A classification of groups with a centralizer condition II

Zvi Arad and Marcel Herzog

Let G be a finite group. A nontrivial proper subgroup M of G is called a CC-subgroup if M contains the centralizer in G of each of its nonidentity elements. In this paper groups containing a CC-subgroup of order divisible by 3 are completely determined.

1. Introduction

The purpose of this paper is to prove the following:
THEOREM 1. Let G be a finite group and let M be a CC-subgroup of G. Assume that $3||M|$. Then one of the following statements is true:

$$
\text { (i) } G \cong \operatorname{PSL}(2, q) \text {; }
$$

(ii) G is a Frobenius group with M as the Frobenius kernel or a Frobenius complement;
(iii) M is a noncyclic elementary abelian Sylow 3-subgroup of G;
(iv) M is a cyclic subgroup of G of odd order.

Groups satisfying (iii) or (iv) were completely classified in [2] and [6], respectively. Simple groups satisfying the assumptions of Theorem 1 were listed in Theorem B of [1]. In order to prove Theorem 1 it suffices, in view of [1, Theorem A], to establish:

Received 17 August 1976. The authors are grateful to Professor G. Glauberman for his fruitful suggestions.

THEOREM 2. Let G be a finite group and let M be a CC-subgroup of G. Assume that $N_{G}(M)=M$ and $3||M|$. Then either $G \cong \operatorname{PSL}(2, q)$ or G is a Frobenius group with M as a Frobenius complement.

Sections 3 and 5 contain related results of independent interest.
In this paper all groups are finite. If G is a group, then $\pi(G)$, $G^{\#}$, and S_{p} denote, respectively, the set of primes p dividing $|G|$, the nonidentity elements of G, and a Sylow p-subgroup of G. If π is a set of primes, $O_{\pi},(G)$ denotes the maximal normal π^{\prime}-subgroup of G. The signs \subseteq and \subset will denote containment and proper containment of subgroups, respectively. By a simple group we mean a nonabelian simple group. We shall use freely the bar-convention for images in a quotient group.

2. Two lemmas

The following lemmas are necessary for induction arguments in the next section. The letter G denotes a group.

LEMMA 1. Let $H \triangleleft G$ and let $x \in G$ satisfy $(|x|,|H|)=1$. Denote $G / H=\bar{G}$. Then

$$
C_{\bar{G}}(\bar{x})=C_{G}(x) H / H
$$

Proof. Clearly \supseteq holds. Now let $c \in C_{G}(x \bmod H)$; then $x^{c} H=x H$ and consequently $\left\langle x^{c}\right\rangle_{H}=\langle x\rangle H$. By the Schur-Zassenhaus Theorem there exists $h \in H$ such that $\left\langle x^{c}\right\rangle=\langle x\rangle^{h}$. Let i be an integer satisfying $x^{c}=\left(x^{i}\right)^{h}$. Then

$$
x^{i} H=x^{i} h H=h x^{c} H=h x H
$$

As $x^{-1} h x \in H, x^{i-1} \in H$; hence $x^{i-1}=1, x^{i}=x$, and $x^{c}=x^{h}$. Thus $c h^{-1} \in C_{G}(x)$, as required.

LEMMA 2. Let M be a Hall m-subgroup of G. Suppose that $H \triangleleft G$ and either H is a π^{\prime}-group or $M H$ is solvable. Denote $G / H=\bar{G}$. Then

$$
N_{\bar{G}}(\bar{M})=N_{G}(M) H / H .
$$

Proof. Clearly \supseteq holds. Now let $n \in N_{G}(M \bmod H)$; then $M^{n} H=M H$, and by the Schur-Zassenhaus Theorem or Hall's Theorem there exists $h \in H$ satisfying $M^{n}=M^{h}$. Thus $n h^{-1} \in N_{G}(M)$, as required.

3. A general theorem

In order to prove Theorem 2 we need the following:
THEOREM 3. Let G be a finite group containing a CC-subgroup M. Suppose that $N_{G}(M)=M$. Then one of the following statements is true:
(i) G is a Frobenius group with a complement M;
(ii) G has a simple section $K / H=\bar{K}$ satisfying
(a) $M \subseteq N_{G}(K) \cap N_{G}(H)$,
(b) $M H / H$ is a CC-subgroup of $M K / H$,
(c) $\overline{K \cap M}$ is a (nontrivial) CC-subgroup of \bar{K},
(d) $N_{-}^{-}(\overline{K \cap M})=\overline{K \cap M}$.

As an immediate corollary we get the following characterization of soluble Frobenius groups.

THEOREM 4. Let G be a soluble group containing a CC-subgroup M. Then $N_{G}(M)=M$ if and only if G is a Frobenius group with a complement M.

Proof of Theorem 3. Let G be a counter-example of minimal order. It is well known that M is a Hall π-subgroup of G, where $\pi=\pi(M)$. Clearly G is not simple. Thus, by [8, Theorem 1], $2 \backslash|M|$ and by the Feit-Thompson Theorem, M is solvable.

Suppose that $O_{\pi},(G) \neq 1$. As $\bar{G}=G / O_{\pi}(G)$ is not isomorphic to M, it follows by Lemmas 1 and 2 that \bar{M} is a $C C$-subgroup of \bar{G} satisfying $N_{\bar{G}}(\bar{M})=\bar{M}$. Hence, by induction, (ii) holds; a contradiction.

