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The large N limit of two-dimensional models

7.1 Introduction

The number of approximation techniques in quantum field theory is very limited.
Perturbation expansion in small interaction coupling, like αem = 1

137 of QED, is
obviously the most important one. Other methods include dimensional expan-
sion, high temperature expansion and large radius expansion. Quite surprisingly,
one of the most useful approximation techniques is expansion in the number of
degrees of freedom. A priori one would tend to think that the larger the number
of degrees of freedom, the more complex the system. However, it turns out that
theories with infinitely many degrees of freedom are much easier to solve than
those with a finite number of degrees of freedom. Once the system with N →∞
is known, a systematic expansion in 1

N provides an approximation procedure for
computing quantities that describe systems of finite N .

Large N methods have been applied in a very wide range of physical sys-
tems. Starting from non-critical phenomena in spin systems like the Heisenberg
ferromagnet (discussed in Section 5.14), then SU(N) QCD theories in various
dimensions, and later matrix models associated with either string models or
two-dimensional models.

The large N approximation in field theory or correspondingly the planar
expansion of Feynman diagrams was introduced by ’t Hooft in his seminal paper
[122].

In this book we will focus on four arenas where large N approximations are
being used:

(i) Two-dimensional quantum field theory models, which include the Gross–
Neveu model and the CPN models, will be addressed in this chapter.

(ii) Quantum chromodynamics with large N SU(N) gauge theory in two dimen-
sions. In Chapter 10 of Part 2 the solution of two-dimensional QCD, follow-
ing ’t Hooft [124], will be described,1 together with a certain generalization
of it.

(iii) The approach to four-dimensional QCD based on the 1
N expansion.

(iv) Baryons in large N QCD.

1 Known as the ’t Hooft model.
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166 The large N limit of two-dimensional models

The last two topics will be described in the third part of the book in Chapters
19 and 20.

In Nature the number of colors is three, and thus one may wonder whether
it makes sense to in expand a not-so-small parameter 1/3. Even though there
is no general proof that this expansion is indeed reliable, a vast literature on
the subject brings out a large amount of evidence that indeed this is the case.
It turns out that for certain quantities the 1

N term vanishes and the correction
starts as 1

N 2 , and hence puts the approximation on a more solid base.
As an example of the accuracy of the large N limit consider the Stirling formula

for N , where the leading term is
√

2πN(N/e)N for large N. But the correction
is actually 1

12N as compared to 1, making it only an 8 percent correction even
for N = 1.

In the next sections we describe the O(N) model, the Gross–Neveu model and
the CPN models.

There are several review articles on large N expansions, for instance [46], [160],
[165]. In this chapter we make use of [160].

7.2 The Gross–Neveu model

The Gross–Neveu (GN) model, proposed in [117], describes a set of N Dirac
fermions interacting via a four-fermi interaction. It turns out that one can solve
the model, and prove that it is asymptotically free and admits a dynamical
symmetry breaking, using 1/N expansion. The Lagrangian of the system can be
written in the form,

LGN = iψ̄a 	∂ψa +
λ2

0

2
(ψ̄aψa)2 , (7.1)

where a = 1...N and λ0 is a bare coupling of dimension zero. The correspond-
ing action is invariant under a continuous SU(N) global transformation and a
discrete chiral transformation,

ψa → ga
b ψb g∈SU(N), ψa → γ5ψ

a ψ̄a → γ5 ψ̄
a . (7.2)

The discrete chiral symmetry forbids a mass term. In fact this is the most general
action invariant under these symmetry transformations, with terms of dimension
two or less, and hence it is a renormalizable action.

