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Abstract
An enhanced wideband trackingmethod for characteristic modes (CMs) is investigated in this
paper.Themethod consists of three stages, and its core tracking stage (CTS) is based on a clas-
sical eigenvector correlation-based algorithm. To decrease the tracking time and eliminate the
crossing avoidance (CRA), we append a commonly used eigenvalue filter (EF) as the prepro-
cessing stage and a novel postprocessing stage to the CTS. The proposed postprocessing stage
can identify all CRA mode pairs by analyzing their trajectory and correlation characteristics.
Subsequently, it can predict corresponding CRA frequencies and correct problematic quali-
ties rapidly. Considering potential variations in eigenvector numbers at consecutive frequency
samples caused by the EF, a new execution condition for the adaptive frequency adjustment
in the CTS is introduced. Finally, CMs of a conductor plate and a fractal structure are inves-
tigated to demonstrate the performance of the proposed method, and the obtained results are
discussed.

Introduction

The theory of characteristic mode (TCM), initially proposed by Garbacz et al. [1], has received
much attention in recent years for its wide application in the electromagnetic field, particu-
larly in antenna design [2, 3]. In the TCM, the radiating and scattering proprieties of arbitrary
structures are intuitively obtained by solving a frequency domain generalized eigenvalue equa-
tion (GEE) defined by themethod-of-moments (MoM) impedancematrix [4, 5].The calculated
eigenvalues and eigenvectors of characteristicmodes (CMs) reflect theirmode behaviors at each
frequency. In practical applications, it is valuable for designers to have a clear understanding
of how mode behaviors vary across a sequence of frequency samples. To capture the behavior
changes of CMs across a wideband spectrum, the CM qualities, especially eigenvalues, should
be organized in a certain order at all discrete frequencies [6]. Therefore, a method of modal
tracking is needed.

Over the past decade, many efforts have been devoted to achievingmodal tracking, predom-
inantly relying on correlation-based algorithms with varied qualities, including eigenvalue [7],
eigenvector [8], surface current [9], and far-field [10]. Among these, the eigenvector correlation-
based algorithm (ECBA) is the most popular because it strikes a balance between accuracy and
complexity. However, the initial ECBA, as presented in paper [8], suffers from errors such as
mode swapping and crossing avoidance (CRA).

To address these challenges, several modified ECBAs have been proposed [11–13]. As a
classical approach, the ECBA in paper [11] mitigates the mode swapping by introducing an
arbitration stage. Its effective schemes involving the correlation matrix and adaptive tracking
have been widely applied in subsequent studies. Moreover, in papers [12, 13], a strategy for
eliminating the CRA is reported by exchanging eigenvalues and eigenvectors of CRA mode
pairs. However, this strategy proves inadequate for correcting deformed modal currents in the
problem areas because the CRA issue stems from coupling effects [14, 15], which cannot be
fully resolved through simple exchanges. Besides tracking errors, the computational time of the
tracking procedure is also significant for practical applications. In paper [16], the computational
time of the ECBA is greatly reduced by limiting the number of eigenvectors to a fixed value.
However, a fixed eigenvector number lacks robustness and is unsuitable for complex structures.

This paper proposes a multi-stage tracking method for wideband CM analysis. The classical
ECBA in paper [11] is adopted as the core tracking stage (CTS) of the method. A preprocessing
eigenvalue filter (EF) stage and a postprocessing stage are appended to the CTS to accelerate
its tracking process and correct the CRA error. To demonstrate its effectiveness, CMs of a con-
ductor plate and a fractal structure are examined using the proposed method. In comparison
with other reported ECBA tracking methods, the proposed one introduces several novelties as
follows:
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(1) In the CTS: A new execution condition (NEC) for the adap-
tive frequency adjustment (AFA) is proposed to accommodate
the mapping of two frequencies with different eigenvector
numbers caused by the EF. The proposed condition enables
obtaining complete eigenvalue traces with fewer additional
frequency samples, thereby reducing the tracking time.

