := V abbreviate u := V [∅]; we start with a basic result that helps in establishing

that load is a correspondence.

Lemma 21 (Substitution Lemma)

[[x := V]][[M]]p � [[M{V/x}]]p.

Proof

By structural induction on M.

Case M is x. We have νx x := V | px def
= [[V]]p

def
= [[x{V/x}]]p.

Case M is y �= x. We have νx x := V | py ∼gc py
def
= [[p]]y

def
= [[y{V/y}]]p.

Case M is λyN. Using Replication Theorem 15.2, and induction, we have

νx x := V | νu u := λyN | pu � νu !u(yq).(νx x := V | [[N]]q) | pu �

νu !u(yq).[[N{V/x}]]q | pu def
= [[(λyN){V/x}]]p.

Case M is NL, N �∈ value. Using Replication Theorem 15.3, and induction, we have

νx x := V | νq [[N]]q | q(u).(νr [[L]]r | r(v).uvp) �
νx x := V | νq [[N]]q | q(u).(νry y := V | [[L{y/x}]]r | r(v).uvp) �

νν q[[N{V/x}]]q | q(u).(νr [[L{V/x}]]r | r(v).uvp) def
=

[[N{V/x}L{V/x}]]p.

Case M is xL, or M is (λyN)L: similar. �

Proposition 22

The loadp map is a correspondence.

Proof

For the first two equations in the definition of ∼k, one can easily see that the

encoding of the left-hand side is structural congruent to that of the right-hand side.

For the last equation, use the Substitution Lemma 21. �

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

Lambda and pi calculi, CAM and SECD machines 119

Table 1. The relation that holds between loadp(k) and loadp(k
′) when k →k k

′

CAM reduction rule Relation on processes

Var ∼gc

App �
Exch =

Call →2
d∼gc

The following result is used to set that load is operational.

Theorem 23

k →k k
′ implies loadp(k) →∗

d� loadp(k
′), for all p.

Proof

A case analysis on the reduction rules. The relation that holds between loadp(k) and

loadp(k
′) is summarised in Table 1.

Case Var: directly from the definition, collecting as garbage those entries in [[e]] but

not in [[e(x)]].

Case App: When M is an application, we have

loadp〈(MN)[e], s〉 def
= [[s]]qp[[e]][νq [[M]]q | q(u).(νr [[N]]r | r(v).uvp)]

loadp〈M[e], r : N[e] : s〉 def
= [[s]]qp[νq [[e]][[M]]q | q(u).(νr [[e]][[N]]r | r(v).uvp)]

Start from the right-hand side of the second equation. Use replication theorem 15.1

as many times as there are entries in e, to bring the second [[e]] outside the scope of

q(u). Use then replication theorem 15.3 the same number of times to “merge” the

two environments, thus obtaining the right-hand side of the first equation. Proceed

similarly when M is a variable or an abstraction.

Case Exch: directly from the definition.

Case Call:

loadp〈V [e′], l : (λxM)[e] : s〉 def
=

[[s]]pp′[νu [[e]][u := λxM] | νr [[V [e′]]]r | r(v).uvp′] →d

[[s]]pp′[νu [[e]][u := λxM] | νx [[e′]][x := V] | uxp′] →d

[[s]]pp′[νu [[e]][u := λxM] | νx [[e′]][x := V] | [[M]]p′] ∼gc

loadp〈M[e{x := V [e′]}], s〉

�

Theorem 24

The loadp correspondence is operational.

Proof

We show that the three clauses of definition 2.2 hold.