Let us now check whether in this formulation of the Lagrangian, where λ0 is
fixed, one can make sense of a large N limit. Consider the scattering process of
two fermions with flavor index a that turn into a pair of fermions with a different
flavor index b. The leading Feynman diagrams that contribute to this process
are given in Fig. 7.1. The first diagram which is the basic interaction vertex is
of order λ0 , the second one is of order λ2

0 , the third is of order λ2
0N due to the

N different flavors of the fermions that can run in the loop, and the last two
diagrams are of order λ3

0N
2 . It is thus clear that the perturbation expansion
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Fig. 7.1. Leading order diagrams for the a + ā → b + b̄ scattering.

expressed in terms of the fixed coupling λ0 does not have a sensible large N

expansion. However, one can easily cure this problem by defining the coupling
λ ≡ λ0N , which is taken to be fixed when N →∞. The Lagrangian now reads,

LGN = iψ̄a 	∂ψa +
λ

2N
(ψ̄aψa)2 . (7.3)

It is now straightforward to see that the 1
N in front of the interaction term

enables a well-defined large N limit. Consider again the diagrams in Fig. 7.1.
The leading contribution is of order λ

N and the loop corrections are now of order
λ2

N 2 , λ2

N and λ3

N , respectively. Hence it is obvious that the form of any scattering
amplitude in perturbation theory is 1

N A(λ, 1/N), which becomes 1
N A(λ, 0) at

the large N limit.
To further analyze the system it is convenient to introduce the auxiliary field

σ, in terms of which the Lagrangian (7.3) can be written as,

LGN = iψ̄a 	∂ψa + σψ̄aψa − N

2λ
σ2 . (7.4)

Integrating over σ or alternatively solving the classical equation of motion for σ

and substituting it into the action yields the Lagrangian (7.1). The introduction
of the auxiliary field, which will soon acquire a physical interpretation, is a
standard step in the large N procedure which enables a simplified counting of
powers of 1

N .
The Feynman diagrams of the theory for this alternative formulation are then

given in Fig. 7.2, with the full line representing the fermion propagator, and the
dotted line that of σ.

Note that the only non-trivial interaction is the σψ̄aψa term and that each σ

propagator contributes iλ
N . The diagrams Fig. 7.1 that contribute to the scatter-

ing process are converted to those in Fig. 7.3.
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1i
p N/

Fig. 7.2. Feynman rules of the Gross–Neveu model.

Fig. 7.3. Leading diagrams that contribute to the two-to-two scattering.

We would now like to integrate over the fermions and derive an effective
Lagrangian, Leffective(σ). Since the Lagrangian is quadratic in the fermion fields,
Leffective(σ) is given by the sum of terms (Fig. 7.4).

Note that all diagrams are with an even number of σ only, since σ is odd under
the transformation (7.2). The first term is the tree level contribution − N

2λ σ2 and
the rest are the one loop contributions. Both are of order N , the latter due to the
N fermions that can run in the loop. The N dependence of Leffective therefore
has the form,

Leffective(σ, λ,N) = N L̂effective(σ, λ). (7.5)

This makes the counting of powers of 1
N very easy. Consider a graph with E

external σ lines, I internal σ lines, V vertices and L independent loops. The
parameters (E, I, V, L) are not independent. For each internal line there is a
momentum integration and hence a loop. However each vertex introduces a delta
function in momenta that cancels one momentum apart from an overall delta
function associated with the momentum conservation.

Thus one has,

L = I − V + 1. (7.6)

Recall that each σ external or internal line carries a 1
N factor, while each vertex

contributes a factor of N .
Thus the net power N of each graph is,

N−I+V −E = N−E−L+1 . (7.7)
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Fig. 7.4. Diagrams of Leff ective (σ).

It is obvious from this expression that adding loops and external σ lines sup-
presses the corresponding contribution due to additional powers of 1

N . Since the
minimal number of σ external lines is two the leading behavior is of order 1

N .
For the purpose of investigating the possibility of spontaneous breaking of

the discrete symmetry of (7.2), it is enough to compute the effective potential
V (σ) rather than the effective action, namely, the limit where all the external
lines carry zero momentum. The effective potential is given by the sum of the
diagrams in Fig. 7.4:

−iV = −i
Nσ2

2λ
−N

∞∑
n=1

1
2n

Tr
∫

d2p

(2π)2

[
− 	pσ

p2 + iε

]2n

, (7.8)

where 1
2n is the symmetry factor of the graph, N comes from summing over all

possible flavors, –1 from the fermion loop and the expression in the bracket is the
product of the propagator and (i /p

p2 +iε ) and the vertex (iσ). Using the identity,
∞∑

n=1

x2n

2n
= −1

2
log(1− x2), (7.9)

and analytically continuing to the Euclidean space gives,

V = N

[
σ2

2λ
−
∫

d2pE

(2π)2 log
(

1 +
σ2

p2
E

)]
. (7.10)