(2) In the postprocessing stage: A new strategy is proposed to
identify all CRAmode pairs and rapidly predict their CRA fre-
quencies with cubic spline interpolation (CSI). Additionally, a
decoupledmethod rather than the simple quantity exchange is
applied to eliminate the CRA issue, and the time of elimination
is reduced by introducing a new stop criterion.

The organization of this paper is as follows. Section “Theoretical
foundations” introduces the basic TCM and the classical ECBA,
including its significant problems. In Section “Proposed tracking
method”, the proposed tracking method is presented in detail. A
validation test of the method is performed by using two numerical
examples in Section “Numerical example”. Finally, a conclusion is
drawn in Section “Conclusion”.

Theoretical foundations

TCM

In the TCM, a field integral equation is discretized into a matrix
form by the MoM in a frequency domain; consequently, its cor-
responding complex impedance matrix Z at any frequency f is
generated to construct a GEE as [17]:

X ( f ) Jn ( f ) = 𝜆n ( f )R ( f ) Jn ( f ) (1)

where matrices R and X are real and imaginary parts of Z, respec-
tively. By solving equation (1), a set of eigenvalues 𝜆n and their
corresponding eigenvectors Jn at f are obtained. The subscript n
indicates the index of CMs.

As the most important CM quantity, 𝜆n is utilized to charac-
terize the total stored field energy within a radiation or scattering
problem. Since the value range (−∞, +∞) of 𝜆n is too wide to
observe, researchers often substitute it with the modal significance
(MS) and the characteristic angle (CA) as:

MS ( f ) = 1
|1 + j𝜆n ( f )|

(2)

CA ( f ) = 180∘ − tan−1𝜆n ( f ) (3)

TheMS and the CA are derived quantities of𝜆n, and their varia-
tion ranges are [0, 1] and [90∘, 270∘], respectively. The case of 𝜆n =
0, which can be substituted with either MS = 1 or CA = 180∘,
indicates that the associated CM is resonating.

In addition, the solved eigenvectors with distinct mode indexes
satisfy the orthogonality conditions as:

JTm ( f )R ( f ) Jn ( f ) = 0 (4)

JTm ( f )X ( f ) Jn ( f ) = 0 (5)

wherem ≠ n. Also, they are normalized by the following equation:

JTn ( f )R ( f ) Jn ( f ) = 1 (6)

The normalization is necessary in the CM tracking, ensuring
the unit radiation power of CMs.

Table 1. Rule of thumb for interpreting PCC

Size of correlation Interpretation

.90 to 1.00 (−.90 to −1.00) Very high correlation

.70 to .90 (−.70 to −.90) High correlation

.50 to .70 (−.50 to −.70) Moderate correlation

.30 to .50 (−.30 to −.50) Low correlation

.00 to .30 (.00 to −.30) Negligible correlation

Widebandmodal tracking problems

At the beginning of this subsection, we provide a brief overview
of the classical ECBA in paper [11]. Its core tracking method is to
construct a correlation matrix C for CMs at consecutive frequency
samples fi and f i+1 as

C = [cmn] N×N (7)

where elements cmn of C are the correlations between correspond-
ing two sets of eigenvectors J1 ( fi) ∼ JN ( fi) and J1 ( fi+1) ∼
JN ( fi+1) as

cmn = |𝜌 (Jm ( fi) , Jn ( fi+1))| (8)

where operator 𝜌(⋅) is the Pearson correlation coefficient (PCC).
If there are two vectors X = [x1, x2, … , xN ]T and Y =
[y1, y2, … , yN ]T , their PCC is calculated as

𝜌(X,Y)

=
N

N
∑
k=1

xkyk −
N
∑
k=1

xk ⋅
N
∑
k=1

yk

√N
N
∑
k=1

x2k − (
N
∑
k=1

xk)
2

⋅ √N
N
∑
k=1

y2k − (
N
∑
k=1

yk)
2

(9)

Drawing on a widely acknowledged interpretation of PCC in
Table 1 [18], judgements of the eigenvectormapping are delineated
as follows: (1) If cmn is the maximum element in the column nwith
a value above 0.9, then Jn ( fi+1) is mapped to Jm ( fi); (2) If multi-
ple eigenvectors at f i+1 are mapped to a particular eigenvector at
fi, only the one with maximum |𝜌| is selected. The first judgement
ensures that mapped eigenvectors exhibit very high correlations,
while the second one aims to alleviate correlation ambiguities.