(a) Theorem 23. (b) We show its contrapositive, namely that, if k diverges then so

does loadp(k). After inspecting the table in the proof of theorem 23, we conclude

that it suffices to show that if k diverges, then rule Call is applied an unbounded

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

120 V. Thudichum Vasconcelos

Term: term → typedcontext × name

[[x]]
def
= ([], x)

[[λxM]]
def
= (νu u := λxM | [], u)

[[MN]]
def
= (νr [[M]]v[[N]]wvwr | r(u).[], u)

Environment entry: name × valueclosure → typedprocess

u := (λxM)[e]
def
= [[e]][!u(xr).[[M]]vrv]

Environment: environment → typedcontext

[[{x1 := vc1, . . . , xn := vcn}]]
def
= νx1 x1 := vc1 | . . . | νxn xn := vcn | []

Stack: stack → typedcontext × name+

[[vc1 : · · · : vcn]]
def
= ([[{x1 := vc1, . . . , xn := vcn}]], x1 . . . xn)

load: name+ × dump → typedcontext × name

load�u〈vc : , , nil, 〈s, e, C, D〉〉 def
= ([[s : vc]]�v[loadw

�u�v〈nil, e, C, D〉], w) (Ret)

load�u〈s, e, C, D〉 def
= ([[s]]�v[loadw

�u�v〈nil, e, C, D〉], w) (Stk)

load�u〈nil, e′,M, 〈s, e, C, D〉〉 def
= (νr [[e′]][[M]]w

′
rw′ | (Term)

r(w).[[s]]�vloadw
�u�vw〈nil, e, C, D〉, w′)

load�u〈nil, e,M : C,D〉 def
= ([[e]][[M]]v[loadw

�uv〈nil, e, C, D〉], w) (Ctr)

load�uvw〈nil, e, ap : C,D〉 def
= (νr wvr | r(u′).loadv′

�uu′ 〈nil, e, C, D〉, v′) (Call)

load�uv(D)
def
= ([], v) (Done)

where names r, x1, . . . , xn, u, u
′, v, w, w′ are taken freshly, and the rules in load must be tried

from the top.

Fig. 10. The SECD to Context correspondence.

number of times. This must true since the CAM machine without rule Call

converges (lemma 10). (c) We again show the contrapositive, namely that k �→k

implies load(k) �→d. Terminal states are of the form 〈vc, nil〉. Clearly, loadp〈vc, nil〉
�→d. �

Theorem 5.1 allows us to conclude that load is convergent as well.

Corollary 25

The loadp correspondence is convergent.

4.4 The SECD to Context correspondence

Recall the SECD machine and the π-context machine from figures 3 and 6. This

section presents an encoding of SECD states (that is, dumps) into π-contexts and

prove that it constitutes an operational correspondence.

The encoding is described in figure 10 and is based on that in Vasconcelos (1994).

The encoding of a term M is a pair composed of a context and a name: the name

represents the location of the encoding of M, as seen by whatever process we place

in the hole. So we see that [[M]] chooses the name where to locate M; whereas, in

the encoding of the previous section, the name where to locate M is an argument

to the encoding function. Another difference is that the result of the encoding is a

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

Lambda and pi calculi, CAM and SECD machines 121

context (together with a name), whereas that of Milner is a process. In contrast with

the encoding of the previous section, values do not write their locations in some

reply-to name. Instead they “let” the hole directly know its location: the location

of a variable x is simply x; that of an abstraction is a new name u in whose scope

we place both the hole and the corresponding environment entry. Applications MN

first evaluate M to v, then N to w, and then invoke the function at v with the

argument w and request to have the result sent to a newly created name r. Finally,

they wait for the result at r, and instantiate it in the hole as u, since the process in

the hole expects to see the value of MN located at u.

Similarly to the encoding of stacks in figure 9, [[M]]v denotes the first component

of the pair (C, v) obtained by running function [[·]] on M, so that, in a more

conventional, albeit less concise, form, we could have written:

[[MN]]
def
= νr C[C ′[vwr]] | r(u).[] where [[M]]

def
= (C, v) and [[N]]

def
= (C ′, w).

When v is not important we write [[M]] to denote the first component (the context)

of the pair.

