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A classification of groups with a

centralizer condition II

Zvi Arad and Marcel Herzog

Let G be a finite group. A nontrivial proper subgroup M of

G is called a CC-subgroup if M contains the centralizer in G

of each of its nonidentity elements. In this paper groups

containing a CC-subgroup of order divisible by 3 are

completely determined.

1. Introducti on

The purpose of this paper is to prove the following:

THEOREM 1. Let G be a finite group and let M be a CC-subgroicp

of G . Assume that 3 | |M| . Then one of the following statements is

true:

(i) G S PSL(2, q) ;

(ii) G is a Frobenius group with M as the Frdbenius kernel

or a Frobenius complement;

(Hi) M is a noncyalio elementary abelian Sylow 3-subgroup of

G ;

(iv) M is a ayclia subgroup of G of odd order.

Groups satisfying (Hi) or (iv) were completely classified in [2] and

[6], respectively. Simple groups satisfying the assumptions of Theorem 1

were listed in Theorem B of [J]. In order to prove Theorem 1 it suffices,

in view of [/, Theorem A ] , to establish:
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THEOREM 2. Let G be a finite group and let M be a CC-subgroup

of G . Assume that NQ(M) = M and 3 | \M\ . Then either

G =£ PSL(2, q) or G is a Frobenius group with M as a Frobenius

complement.

Sections 3 and 5 contain related results of independent interest.

In this paper a l l groups are finite. If G is a group, then ir(G) ,

(x 9 and S denote, respectively, the set of primes p dividing |ff| ,

the nonidentity elements of G , and a Sylow p-subgroup of G . If IT is

a set of primes, 0 ,(G) denotes the maximal normal fr'-subgroup of G .

The signs c and c will denote containment and proper containment of

subgroups, respectively. By a simple group we mean a nonabelian simple

group. We shall use freely the bar-convention for images in a quotient

group.

2 . Two lemmas

The following lemmas are necessary for induction arguments in the next

section. The le t te r G denotes a group.

LEMMA 1. Let H < G and let x £ G satisfy ( | x | , \H\) = 1 .

Denote G/H = ~G . Then

C-^x) = CJx)H/H .

Proof. Clearly z> holds. Now l e t a € C [x mod E) ; then

x°H = xH and consequently (. x°)H = ( x>H . By the Schur-Zassenhaus Theorem
a h

there exists h € H such that < x ) = < x) . Let i be an integer
satisfying x° = (xV) . Then

xVH = xVhH = hx°H = hxH .

As x~Xhx € H , x1'1 € H ; hence x*''"1 = 1 , x^ = x , and x° = x .

Thus ch~ € CQ{X) , as required.

LEMMA 2. Let M be a Hall ^-subgroup of G . Suppose that H < G

and either H is a -n'-group or MH is solvable. Denote G/H = G . Then
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^ = NQ{M)HlH .

Proof. Clearly 3 holds. Now le t n € ff_ (M mod H) ; then— o-

M H = MR , and by the Schur-Zassenhaus Theorem or Hal l ' s Theorem there

exists h € H satisfying tP = M . Thus nh~ (. flJ^M) , as required.

3. A general theorem

In order to prove Theorem 2 we need the following:

THEOREM 3. Let G be a finite group containing a CC-subgroup M .

Suppose that NG(M) = M . Then one of the following statements is true:

(i) G is a Frobenius group with a complement M j

(ii) G has a simple section K/H = K satisfying

(a) M c NG(K) n NG(H) ,

(b) MH/H is a CC-subgroup of MK/H ,

(c) K n M is a (nontrivial) CC-subgroup of K ,

(d) fihiK n M) = K n M .

As an immediate corollary we get the following characterization of

soluble Frobenius groups.

THEOREM 4. Let G be a soluble group containing a CC-subgroup M .

Then NJM) = M if and only if G is a Frobenius group with a complement

M .

Proof of Theorem 3. Let G be a counter-example of minimal order.

It is well known that M is a Hall ir-subgroup of G , where TT = ir(Af) .

Clearly G is not simple. Thus, by [S, Theorem 1 ] , 2 \ \M\ and by the

Feit-Thompson Theorem, M is solvable.