Moreover, a classical adaptive strategy for frequency adjustment
is also presented in paper [11]. Specifically, if there are unmapped
eigenvectors at fi or f i+1, a new sample is added between fi and
f i+1. This strategy has been widely used in other reported track-
ing methods [9, 12], which can further improve the accuracy. The
traces of tracked CMs can be determined by iteratively applying
the above procedure across all sampling frequencies. Although the
above classical ECBA is effective and significantly mitigates the
mode swapping, it still suffers from the following problems that
need to be addressed:

CRA
TheCRA, also referred to as “mode degeneracy” in other literature
[7, 12], is exemplified in Fig. 1. The CRA may occur at a specific
frequency when a pair of modes possess approaching eigenval-
ues. This phenomenon is well documented in the field of quantum
physics, which is elucidated as a perturbation for the Hermitian
matrix [19]. In electromagnetics, this perturbation is recognized
as a coupling effect, indicating that the occurrence of the CRA is
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Figure 1. Sketches of CRA (incorrect) and normal intersection (correct). Dots and
solid lines represent the raw unsorted data and the tracking traces, respectively.

more likely to be found in an energy-coupled system [20].TheCRA
frequency f c featuring the strongest coupling energy between the
investigated mode pair exhibits the closest eigenvalue difference
∆𝜆mn, defined as

fc = argmin {|Δ𝜆mn ( f )|} (10)

where
Δ𝜆mn ( f ) = 𝜆m ( f ) − 𝜆n ( f ) (11)

The closest eigenvalue difference is termed as G, given by

G = min {|Δ𝜆mn ( f )|} (12)

At frequency f c, eigenvalue curves are split; the surface cur-
rent of CM is strongly deformed; the current distribution can
transition from one situation to another, which is why the CRA
should be corrected. Three significant challenges must be tackled
to effectively eliminate the CRA: recognizing all CRA mode pairs,
determining their CRA frequencies, and correcting eigenvalues
and eigenvectors.

High computational time
The TCM is a frequency-domain modal analysis method. For a
wideband CM analysis, the eigenvalues and the eigenvectors are
solved and mapped iteratively across numerous sampling frequen-
cies. The computational complexity associated with the ECBA at
each sampling frequency is of O (K × N2) [16], where N is the
number of basis functions in the MoM, and K is the number
of eigenvectors. Therefore, with a fixed tracking algorithm, an

increase in the number of sampling frequencies results in higher
computational time, which is particularly evident in the wideband
CM tracking.

Proposed tracking method

This paper introduces an optimized tracking method to address
the problems outlined in Section “Theoretical foundations”. The
procedure of the proposed method consists of multiple stages,
namely, the preprocessing EF stage, the CTS, and the postprocess-
ing stage, with a flowchart provided in Fig. 2. The roles of these
three stages can be briefly outlined as (1) EF stage: remove insignif-
icant eigenvalues and their corresponding eigenvectors; (2) CTS:
obtain preliminary tracking results; and (3) postprocessing stage:
eliminate CRA errors. Detailed explanations of each section are
provided in the subsequent subsections.

Preprocessing EF stage

After presetting the tracking range (from f start to f end) and the
initial frequency step (STP), the proposed procedure starts by solv-
ing the GEE at two consecutive frequency samples (fi and f i+1).
Subsequently, their corresponding eigenvalues 𝜆1∼max and eigen-
vectors J1∼max can be obtained. The acquired data then proceed to
the preprocessing EF stage. In this stage, a filter is introduced to
remove insignificant CMs by constraining the range of |𝜆n| to be
less than 100. Consequently, the number of mapped eigenvectors
can be greatly decreased. Similar strategies and the threshold of 100
have been commonly adopted in other literature [8, 9], aiming to
alleviate the computational complexity.