The momentum integral is logarithmically divergent so by introducing a cutoff
on the Euclidean momentum p2

E ≤ Λ2 we find,

V = N

[
σ2

2λ
− 1

4π
σ2 [log

(
σ2

Λ2

)
+ 1
]

. (7.11)

The effective potential can be rewritten in terms of the coupling λr , renormalized
at a scale μ, defined as,

1
λr
≡ 1

N

d2V

dσ2 |σ=μ =
1
λ

+
1
2π

log
(

μ2

Λ2

)
+

1
π

, (7.12)
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170 The large N limit of two-dimensional models

and substitute it into the V (σ) to find,

V = N

[
σ2

2λr
+

1
4π

σ2
[
log
(

σ2

μ2

)
− 3
]]

(7.13)

The fact that the cutoff disappears obviously implies that the theory is indeed
renormalizable. The β function and the anomalous dimension can be determined
by substituting the effective potential into the renormalization group equation
(see Section 17.6),

[μ∂μ + β(λr )∂λr
− γσ (λr )∂σ ] V (σ) = 0. (7.14)

We thus find the exact (to all orders of λr ) expression of β(λr ) and γσ (λr ), which
take the form,

β(λr ) = −λr
3

2π
γσ (λr ) = 0. (7.15)

Thus we have deduced that the Gross–Neveu model is asymptotically free,
namely that the effective coupling goes to zero at high momenta. It turns out
that the minus sign ensures this.

Let us now examine whether the chiral symmetry of this theory is sponta-
neously broken. For that we determine the extremum points of the potential.
The vanishing points of the derivative,

dV

dσ
= N

[
σ

λr
+

σ

2π

(
log

σ2

μ2 − 2
)]

, (7.16)

are at

σ = 0 and σ = ±σ0 = ±μe1− π
λ r , (7.17)

where

V (0) = 0 and V (σ0) = −N
σ2

0

4π
< 0. (7.18)

Now since the potential vanishes at σ = 0 and it is negative at σ = ±σ0 , its
global minima are at ±σ0 . Therefore the discrete chiral symmetry is broken and
the massless fermions acquire mass which to the leading order is σ0 .

A further interesting property of the model is the dimensional transmuta-
tion. The bare theory depends on one continuous dimensionless parameter and
the effective theory depends on one continuous parameter with dimensions, σ0 .
Whereas one may anticipate that observables will depend on the dimensionless
parameter in a complicated way, one finds a simple dependence on the parameter
with dimensions which follows a dimensional analysis.
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7.3 The CPN– 1 model

Another model that can be solved using the large N expansion is the CPN −1

model. The model is an example of a non-linear sigma model where the fields
live in a complex projective N − 1 space,

CPN −1 =
SU(N)

SU(N − 1)× U(1)
. (7.19)

The Lagrangian of the model can be written as,

LC P N = ∂μZ†∂μZ − λ

N
JμJμ, (7.20)

where Z† ≡ (z1 , . . . , zN ), namely, an N -dimensional “unit” vector of complex
fields that obey the constraint,

Z†Z =
N

λ
, (7.21)

and Jμ is given by,

Jμ = − i

2
[
Z†∂μZ − (∂μZ†)Z

]
. (7.22)

The Lagrangian describes a theory of massless particles with short range inter-
action which originates from both the explicit JJ interaction as well as from the
constraint. The number of degrees of freedom of the CPN −1 model is 2N − 2.
This is the dimension of the CPN −1 coset space,

dim
[
CPN −1] = dim

[
SU(N)

SU(N − 1)× U(1)

]
= (N 2 − 1)− ((N − 1)2 − 1 + 1) = 2N − 2. (7.23)

Differently, we count N complex numbers Zi , namely 2N real degrees of freedom,
minus one degree of freedom due to the constraint (7.21), minus one degree of
freedom due to the U(1) local symmetry,

Z → eiαZ. (7.24)

It is easy to verify that (7.20) is indeed invariant under this transformation upon
the use of the constraint. In fact one can also write the Lagrangian in the form,

LC P N = ∂μΦ†∂μΦ, (7.25)

where Φ is a traceless hermitian matrix built from Z and Z† according to,

Φ =

√
λ

N

[
ZZ† − 1

λ

]
, (7.26)

It is clear that the local transformation of the above does not change Φ and
hence the Lagrangian is invariant under this transformation.