Environments, environment entries, and closures are compiled in exactly the same

way as their CAM counterparts, except for the new definition of the encoding of

terms. Stacks are, however, compiled quite differently. Essentially a stack is encoded

into the parallel composition of (the encodings of) its elements: the order is kept by

the list of names returned by the encoding function. Notice that, in [[s]] = (C,�uv),

name v denotes the (location of the) top of the stack. Further notice that name+

in the signature of the mapping for stacks, makes load rule Stk applicable only for

non-empty stacks (thus avoiding an infinite recursion).

load proceeds by orderly compiling, first the λ-terms in the stack, and then those

in the control string (rules Stk, and Ctr). To keep hold of the location of these

terms, our encoding works with a non-empty sequence of names (name+ in the

signature of the encoding), rather than a single name. In this way, when time comes

to compile a dump with an ap mark at the head of the control string, we know

which function to call with which argument (rule Call). The Ret reduction rule in

figure 3 ignores the whole stack in the dump, but its top: before trying the general

rule to compile the stack (Stk), we try the Ret that orderly compiles the top of the

stack vc as well as the stack s in the dump part of the state.

Using rules Ctr and Done, we can easily see that the dump 〈nil, ∅,M, nil〉 (obtained

by loading a closed term M into the SECD machine, cf. figure 8) is compiled into

[[M]], as expected.

Recall that [[M]] yields a pair composed of a context and a name; below we write

[[M]] to denote the context alone, and abbreviate [[e]][[M]] to [[M[e]]]. The rest of

this section shows that load is an operational correspondence. We start with a result

that helps in establishing that load is a correspondence.

Lemma 26 (Substitution Lemma)

[[M[x := V]]] � [[M{V/x}]].

Proof

By induction on the structure of M, using the replication theorems.

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

122 V. Thudichum Vasconcelos

Case M is the variable x; we have [[x[x := V]]]
def
= [[V]].

Case M is a variable y �= x; we have [[y[x := V]]]
def
= νx x := V | [] � []

def
= [[y]],

noticing that the two contexts are barbed congruent, for x, being a variable, cannot

be free in the hole (cf. figure 6).

Case M is an abstraction λyN. Using the Replication theorem 15.2 (notice x being

a variable is not free on the hole), and induction, we have

νx x := V | νv !v(yr).[[N]]uru | [] � νv !v(yr).[[L[x := V]]]urv | [] �

νv !v(yr).[[L{V/x}]]urv | []
def
= [[(λyN){V/x}]]

Case M is an application NL. Using the Replication Theorem 15.3, and induction

twice, we have:

νx x := V | νr [[N]][[L]]wvwr | r(u).[]) �
[[N[x := V]]][[L[x := V]]]wvwr | r(u).[] �

[[N{V/x}]][[L{V/x}]]]wvwr | r(u).[] def
=

[[(NL){V/x}]]

�

Proposition 27

The loadp map is a correspondence, for all p.

Proof

For the first equation in the definition of ∼s, it suffices to show that

[[vc]] � [[real(vc)]].

Let vc = V [{x1 := vc1, . . . , xn := vcn}], and fv(V) = {x1, . . . , xk}, for some k � n. We

proceed by induction on the definition of real.

[[real(vc)]]
def
=

[[V {real(vc1)/x1} . . . {real(vck)/xk}]] � (Substitution lemma 26)

[[V {x1 := real(vc1), . . . , xk := real(vck)}]] ∼gc (Garbage collection)

[[V {x1 := real(vc1), . . . , xn := real(vcn)}]] � (Induction)

[[V {x1 := vc1, . . . , xn := vcn}]] def
=

[[vc]]

For the second equation, we can easily check that [[vc]] ≡α [[vc′]], when real(vc) ≡α

real(vc′). �

The following result is used to set that load is operational.

Theorem 28

D →s D
′ implies loadu(D) →∗

d� loadu(D
′).

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

Lambda and pi calculi, CAM and SECD machines 123

Table 2. The relation that holds between loadu(D) and loadu(D
′) when D →s D

′

SECD reduction rule Relation on contexts

Var ∼gc

Abs ≡
App �
Call →d∼gc

Ret =

Proof

A case analysis on the reduction rules. The relation that holds between loadu(D)

and loadu(D
′) is summarised in Table 2.