CTS

After the EF, the data are transmitted to the CTS, which is a modi-
fied version of the classical ECBAdiscussed in Section “Theoretical
foundations”. Compared with the classical ECBA, ourmodification
focuses on adjusting the execution condition for the AFA. Due to
the utilization of the EF, the number of eigenvectors in the CTS
may not be equal at fi and f i+1, i.e., K ( fi) ≠ K ( fi+1), and their
matrix Cmay not be a square matrix. When this happens, accord-
ing to the classical ECBA, a new frequency sample should be added
between fi and f i+1 to avoid the presence of unmapped eigenvec-
tors at either fi or f i+1. However, such processing is inappropriate
and time-consuming since the issue of different K persists in the
tracking range no matter how many samples are added.

We illustrate our adaptive strategy for K ( fi) < K ( fi+1) and
K ( fi) > K ( fi+1) through two special cases (Case I and Case II)
depicted in Fig. 3(a) and (b), respectively. In Case I, no unmapped
eigenvectors exist at fi; the remaining J4 ( fi+1) indicates the emer-
gence of a new CM index Ma at f i+1. Conversely, in Case II, all
the eigenvectors at f i+1 are mapped; the remaining J4 ( fi) indicates
the disappearance of the previous CM indexMb. In these cases, we
only need to consider the appropriateness of the start frequency
f i+1 for Ma and the end frequency fi for Mb. For a complete CM
trace, its |𝜆n| should feature a large value at the start and end fre-
quencies.Therefore, if |𝜆4 ( fi+1)| of Ma or |𝜆4 ( fi)| of Mb is smaller
than a certain threshold, then the AFA is executed to ensure the
integrity of tracking results. After numerous experiments, we set
the threshold to 10 in this paper.

(b) Case II: K ( fi) > K ( fi+1).
Based on the above analysis, we propose an NEC for the AFA,

involving three comparison statements as
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Figure 2. Flowchart of the proposed CM tracking procedure.

Figure 3. C matrixes of two special cases. (a) Case I: K ( fi) < K ( fi+1).

(1) If K ( fi) = K ( fi+1), the AFA executes when unmapped
eigenvectors exist;

(2) IfK ( fi) < K ( fi+1), the AFA executes when unmapped eigen-
vectors exist at fi, and |𝜆n| of emerging CMs is smaller than
10;

(3) IfK ( fi) > K ( fi+1), the AFA executes when unmapped eigen-
vectors exist at fi+1, and |𝜆n| of disappearing CMs is smaller
than 10;

Among them, the first statement is identical to the one in the
classical EBCA. The second and third statements enable us to
obtain complete traces of emerging and disappearing CMs while
also reducing the probability of executing the AFA when K ( fi) ≠
K ( fi+1). This approach is time-saving and enhances the overall
efficiency.

In the proposed AFA, the interval between fi and fi+1 (∆f ) will
be repeatedly divided into subintervals, and the process will stop
when the NEC is not satisfied, or ∆f is smaller than the preset
threshold ∆f min. The CTS commences at f start and concludes when
the mapping at f end is complete.

Postprocessing

Finally, the preliminary tracking data acquired through the CTS
flows to the postprocessing stage, designed to tackle the CRA
issue. The fundamental concept of this stage is to integrate the

coupled-mode theory into the TCM. The theory and the imple-
mentation of the CRA elimination are presented in the following
subsections.

Theory of CRA elimination
The theory employed for CRA elimination is grounded in coupled-
mode theory, as documented in paper [21]. If M1 (with J1 and
𝜆1) and M2 (with J2 and 𝜆2) are a pair of CRA modes, their CRA
issues at any frequency f can be resolved by replacing their eigen-
values and eigenvectors with the qualities in an auxiliary system,
defined as

X ( f ) Ja ( f ) = 𝜆a ( f )R ( f ) Ja ( f ) + HJb ( f ) (13)