The first step in the large N program is to eliminate the quartic interaction
term, by introducing an auxiliary field in a similar manner to what was done
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172 The large N limit of two-dimensional models

in the Gross–Neveu model. However, since the interaction has the form of a
vector times a vector, the auxiliary field should also be a vector. This shifts the
Lagrangian according to,

LC P N → LC P N +
λ

N

(
Jμ +

N

λ
Aμ

)2

= ∂μZ†∂μZ + 2JμAμ +
N

λ
AμAμ

=
[
(∂μ − iAμ)Z†] [(∂μ + iAμ)Z] , (7.27)

where in the third line we have used the constraint. It is clear from its last form
that the Lagrangian is invariant under the U(1) local transformation,

Z → eiαZ Aμ → Aμ − ∂μα. (7.28)

We now incorporate the fact that the Z are constraint variables by introducing
another Lagrange multiplier into the Lagrangian,

LC P N =
[
(∂μ − iAμ)Z†] [(∂μ + iAμ)Z] + σ

[
Z†Z − N

λ

]
. (7.29)

Obviously the path integral over σ, or equivalently using its equation of motion,
implies that Z†Z = N

λ .
The action is now quadratic in Z, so we integrate out the Z fields similarly to

what was done in the Gross–Neveu model. The Feynman diagrams that consti-
tute the leading contributions to the effective action, which is now a functional
of σ and Aμ , are drawn in Figure 7.5.

These diagrams, which include pure σ, pure Aμ and mixed diagrams, are all
proportional to N . The computation of V (σ) is similar to that in the GN model,
leading to,

V (σ) = −N
[σ
λ

+
σ

4π

(
log

σ

Λ2 − 1
)]

, (7.30)

where Λ is the cutoff. Again similar to the GN model the cutoff can be eliminated
by performing a renormalization at a scale μ,

1
λr

= − 1
N

dV

dσ
|μ2

1
λ

+
1
4π

(
log

μ2

Λ2

)
, (7.31)

so that the potential takes the form,

V (σ) = −N

[
σ

λr
+

σ

4π

(
log

σ

μ2 − 1
)]

. (7.32)

It is also evident that the model has a negative β function, or differently stated,
for fixed λr and μ, when Λ→∞, λ vanishes, namely, the model is asymptotically
free.
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Fig. 7.5. Leading order contributions to the effective action.

Again the model admits a dimensional transmutation. The original dimen-
sionless coupling is traded with a parameter σ0 with dimensions, at which the
potential has a minimum,

dV

dσ
= −N

[
1
λr

+
1
4π

(
log

σ

μ2

)]
= 0, σ0 = μ2e−

4 π
λ r . (7.33)

The following remarks about the model are relevant:

(i) The model admits a dynamical generation of abelian gauge fields. From the
diagrams on the third line of Fig. 7.5 we see that the contribution to Seffective

quadratic in Aμ is,

− iN

4π

[
gμν p2 − pμpν

] ∫ 1

0
dx

(1− 2x)2

σ2
0 − p2x(1− x)− iε

.

Now for long range interaction, namely, for small momenta we ignore the p2

term to obtain,

− iN

12πσ0
[gμν p2 − pμpν ],

which corresponds to the following term in the effective action,

Seffective = − N

48πσ0

∫
d2xFμν Fμν , (7.34)

namely an action of an abelian gauge field.
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174 The large N limit of two-dimensional models

(ii) The Z fields can be interpreted as bosonic “quarks” in the fundamental rep-
resentation of the group, though transforming in a non-linear way. These Z

quarks are confined due to the dynamically generated abelian gauge inter-
action. As will be shown in Chapter 8, in two dimensions the abelian force
between a quark anti-quark pair is linear in separation distance.
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