Case Var: from load(D) to load(D′), use Stk, Ctr, ∼gc, and Stk. Notice that

[[e(x)]] ∼gc [[x[e]]], where we have garbage collected all entries in e different from x.

Case Abs: use Stk, Ctr, ≡, and Stk, in this order.

Case App: use Stk, Ctr, �, Call, Ctr, Ctr, and Stk. For the � step we show that

[[e]][[M]]u[[e]][[N]]v � [[e]][[N]]u[[M]]v . Applying the replication Theorem 15.3 as many

times as there are entries in e, we have:

[[e]][[M]]u[[e]][[N]]v ≡α [[e]][[M]]u[[eσ]][[Mσ]]v ≡ [[e]][[eσ]][[M]]u[[Mσ]]v �
[[e]][[M]]u[[M]]v

where σ is an injective substitution with the domain of e, and whose codomain is

fresh.

Case Call: use Stk, Call, →d, ∼gc, ≡and Term.

load�u〈(λxM)[e′] : vc : s, e, ap : C,D〉 def
=

[[s]]�v[[vc]]w1 [[(λxM)[e′]]]w2 [νr w2w1r | r(w).loadv′

�u�vw〈nil, e, C, D〉] →d∼gc

[[s]]�v[[vc]]w1 [νr[[M{w1/x}[e′]]]w
′
rw′ | r(w).loadv′

�u�vw〈nil, e, C, D〉]) ≡

[[s]]�v[νr[[M[e′{x := vc}]]]w′
rw′ | r(w).loadv′

�u�vw〈nil, e, C, D〉] def
=

load�u〈nil, e′{x := vc},M, 〈s, e, C, D〉〉

For the � step we collect the w2 environment entry. For the ≡ step, it follows from

the encoding that the context [[vc]]w1 [[M{w1/x}[e′]]]w
′
is structural congruent to the

context [[M[e′{x := vc}]]]w′
.

Case Ret: use Ret followed by Stk. �

Theorem 29

The loadu correspondence is operational, for all u.

Proof

We show that the three clauses of definition 2.2 hold.

(a) Theorem 28. (b) We show its contrapositive, namely, if D diverges then so does

loadu(D). Inspecting the table in the proof of theorem 28, we conclude that it suffices

to show that if M diverges, then rule Call is applied an unbounded number of times.

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

124 V. Thudichum Vasconcelos

This must true since the SECD machine without the Call converges (lemma 13). (c)

We again show the contrapositive, namely that D �→s implies loaduD �→, by analyzing

the dumps that do not reduce. They are of the form 〈vc, , ap : , 〉, 〈nil, , ap : , 〉,
〈nil, , nil, 〉, 〈 , , nil, nil〉, and nil. Clearly their encodings do not reduce. �

Theorem 5.1 allows us to conclude that load is convergent as well.

Corollary 30

The loadu correspondence is convergent.

4.5 Lambda to Pi, directly

We can easily see that the Lambda to Process correspondence is operational. In fact,

we know that both the Lambda to CAM and the CAM to Process correspondences

are operational, and that the composition of two operational correspondences is

operational (Theorems 18, 24, and 5.2).

Similarly, the Lambda into Context correspondence is convergent. This follows

from the following results: the Lambda to SECD correspondence is convergent, the

SECD to Context is operational, the composition of a convergent with an operational

correspondence is convergent (Theorems 20, 29, and 5.4).

Finally, given that operational correspondences are convergent (Theorem 5.1), we

conclude that the Lambda to Process correspondence is convergent.

Theorem 31

1. The Lambda to Process correspondence is operational;

2. The Lambda to Context correspondence is convergent.

3. The Lambda to Process correspondence is convergent.

The remainder of this section studies direct encodings of the λ-calculus into the

π-calculus, establishing the adequacy of the two encodings. The task is simplified

since, in both cases, we proved the respective Substitution Lemmas (21, 26). The

direct proofs below also allow us to quantify the number of π-steps involved in the

simulation of a λ-step: exactly two in each case (on average for the Context case).

We start with the Process case.

Theorem 32

Let [[·]] be the map defined in figure 9. M →v N implies [[M]] →2
d� [[N]].