X ( f ) Jb ( f ) = 𝜆b ( f )R ( f ) Jb ( f ) + HJa ( f ) (14)

where Ja and Jb are two auxiliary vectors with orthonormality, and
H is a coupling matrix. Notably, the values of 𝜆a and 𝜆b are set to
be equal at fc for the normal intersection. Equations (13) and (14)
establish a new system that effectively integrates the coupled-mode
theorywith the TCM. Subsequently, the eigenvectors ofM1 andM2
are decomposed into the linear combination of Ja and Jb, guided by
their orthonormality, expressed as

J1 ( f ) = cos𝛼 ( f ) Ja ( f ) + sin𝛼 ( f ) Jb ( f ) (15)

J2 ( f ) = − sin𝛼 ( f ) Ja ( f ) + cos𝛼 ( f ) Jb ( f ) (16)
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Consequently, a relationship between 𝜆1,2 and 𝜆a,b is obtained
as

𝜆1,2 ( f ) =
𝜆a ( f ) + 𝜆b ( f )

2 ± √(
𝜆a ( f ) − 𝜆b ( f )

2 )
2

+ (G
2 )

2

(17)

Moreover, the expression of the coefficient 𝛼 is derived as

𝛼 ( f ) = tan−1 2 (𝜆1 ( f ) − 𝜆a ( f ))
G (18)

The expressions of eigenvalues and 𝛼 in paper [21] are slightly
different from the proposed ones, stemming from variations in the
definition of decomposition coefficients and G.

By inverting equation (17) and ensuring the consistency of
eigenvalue traces, we derive the expressions of independent 𝜆a and
𝜆b as

𝜆a ( f ) =

⎧{{
⎨{{⎩

𝜆1( f )+𝜆2( f )
2

+ √( 𝜆1( f )−𝜆2( f )
2

)
2

− (G

2
)
2

f < fc

𝜆1( f )+𝜆2( f )
2

− √( 𝜆1( f )−𝜆2( f )
2

)
2

− (G

2
)
2

f > fc
(19)

𝜆b ( f ) =

⎧{{
⎨{{⎩

𝜆1( f )+𝜆2( f )
2

− √( 𝜆1( f )−𝜆2( f )
2

)
2

− (G

2
)
2

f < fc

𝜆1( f )+𝜆2( f )
2

+ √( 𝜆1( f )−𝜆2( f )
2

)
2

− (G

2
)
2

f > fc
(20)

In addition, Ja and Jb can be calculated by inverting
equations (15) and (16) as

Ja ( f ) = cos𝛼 ( f ) J1 ( f ) − sin𝛼 ( f ) J2 ( f ) (21)

Jb ( f ) = sin𝛼 ( f ) J1 ( f ) + cos𝛼 ( f ) J2 ( f ) (22)

For M1 and M2, the CRA can be eliminated by replacing the
quantities 𝜆1, 𝜆2, J1, and J2 with their respective auxiliary counter-
parts 𝜆a, 𝜆b, Ja, and Jb.

Implementation of CRA elimination
In this subsection, we discuss the detailed information of the post-
processing stage.This stage is based on theCRA elimination theory
mentioned in the previous subsection and comprises three key
steps.

The first step is to identify all CRAmode pairs within the track-
ing range.The central challenge in this step is to recognize the CRA
phenomenon effectively. It is observed that a CRA is likely to occur
between a pair of CMs when their mode behaviors satisfy the fol-
lowing criteria at three consecutive frequency samples (fi−1, fi, and
f i+1) as

⎧{
⎨{⎩

Δ𝜆mn( fi−1)
Δ𝜆mn( fi)

> 1
Δ𝜆mn( fi+1)
Δ𝜆mn( fi)

> 1
(23)

|𝜌 (Jm ( fi) , Jn ( fi))| > 0.3 (24)

Thefirst criterion involves evaluating∆𝜆mn between twomodes.
As depicted in Fig. 1, when fc is within the range from fi−1 to fi+1,

Figure 4. Geometry and mesh views of the demonstration examples.
(a) Rectangular conductor plate. (b) Fractal structure.