Assume, from now on, that $O_{\pi},(G)=1$. Let N be a minimal normal
subgroup of G. Clearly $M \cap N \neq 1$.
Case 1. N is an elementary abelian p-group. Clearly $N \subseteq M$ and, defining V by

$$
V \equiv \cap\left\{M^{x} \mid x \in G\right\}
$$

we have $1 \subset V \subset M$. It follows that V is a normal $C C$-subgroup of G. Thus both G and M are Frobenius groups with the kernel V. Let C be a complement of V in M. Then C is a $C C$-subgroup of G and, as $N_{G}(C) \subseteq N_{G}(M)=M, N_{G}(C)=C$. By Lemmas 1 and 2 we may apply induction to $\bar{G}=G / V$ and \bar{C}. As G is a counterexample, \bar{G} is a Frobenius group with a complement \vec{C}. However, since G is a Frobenius group with V as its kernel, by [5, Theorem $V, 8.18], \bar{G}=G / V$ has a nontrivial center, a contradiction.

Case 2. N is a direct product of n isomorphic simple groups. As $R \equiv M \cap N$ is a CC-subgroup of N, it is a Hall subgroup of N and consequently $n=1$. Suppose that $N_{N}(R) \neq R$; then $T \equiv N_{G}(R) \supset M$. If $T=G$, then a contradiction is reached as in Case 1 . Thus $T \subset G$; hence, by the minimality of G, T is a Frobenius group with a complement M, contradicting $R \subset T$. Thus we have shown that $N_{N}(R)=R$. But then G satisfies ($i i$) with $K=N$ and $H=1$, a final contradiction.

4. Proof of Theorem 2

Let G be a counterexample of minimal order. Thus (ii) of Theorem 3 holds. If $2\left||M|\right.$, then, by $\left[8\right.$, Theorem 1], $G \cong \operatorname{PSL}\left(2,2^{2 n}\right)$. So suppose, from now on, that $2||M|$.

Case 1. Suppose that $3||\overline{K \cap M}|$. By Theorem B of [1], \bar{K} is one of a known list of simple groups, none of which except $\operatorname{PSL}(2, q)$ satisfies $N_{\bar{K}}(\overline{K \cap M})=\overline{K \cap M}$ and $2 \backslash|\overline{K \cap M}|$.

Case 2. Suppose that $3 \backslash|\overline{K \cap M}|$. Thus $3 \backslash|\bar{K}|$ and, by Thompson's 3'-theorem, \bar{K} is isomorphic to $S z\left(2^{2 n+1}\right)$. Let m be an element of M of order 3. Then, by (ii) (a) of Theorem 3 and by [3, Theorem 6.2.2 (i)], m normalizes the center of an S_{2} of \bar{K}, which has
order $2^{2 n+1}$. As $3 \backslash 2^{2 n+1}-1, m$ centralizes an involution in \bar{K}. Since $2||M|$, we have reached a final contradiction to ($i i$) (b) of Theorem 3.

5. A generalization

The result of this section generalizes [1, Theorem B], [4, Theorem 11], [6, Theorem B], and [7, Theorems 1 and 2].

THEOREM 5. Let G be a simple group containing a subgroup $X \times Y$ which satisfies the following conditions:
(i) whenever $x \in X^{\#}$ then $C_{G}(x)=X \times Y$;
(ii) $3||X|$ and 2$||Y|$;
(iii) if $2 \backslash|X|$ then $3 \backslash|Y|$.

Then G is isomorphic to one of the following groups:
(a) $\operatorname{PSL}(3,4) ;$
(b) $\operatorname{PSL}(2, q)$ for some q;
(c) $\operatorname{PSU}\left(3,2^{n}\right)$ for some n.

Proof. Suppose, first, that $2||X|$. As 2$||Y|$, X contains an S_{2} of G. Hence G has an abelian S_{2} and by [9] either (b) holds or G is isomorphic to one of the following groups:
(A) $J(11)$, Janko's smallest group, or
(B) a group of Ree-type.

However, groups of type (A) or (B) have a self-centralizing S_{2}, in contradiction to $3||X|$.

Suppose, finally, that $2\left||X|\right.$. Then X contains an S_{3} of G and consequently G has no elements of order 6 . Recent and as yet unpublished results of Stewart and Fletcher, Gleuberman, and Stellmacher, classifying groups without elements of order 6 , imply then that (a) , (b), or (c) holds.
[1] Zvi Arad, "A classification of groups with a centralizer condition", BulZ. Austral. Math. Soc. 15 (1976), 81-85.
[2] Zvi Arad, "A classification of 3CC-groups and applications to Glauberman-Goldschmidt theorem", submitted.
[3] Daniel Gorenstein, Finite groups (Harper and Row, New York, Evanston, London, 1968).
[4] Graham Higman, Odd characterizations of finite simple groups (Lecture Notes, University of Michigan, 1968).
[5] B. Huppert, Endliche Gruppen I (Die Grundlehren der mathematischen Wissenschaften, 134. Springer-Verlag, Berlin, Heidelberg, New York, 1967).
[6] W.B. Stewart, "Groups having strongly self-centralizing 3-centralizers", Proc. London Math. Soc. (3) 26 (1973), 653-680.
[7] W.B. Stewart, "Finite simple groups having an element of order three whose centralizer is of order fifteen", Quart. J. Math. Oxford (2) 25 (1974), 9-17.
[8] Michio Suzuki, "Two characteristic properties of (ZT)-groups", Osaka Math. J. 15 (1963), 143-150.
[9] John H. Walter, "The characterization of finite groups with abelian Sylow 2-subgroups", Ann. of Math. (2) 89 (1969), 405-514.

Department of Mathematics,
Bar Ilan University,
Ramat-Gan,
Israel;
Department of Mathematics,
Institute of Advanced Studies,
Australian National University,
Canberra, ACT.