Proof

By transition induction.

Case the last rule is β and M is (λxM)y.

[[(λxM)y]]p →2
d (νu u := λxM) | [[M{y/x}]] ∼gc [[M{y/x}]].

Case the last rule is β and M is (λxM)V , for V an abstraction. Using the Substitution

Lemma 21, we have:

[[(λxM)V]]p →2
d (νu u := λxM) | νv v := V | [[M{v/x}]]p ∼gc� [[M{V/x}]]p

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

Lambda and pi calculi, CAM and SECD machines 125

Case the last rule is ν. Directly by induction, both for V a variable and an abstraction.

Case the last rule is µ. Directly by induction. �

The above result should be contrasted with the one obtained by Sangiorgi and

Walker for the unoptimized version of the translation from terms to processes. When

one omits the particular cases of the translation of applications ([[xM]]p and [[VM]]p
in figure 9) all we can say about processes [[M]]p and [[N]]p is that [[M]]p →n+3

d � P ,

and [[N]]p →n
d P , for some n � 0 and some P ((Sangiorgi & Walker, 2001), Lemma

15.3.22). Number n represents the nesting depth of the redex in M, that is, the

number of applications one must cross to reach the redex, when descending the

derivation tree of M. The optimized encoding obviates the π-steps necessary to

reach the π-redex corresponding to the λ-redex.

Corollary 33 (Adequacy of the process encoding)

Let [[·]] be the map defined in figure 9. M ↓nv N implies [[M]] ↓2n
d � [[N]].

Proof

From Theorem 32, and the fact that � commutes with →d (proof of Proposition

14). �

Now for the Context machine.

Theorem 34 (Adequacy of the context encoding)

Let [[·]] be the map defined in figure 10. M ↓nv N implies [[M]] ↓2n
d � [[N]].

Proof

By induction on n. When n is zero, M = N, and we are done. When n is positive,

M is an application, say M1M2. Let M1 ↓n1
v λxL, M2 ↓n2

v V , and L{V/x} ↓n3
v N, with

n = n1 + n2 + n3 + 1. We have [[M1M2]]
def
= (νr [[M1]]

v[[M2]]
wvwr | r(u).[], u), and

νr [[M1]]
v[[M2]]

wvwr | r(u).[] →2(n1+n2)
d � (Induction)

νr νv v := λxL | νw w := V | vwr | r(u).[] →d∼gc

νr νw w := V | [[L{c/x}]]w′
rw′ | r(u).[] � (Subst. Lemma 21)

νr [[L{V/x}]]w′
rw′ | r(u).[] →2n3

d � (Induction)

νr [[N]]w
′
rw′ | r(u).[] def

=

νr νw ′w′ := N | rw′ | r(u).[] →d≡
νu u := N | []

Finally (νu u := N | [], u)
def
= [[N]]. �

4.6 Lambda to Pi, soundness

It is not difficult to show that both interpretations of the λ-calculus into the π-

calculus are sound, by following Sangiorgi & Walker (2001).

For the equivalence in λ-terms (equipped with the call-by-value strategy), we pick

the Morris context equivalence, also called observation equivalence.

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

126 V. Thudichum Vasconcelos

Definition 35

Two closed λ-terms M,N are observationally equivalent if C[M] ↓v iff C[N] ↓v, for

each closed λ-context C . In this case we write M �v N.

The equivalence for π-calculus processes is the weak version of barbed congruence,

defined by replacing, in figure 5, reduction →d with the relation →∗
d, and the

observation predicate ↓a with the predicate →∗
d↓a. We write ∼=p for the relation

thus obtained. The equivalence for π-calculus contexts is obtained from the strong

version, by replacing, in figure 6, � by ∼=p. We use symbol ∼=c for the relation thus

obtained.

Then we can easily show soundness from the adequacy results of section 4.5, by

following the proof of the same result for the unoptimized version of the process-

encoding (Sangiorgi & Walker, 2001, Theorem 17.3.3).