Figure 5. Tracking results of the conductor plate without the postprocessing. (a) Entire-band view in CAs. (b) Zoomed-in view in eigenvalues.
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∆𝜆mn exhibits a fixed variation pattern at fi−1, fi, and f i+1, i.e., small
at fi and large at fi−1 and f i+1. In addition, the signs of ∆𝜆mn at fi−1, fi,
and f i+1 are identical.The above characteristics of ∆𝜆mn can be cap-
tured in equation (23). However, mode pairs without CRA issues
may also exhibit these features of ∆𝜆mn. To address this potential
issue, we propose an additional criterion in equation (24) to deter-
mine whether the recognized CRA mode pair has a nonnegligible
correlation. Consequently, all CRAmode pairs can be identified by
iteratively estimating mode behaviors for any two modes across all
sampling frequencies. Moreover, the frequency range in which the
CRA occurs for each mode pair can also be available.

The second step involves determining the CRA frequency fc
and, consequently, the value of G for a CRA mode pair (Pair i).
With knowledge of the frequency range of fc, adding more fre-
quency samples in that range is conventional to find a frequency

closer to fc [14]. However, since these newly added samples are
unsorted, a significant amount of tracking time will be spent by
using this strategy. This paper employs CSI to predict fc due to its
ability to generate smooth curveswith a consecutive secondderiva-
tive [22]. For instance, if we have determined Modes m and n in
Fig. 1 as a pair of CRAmodes with fi−1 < fc < fi+1 through the first
step, then CSI is performed to obtain the piecewise trace functions
for the two CMs in the intervals of fi−1 < f < fi and fi < f < fi+1.
Specifically, forMode n, its piecewise trace functions are calculated
using the eigenvalue data of the three knots fi−1, fi, and f i+1, and two
slope values,m1 andm2, at fi−1 and f i+1 are also considered as

m1 =
𝜆n ( fi−1) − 𝜆n ( fi−2)

fi−1 − fi−2
(25)

Figure 6. Tracking results of the conductor plate with the postprocessing. (a) Entire-band view in CAs. (b) Zoomed-in view in eigenvalues.

Figure 7. Normalized modal current distributions of M1 and M9. (a) With the postprocessing. (b) Without the postprocessing.
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m2 =
𝜆n ( fi+2) − 𝜆n ( fi+1)

fi+2 − fi+1
(26)

where f i−2 and fi+2 are the previous and the subsequent frequen-
cies of fi−1 and f i+1, respectively. Consequently, the piecewise
trace functions of the two CRA modes can be determined,
and a frequency with the smallest |∆𝜆mn| can be found easily.

The obtained frequency is the predicted fc, and its corresponding
|∆𝜆mn| is considered as G. This strategy is time-saving because no
extra unsorted frequency samples are introduced. The prediction
error is also acceptable due to the consistency of eigenvalue traces.

According to the theory of CRA elimination, the CRA issue can
be effectively addressed by replacing the original CM quantities

Figure 8. Tracking results of the fractal structure without the postprocessing. (a) Entire-band view in CAs. (b) Zoomed-in view in eigenvalues.

Table 2. Detailed information for Pairs 1–3

Mode pairs Range f c Predicted fc G Replaced range Replaced number/proportion

Pair 1 2.58−2.62 GHz 2.603 GHz 1.335 2.42−2.8 GHz 22/33.3%

Pair 2 2.42−2.5 GHz 2.443 GHz 1.104 2.34−2.64 GHz 13/19.6%

Pair 3 2.6−2.64 GHz 2.610 GHz 1.570 2.46−2.8 GHz 20/30.3%

Figure 9. Tracking results of the fractal structure with the postprocessing. (a) Entire-band view in CAs. (b) Zoomed-in view in eigenvalues.
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Figure 10. Normalized modal current distributions of the three CRA mode
pairs. (a) With the postprocessing. (b) Without the postprocessing.