Suppose that 0 ,{G) + 1 . As G = G/0 ,(G) is not isomorphic to

M , it follows by Lemmas 1 and 2 that M is a CC-subgroup of G

satisfying N-^(M) = M . Hence, by induction, (ii) holds; a contradiction.
Lr

Assume, from now on, that 0 ,(G) = 1 . Let if be a minimal normal
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subgroup of G . Clearly M n N + 1 .

Case 1. N is an elementary abelian p-group. Clearly N c M and,

defining V by

V = D l ^ | x € G} ,

we have 1 c V c A? . It follows that V is a normal CC-subgroup of G .

Thus both G and Af are Frobenius groups with the kernel V . Let C be

a complement of V in M . Then C is a CC-subgroup of G and, as

N~(C) c NJM) = M , NJC) = C . By Lemmas 1 and 2 we may apply induction
u- — ij (7

to G = G/7 and C . As G is a counterexample, G is a Frobenius group

with a complement C . However, since G is a Frobenius group with V as

its kernel, by [5, Theorem V, 8.18], G = G/V has a nontrivial center,

a contradiction.

Case 2. N is a direct product of n isomorphic simple groups. As

R = M n N is a CC-subgroup of if , it is a Hall subgroup of N and

consequently n = 1 . Suppose that N (R) # R ; then T = ̂ ? (i?) 3 M . If

T = G , then a contradiction is reached as in Case 1. Thus T c G ;

hence, by the minimality of G , T is a Frobenius group with a complement

M , contradicting R <-~- T . Thus we have shown that N^(R) = R . But then

G satisfies (ii) with K = N and H = 1 , a final contradiction.

4. Proof of Theorem 2

Let G be a counterexample of minimal order. Thus (ii) of Theorem 3

holds. If 2 I \M\ , then, by l&, Theorem 1 ] , G = PSL(2, 22n) . So

suppose, from now on, tha t 2 \ \M\ .

Case 1. Suppose that 3 | \K n w| . By Theorem B of [1], K is one

of a known list of simple groups, none of which except PSL(2, q) satisfies

N-d.K n M) = K n M and 2 \ \K n «| .

Case 2. Suppose that 3 J |F~n~M| . Thus 3 \ \~H\ and,

by Thompson's 3'-theorem, K is isomorphic to Sz[2 ) . Let m be an

element of M of order 3 . Then, by (ii) (a) of Theorem 3 and by [3,

Theorem 6.2.2 (i)], m normalizes the center of an S^ of K , which has
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order 2 . As 3 \ 2 -1 , m centralizes an involution in K .

Since 2 | |Af| , we have reached a final contradiction to (ii) (b) of

Theorem 3.

5. A generalization

The result of this section generalizes [7, Theorem B ] , [4, Theorem

11]5 C6, Theorem B], and [7, Theorems 1 and 2].

THEOREM 5. Let G be a simple group oontaining a subgroup X x Y

which, satisfies the following conditions:

(i) whenever x € X^ then CQ{x) = X x Y ;

(ii) 3 | \X\ and 2 \ \Y\ ;

Ciii; i/ 2 I \x\ then 3 | \Y\ .

Then G is isomorphic to one of the following groups:

(a) PSL(3, k) ;

(b) PSL(2, q) for some q ;

(c) PSU(3, 2n) for some n .

Proof. Suppose, first, that 2 | |z| . As 2 \ \Y\ , X contains an

5 of G . Hence G has an ahelian S~ and by [9] either (b) holds or

G is isomorphic to one of the following groups:

(A) </(ll) , Janko's smallest group, or

(B) a group of Ree-type.

However, groups of type (A) or (B) have a self-centralizing £„ » in

contradiction to 3 | |̂ f| .

Suppose, finally, that 2 \ \x\ . Then X contains an 5 of G

and consequently G has no elements of order 6 . Recent and as yet

unpublished results of Stewart and Fletcher, Glauberman, and Stellmacher,

classifying groups without elements of order 6 , imply then that (a) , (b) ,

or (a) holds.
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