A CHAIN RULE FOR DIFFERENTIATION WITH APPLICATIONS TO MULTIVARIATE HERMITE POLYNOMIALS

C.S. Withers

Abstract

A chain rule is given for differentiating a multivariate function of a multivariate function. In the univariate case this chain rule reduces to Faa de Bruno's formula.

Using this, a simple procedure is given to obtain the r th order multivariate Hermite polynomial from the r th order univariate Hermite polynomial.

1. The chain rule

The following formula for the derivatives of a function of a function is easily verified.

For $f: R^{c} \rightarrow R^{d}, g: R^{d} \rightarrow R^{e}, \pi=\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ a set of r integers in $\{1,2, \ldots, c\}$ and x in $R^{\mathcal{c}}$, set $y=f(x)$, and $(f)_{\pi}(x)=\partial^{r} f(x) / \partial x_{\alpha_{1}} \ldots \partial x_{\alpha_{r}} ;$ then $(g \circ f)(x)=g(f(x))$ has r th order derivatives

$$
(g \circ f)_{\pi}(x)=\sum_{k=1}^{r}(g)_{i_{1}} \ldots i_{k}(y) \sum_{\pi}\left(f_{i_{1}}\right)_{\pi_{1}}(x) \ldots\left(f_{i_{k}}\right)_{\pi_{k}}(x)
$$

where sumnation as each i_{1}, \ldots, i_{k} ranges over 1 to d is implicit,

Received 3 April 1984.

[^0]and \sum_{π} sums over all partitions $\left(\pi_{1}, \ldots, \pi_{k}\right)$ of π.
If the number of sets π_{1}, \ldots, π_{k} of length i is n_{i},
$1 \leq i \leq r$, then $n_{1}+2 n_{2}+\ldots+r n_{r}=r, n_{1}+\ldots+n_{r}=k$, and the number of such partitions is $m(n)=n!/ \prod_{i=1}^{n}\left(i!^{n_{i_{n}}}\right)$. Hence we may write $\sum_{\pi}=\sum_{n} \sum^{m(n)}$, where $\sum^{m(n)}$ suns over all $m(n)$ such partitions of π and \sum_{n} sums over all such n.

EXAMPLE. If $r=4$, the possibilities are

$$
\begin{array}{cccccc}
n_{1} & n_{2} & n_{3} & n_{4} & k & m(n) \\
0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 2 & 4 \\
0 & 2 & 0 & 0 & 2 & 3 \\
2 & 1 & 0 & 0 & 3 & 6 \\
4 & 0 & 0 & 0 & 4 & 1
\end{array}
$$

hence

$$
\begin{aligned}
(g \circ f)_{\alpha_{1} \ldots \alpha_{4}}(x)= & (g)_{i_{1}}\left(f_{i_{1}}\right)_{\alpha_{1}} \ldots \alpha_{4} \\
& +(g)_{i_{1} i_{2}}\left\{\sum^{4}\left(f_{i_{1}}\right)_{\alpha_{1}}\left(f_{i_{2}}\right)_{\alpha_{2} \alpha_{3} \alpha_{4}}+\sum^{3}\left(f_{i_{1}}\right)_{\alpha_{1} \alpha_{2}}\left(f_{i_{2}}\right)_{\alpha_{3} \alpha_{4}}\right\} \\
& +(g)_{i_{1} i_{2} i_{3}} \sum^{6}\left(f_{i_{1}}\right)_{\alpha_{1}}\left(f_{i_{2}}\right)_{\alpha_{2}}\left(f_{i_{3}}\right)_{\alpha_{3} \alpha_{4}} \\
& +(g)_{i_{1} i_{2} i_{3} i_{4}}\left(f_{i_{1}}\right)_{\alpha_{1}}\left(f_{i_{2}}\right)_{\alpha_{2}}\left(f_{i_{3}}\right)_{\alpha_{3}}\left(f_{i_{4}}\right)_{\alpha_{4}}
\end{aligned}
$$