Table 3. Computational time of four different tracking methods (unit: s)

i ii iii iv

Conductor plate 6634.72 179.63 42.52 43.76

Fractal structure 7327.34 92.92 61.79 64.78

i: Classical ECBA [11], ii: Classical ECBA + EF [9], iii: Classical ECBA + EF + NEC, iv: Classical
ECBA + EF + NEC + Postprocessing (Proposed).

with their corresponding auxiliary counterparts. Therefore, in the
third step, auxiliary quantities 𝜆a, 𝜆b, Ja, and Jb of Pair i are cal-
culated at a certain frequency fi by equations (19–22) at first.
Then, they replace the original eigenvalues and eigenvectors at fi.
While other studies perform the replacement across all frequen-
cies in the tracking range [14, 21], in this paper, the replacement
is made only at a few frequencies. The decision is supported by the
observation that as the investigated frequency moves away from
fc, CMs in Pair i exhibit a weakly coupled effect, causing their

eigenvectors and eigenvalues to resemble auxiliary counterparts.
Therefore, performing the replacement at all frequencies is deemed
unnecessary in most cases, as it would consume more computa-
tional time. In this paper, the replacement starts at fc and proceeds
to the higher and lower frequencies. The replacement ends when
the original eigenvectors, such as J1 and J2, exhibit a very high cor-
relation with their auxiliary vectors, i.e., |𝜌 (J1 ( fi) , Ja ( fi))| > 0.9
or |𝜌 (J2 ( fi) , Jb ( fi))| > 0.9 (Criterion A). Finally, the entire pro-
cedure of the proposed CM tracking method is complete when the
replacement of the last CRA mode pair is done.

Numerical example

In this section, the applicability of the proposed method is vali-
dated by tracking CMs of two classical structures. Both structures
share common configurations, with ∆f min set to 10 MHz and the
CSI accuracy set to 1 MHz. All numerical simulations are per-
formed using MATLAB R2022b, employing double precision on

https://doi.org/10.1017/S1759078724000229 Published online by Cambridge University Press
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a desktop computer equipped with Intel Core i5-10600KF proces-
sor and 32 GB of RAM within a Windows 10 Professional 64-bit
environment.

Example 1: Rectangular conductor plate

As shown in Fig. 4(a), the first example is a rectangular conduc-
tor plate with dimensions of 60 × 120 mm2, which has been widely
used in other studies [9, 13]. The plate was discretized with 456
triangular elements and subjected to the MoM analysis utilizing
654 Rao–Wilton–Glisson (RWG) basis functions from 1 to 5 GHz
with STP of 160 MHz. After applying the EF, there were 50 pairs of
consecutive frequency samples with unequal K, and none of them
needed to execute theAFAby using theNEC.Consequently, 42 fre-
quency samples were utilized in this tracking example. Following
the CTS, 24 valid CMs (M1–M24) were acquired, and their CA
result without the postprocessing is depicted in Fig. 5(a).The result
presents no mode sweeping, and all CMs seem to be tracked
correctly. However, using the first step of the postprocessing, an
unnoticeable CRA error betweenM1 andM9 in the range from 4.2
to 4.36 GHz was found, showing more obviously in Fig. 5(b).

Then, forM1 andM9, CSIwas performedwith the eigenvalues at
4.2, 4.28, and 4.36GHz, alongwith corresponding endpoint slopes.
Consequently, fc forM1 andM9was determined as 4.314GHz, with
aG value of 0.027.The replacement of the original eigenvalues and
eigenvectors ofM1 andM9 with corresponding auxiliary quantities
started at 4.314 GHz and stopped at 3.88 and 4.68 GHz, accounting
for only 24.5% of the total frequency samples. The final track-
ing CA results are presented in Fig. 6(a), revealing a normal trace
intersection ofM1 andM9, as observed in Fig. 6(b). Additionally, as
shown in Fig. 7(a), there is no erroneous modal current exchange
at fc for M1 and M9 after the postprocessing, and their current dis-
tribution at fc is undeformed. For comparison, the original modal
current distributions of M1 and M9 are provided in Fig. 7(b).

Example 2: Fractal structure

As shown in Fig. 4(b), the second example features a fractal
structure with dimensions identical to those in papers [8, 12].