Theorem 36

Let M,N ∈ term0, and M �v N. Then,

1. [[M]] ∼=p [[N]], for [[·]] the map defined in figure 9;

2. [[M]] ∼=c [[N]], for [[·]] map defined in figure 10.

Completeness, on the other hand is not be expected to hold. See the discussion in

Sangiorgi & Walker (2001).

5 Further work

The impact of the π-encodings proposed here on actual, π-based, programming

languages should be analyzed (Pierce & Turner, 2000; Vasconcelos & Lopes, 1988–

2002). Also, further optimizations for particular patterns of λ-terms (e.g. recursive

function definitions) could be pursued.

The encodings of the environment machines opens perspectives of encoding others

machines, thus providing for the study of other λ-reduction strategies in the realm

of π-calculus. In this respect, the context encoding seems to be tightly connected

to the call-by-value strategy, remaining unclear how to apply it to call-by-name. It

remains open whether the two λ-encodings are barbed congruent.

Sangiorgi & Walker (2001) presents Milner’s encoding using a continuation-

passing style. It should be interesting to investigate whether there is a CPS transform

that yields the encoding that goes via the SECD machine.

Acknowledgments

Special thanks to D. Sangiorgi, G. Boudol, R. Amadio, and A. Ravara for fruitful

discussions. The Mimosa project at INRIA, Sophia-Antipolis, and the Wednesday

Morning Club at the University of Lisbon provided important feedback. This work

is partially supported by project PRAXIS P/EEI/120598/98 DiCoMo.

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

Lambda and pi calculi, CAM and SECD machines 127

References

Amadio, R. M. & Curien, P.-L. (1998) Domains and Lambda-Calculi. Cambridge Tracts in

Theoretical Computer Science 46. Cambridge University Press.

Barendregt, H. P. (1974) The Lambda-Calculus, its Syntax and Semantics, Studies in Logic and

the Foundations of Mathematics 103. North-Holland.

Boudol, G. (1992) Asynchrony and the π-calculus (note). Rapport de Recherche 1702, INRIA

Sophia-Antipolis.

Curien, P.-L. (1991) An abstract framework for environment machines. Theor. Comput. Sci.

82, 389–402.

Honda, K. & Tokoro, M. (1991) An object calculus for asynchronous communication. In:

America, P., (ed.), Proceedings of ECOOP ’91: LNCS 512, pp. 133–147. Springer.

Landin, P. J. (1964) The mechanical evaluation of expressions. Comput. J. 6(4).

Milner, R. (1990) Functions as processes. Rapport de Recherche RR-1154, INRIA Sophia-

Antipolis. Final version in (Milner, 1992).

Milner, R. (1992) Functions as processes. J. Math. Struct. Comput. Sci. 2(2), 119–141.

Pierce, B. C. & Sangiorgi, D. (1996) Typing and subtyping for mobile processes. Math. Struct.

Comput. Sci. 6(5), 409–454.

Pierce, B. C. & Turner, D. N. (2000) Pict: A programming language based on the pi-calculus.

In: Plotkin, G., Stirling, C. and Tofte, M., (eds.), Proof, Language and Interaction: Essays

in Honour of Robin Milner, Foundations of Computing. MIT Press.

Plotkin, G. D. (1975) Call-by-name and call-by-value and the λ-calculus. Theor. Comput.

Sci.1, 125–159.

Sangiorgi, D. & Walker, D. (2001) The π-calculus, A Theory of Mobile Processes. Cambridge

University Press.

Vasconcelos, V. T. (1994) Typed concurrent objects. 8th European Conference on Object-

Oriented Programming: LNCS 821, pp. 100–117. Springer-Verlag.

Vasconcelos, V. T. (2000) Processes, functions, datatypes. Theory & Practice of Object Syst.

5(2), 97–110.

Vasconcelos, V. T. & Lopes, L. (1988–2002) The TyCO programming language—compiler

and virtual machine. URL: http://www.ncc.up.pt/˜lblopes/tyco, 1988–2002.

https://doi.org/10.1017/S0956796804005386 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005386