where $(g)_{\pi}=(g)_{\pi}(y)$ and $\left(f_{i}\right)_{\pi}=\left(f_{i}\right)_{\pi}(x)$.
If $c=d=1$ this becomes Faa de Bruno's formula

$$
(g \circ f)^{(r)}(x)=\sum_{k=1}^{r} g^{(k)}(y) \sum_{n} m(n) f^{(1)}(x)^{n_{1}} \ldots f^{(r)}(x)^{n_{r}}
$$

where $f^{(r)}(x)=(d / d x)^{r} f(x)$; see Goursat [2, p. 34].

2. The multivariate Hermite polynomials

The rth univariate Hermite polynomial is defined as

$$
H e_{r}(x)=\exp \left(x^{2} / 2\right)(-d / d x)^{r} \exp \left(-x^{2} / 2\right), \quad r \geq 0 . x \text { in } R .
$$

The first 10 are given in Kendall and Stuart [3, p. 155]. For example,

$$
H_{5}(x)=x^{5}-10 x^{3}+15 x
$$

Let $A=\left(A_{i, j}\right)$ be any symmetric $c \times c$ matrix, x any point in
\mathcal{R}^{f}, and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{p}\right)$, where for $l \leq i \leq r, \alpha_{i}$ is any number in $\{1,2, \ldots, c\}$. Then the general r th order Hermite polynomial is

$$
H e_{\alpha}(x, A)=(-)^{r} \exp (Q / 2)\left(\partial^{r} / \partial x_{\alpha_{1}} \quad \ldots x_{\alpha_{r}}\right) \exp (-Q / 2), \text { where } Q=x^{\prime} A x
$$

These polynomials are the building block for multivariate Edgeworth expansions.
(For some results on these see Erdelyi [1, p. 285]; his notation is different.) An expression for $H e_{\alpha}(x, A)$ follows immediately from that of $H e_{r}(x)$. This is best illustrated by an example. From $H e_{5}(x)$ above it follows that, for $r=5$,

$$
H e_{\alpha}(x, A)=W_{\alpha_{1}} \cdots W_{\alpha_{5}}-\sum^{10} w_{\alpha_{1}} W_{\alpha_{2}} W_{\alpha_{3}} A_{\alpha_{4} \alpha_{5}}+\sum^{15} W_{\alpha_{1}} A_{\alpha_{2} \alpha_{3}} A_{\alpha_{4} \alpha_{5}}
$$

where

$$
W_{i}=\sum_{j=1}^{r} A_{i j} x_{j}
$$

and

$$
\sum^{m} w_{a_{1}} \cdots W_{a_{\ell}} A_{b_{1} b_{2}} \cdots A_{b_{2 k-1}} b_{2 k}=\sum^{m} I_{\eta, 2 k}(a, b)
$$

say, denotes the sum over all $m=(2+2 k)!/\left(l!2^{k} k!\right)$ partitions a, b of α of length Z and $2 k$ respectively, allowing for the symmetry of A. For example

$$
\sum^{3} W_{a} A_{b c}=W_{a} A_{b c}+W_{b} A_{c a}+W_{c} A_{a b}
$$

The general formula

$$
H e_{\alpha}(x, A)=\sum_{\imath+2 k=r}(-)^{k} \sum^{m} I_{2,2 k}(a, b)
$$

follows from $\S 1$.

References

[1] A. Erdelyi, Higher transcendental functions, volume 2 (McGraw-Hill, New York, 1953).
[2] E. Goursat, A course in mathematical analysis, volume 1 (Dover, New York, 1959).
[3] M.G. Kendall and A. Stuart, The advanced theory of statistics, volume 1 , second edition (Griffin, London, 1963).

Applied Mathematics Division, DSIR,
Box 1335,
Wellington,
New Zealand.

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 $\$ \mathrm{~A} 2.00+0.00$.

