A CHAIN RULE FOR DIFFERENTIATION WITH APPLICATIONS TO MULTIVARIATE HERMITE POLYNOMIALS

C.S. WITHERS

A chain rule is given for differentiating a multivariate function of a multivariate function. In the univariate case this chain rule reduces to Faa de Bruno's formula.

Using this, a simple procedure is given to obtain the rth order multivariate Hermite polynomial from the rth order univariate Hermite polynomial.

1. The chain rule

The following formula for the derivatives of a function of a function is easily verified.

For $f: \mathbb{R}^{\mathcal{C}} \to \mathbb{R}^{\mathcal{d}}$, $g: \mathbb{R}^{\mathcal{d}} \to \mathbb{R}^{\mathcal{C}}$, $\pi = (\alpha_1, \ldots, \alpha_m)$ a set of r integers in $\{1, 2, \ldots, c\}$ and x in R^{c} , set y = f(x), and $(f)_{\pi}(x) = \partial^{2} f(x) / \partial x_{\alpha_{1}} \dots \partial x_{\alpha_{n}};$ then $(g \circ f)(x) = g(f(x))$ has rth order derivatives

$$(g \circ f)_{\pi}(x) = \sum_{k=1}^{r} (g)_{i_{1}\cdots i_{k}}(y) \sum_{\pi} (f_{i_{1}})_{\pi_{1}}(x) \cdots (f_{i_{k}})_{\pi_{k}}(x)$$

where summation as each i_1, \ldots, i_k ranges over 1 to d is implicit,

Received 3 April 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 \$A2.00 + 0.00. 247

and \sum_{π} sums over all partitions (π_1, \ldots, π_k) of π .

If the number of sets π_1, \ldots, π_k of length i is n_i , $1 \le i \le r$, then $n_1 + 2n_2 + \ldots + rn_n = r$, $n_1 + \ldots + n_n = k$, and the number of such partitions is $m(n) = r! / \prod_{i=1}^{r} \binom{n_i}{i! n_i!}$. Hence we may

write $\sum_{n=1}^{\infty} = \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} m(n)$, where $\sum_{n=1}^{\infty} m(n)$ such partitions of π

and \sum_{n} sums over all such n.

EXAMPLE. If r = 4, the possibilities are

n ₁	n_2	ⁿ 3	n ₄	k	m(n)
0	0	0	1	1	l
l	0	1	0	2	4
0	2	0	0	2	3
2	l	0	0	3	6
4	0	0	0	4	l

;

hence

$$(g \circ f)_{\alpha_{1} \dots \alpha_{4}}(x) = (g)_{i_{1}}(f_{i_{1}})_{\alpha_{1}} \dots \alpha_{4}$$

$$+ (g)_{i_{1}i_{2}} \left\{ \sum_{i_{1}}^{4} (f_{i_{1}})_{\alpha_{1}}(f_{i_{2}})_{\alpha_{2}\alpha_{3}\alpha_{4}} + \sum_{i_{1}}^{3} (f_{i_{1}})_{\alpha_{1}\alpha_{2}}(f_{i_{2}})_{\alpha_{3}\alpha_{4}} \right\}$$

$$+ (g)_{i_{1}i_{2}i_{3}} \sum_{i_{1}}^{6} (f_{i_{1}})_{\alpha_{1}}(f_{i_{2}})_{\alpha_{2}}(f_{i_{3}})_{\alpha_{3}}\alpha_{4}$$

$$+ (g)_{i_{1}i_{2}i_{3}i_{4}}(f_{i_{1}})_{\alpha_{1}}(f_{i_{2}})_{\alpha_{2}}(f_{i_{3}})_{\alpha_{3}}(f_{i_{4}})_{\alpha_{4}} ,$$

where $(g)_{\pi} = (g)_{\pi}(y)$ and $(f_i)_{\pi} = (f_i)_{\pi}(x)$.

If c = d = 1 this becomes Faa de Bruno's formula

$$(g \circ f)^{(r)}(x) = \sum_{k=1}^{r} g^{(k)}(y) \sum_{n} m(n) f^{(1)}(x)^{n_{1}} \cdots f^{(r)}(x)^{n_{r}},$$

2. The multivariate Hermite polynomials

The rth univariate Hermite polynomial is defined as

$$He_{r}(x) = \exp(x^{2}/2)(-d/dx)^{r}\exp(-x^{2}/2)$$
, $r \ge 0$, x in R .

The first 10 are given in Kendall and Stuart [3, p. 155]. For example,

$$He_5(x) = x^5 - 10x^3 + 15x$$
.

Let $A = (A_{ij})$ be any symmetric $c \times c$ matrix, x any point in R^{c} , and $\alpha = (\alpha_{1}, \ldots, \alpha_{r})$, where for $1 \leq i \leq r$, α_{i} is any number in $\{1, 2, \ldots, c\}$. Then the general rth order Hermite polynomial is

$$He_{\alpha}(x, A) = (-)^{r} \exp(Q/2) \left(\frac{\partial^{r}}{\partial x_{\alpha}} \dots \frac{\partial x_{\alpha}}{\partial r} \right) \exp(-Q/2)$$
, where $Q = x'Ax$.

These polynomials are the building block for multivariate Edgeworth expansions.

(For some results on these see Erdelyi [1, p. 285]; his notation is different.) An expression for $He_{\alpha}(x, A)$ follows immediately from that of $He_{r}(x)$. This is best illustrated by an example. From $He_{5}(x)$ above it follows that, for r = 5,

$$He_{\alpha}(x, A) = W_{\alpha_{1}} \cdots W_{\alpha_{5}} - \sum_{\alpha_{1}}^{10} W_{\alpha_{1}} W_{\alpha_{2}} W_{\alpha_{3}} A_{\alpha_{4}\alpha_{5}} + \sum_{\alpha_{1}}^{15} W_{\alpha_{1}} A_{\alpha_{2}} \alpha_{3}^{A} \alpha_{4} \alpha_{5} ,$$

where

$$W_i = \sum_{j=1}^r A_{ij} x_j$$

and

$$\sum_{l=1}^{m} W_{a_{l}} \cdots W_{a_{l}} A_{b_{1}b_{2}} \cdots A_{b_{2k-1}b_{2k}} = \sum_{l=1}^{m} I_{l,2k}(a, b)$$

say, denotes the sum over all $m = (l+2k)!/(l!2^kk!)$ partitions a, b of α of length l and 2k respectively, allowing for the symmetry of A. For example

$$\sum_{a}^{3} W_{a}^{A}_{bc} = W_{a}^{A}_{bc} + W_{b}^{A}_{ca} + W_{c}^{A}_{ab}$$

The general formula

$$He_{\alpha}(x, A) = \sum_{l+2k=r} (-)^{k} \sum_{l=l,2k}^{m} I_{l,2k}(a, b)$$

follows from §1.

References

- [1] A. Erdelyi, Higher transcendental functions, volume 2 (McGraw-Hill, New York, 1953).
- [2] E. Goursat, A course in mathematical analysis, volume 1 (Dover, New York, 1959).
- [3] M.G. Kendall and A. Stuart, The advanced theory of statistics, volume 1, second edition (Griffin, London, 1963).

Applied Mathematics Division, DSIR, Box 1335, Wellington, New Zealand.

250