Compared with the plate, the fractal structure presents a more
challenging tracking scenario due to an increased number of CRA.
TheMoM analysis for the fractal structure utilized 700 RWG basis
functions over the range from 0.7 to 2.8 GHz with STP of 40 MHz.
Following the application of the proposed EF, there were 17 pairs
of consecutive frequency samples with unequal K. Among these,
only two pairs needed to execute the AFAusing the proposedNEC.
Consequently, 66 frequency samples were utilized in this tracking
example. After the CTS, 11 valid CMs (M1–M11) were obtained,
and their CA result without the postprocessing is depicted in
Fig. 8(a). Utilizing the first step of the postprocessing, three CRA
mode pairs were identified, i.e., Pair 1 (M4 andM9), Pair 2 (M6 and
M7), and Pair 3 (M5 and M10), as highlighted in Fig. 8(b).

Like the first example, CRA issues within Pairs 1–3 were
resolved by predicting their CRA frequencies fc using CSI, calcu-
lating their corresponding auxiliary quantities, and replacing their
original eigenvalues and eigenvectors. The predicted and replace-
ment information for Pairs 1–3 is detailed in Table 2. The final
tracking CA results are presented in Fig. 9(a). As illustrated in
Fig. 9(b), CMs in Pairs 1–3 exhibit correct intersections after the
postprocessing, highlighting the capability of the proposedmethod
to correct multiple CRA mode pairs simultaneously. Moreover,
the original incorrect modal current distributions of CMs in Pairs
1–3, as shown in Fig. 10(a), were rectified to a consistent and
undeformed state after the postprocessing, as demonstrated in
Fig. 10(b).

In addition to its enhanced accuracy, the proposedmethod pro-
vides benefits in terms of reduced tracking time and decreased
sensitivity to the initial frequency step size.The computational time
for several different tracking methods applied to the two exam-
ples is recorded in Table 3. Notably, the time for solving GEE
was considered. A comparison of methods i–iii reveals a signifi-
cant reduction in computational time by incorporating the EF, and
an additional reduction is observed with the implementation of
the NEC. Moreover, the time difference between methods iii and
iv is less than 4.83%, indicating that the extra time cost by the
postprocessing is acceptable.

To assess the sensitivity to the frequency step, the plate was
tested with STP ranging from 10 to 320 MHz, and the fractal

Figure 11. Tracking CA results with different STP. (a)
Conductor plate. (b) Fractal structure.
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structure was tested with STP ranging from 10 to 80 MHz. Their
corresponding tracking CA results, along with information on the
number of frequency samples, are depicted in Fig. 11. The pro-
posed method here exhibits lower sensitivity to STP variations. As
STP increases exponentially, there is no proportional decrease in
the number of frequency samples. This behavior can be attributed
to the proposed AFA, which ensures that the frequency sam-
ples crucial for tracking accuracy are not omitted. Therefore, a
larger STP only results in less smooth tracking results rather than
introducing errors.

Conclusion

In this paper, an enhanced ECBA-based trackingmethod for wide-
band CMs is developed. Our proposed method comprises distinct
stages where the CTS is rooted in a classical ECBA. The efficiency
and accuracy of the CTS are significantly improved through the
incorporation of a preprocessing EF stage and a postprocessing
stage. Additionally, we proposed an NEC for the AFA in the CTS
to better accommodate the introduction of the EF. The proposed
EF and NEC collectively contribute to a substantial reduction in
the tracking time, while the proposed postprocessing stage identi-
fies and eliminates all CRAmode pairs rapidly. For demonstration,
this method has been applied to investigate a conductor plate and
a fractal structure, and satisfying tracking performance has been
obtained.

Compared with the existing ECBA-based approaches, our pro-
posed tracking method offers several advantages: (1) it not only
eliminates CRA eigenvalue traces but also corrects corresponding
deformed eigenvectors; (2) it requires fewer frequency samples and
less computational time; and (3) it is less sensitive to the initial fre-
quency step. As a result, the proposed method is a good candidate
for CM tracking, especially in wideband applications.
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