
We examine asymptotically the dynamics of two-dimensional, steady detonation wave
propagation and failure for a strongly confined high explosive (HE), in which the
width of the explosive is small relative to the reaction zone length. An energy balance
equation is derived, which shows how the longitudinal acceleration of subsonic
flow behind the detonation shock is influenced both by chemical reaction and by
the effects of HE boundary streamline deflection, specifically via the induced rate
of change of mass flux through the detonation wave. The latter serves to either
counteract or reinforce the acceleration of longitudinal flow, depending on the sign
of the gradient of the boundary streamline deflection at the detonation shock. The
analysis is valid for general equations of state and chemical reaction rates in the
HE. The asymptotically derived form of the energy equation represents an eigenvalue
problem for the determination of the steady detonation propagation speed, solved via
a shooting method. We explore specific results for ideal and stiffened equations of
state, along with a pressure-dependent reaction rate for which changes in the pressure
exponent and reaction order are also studied. We consider the influences of both
straight and curved HE boundary streamline shapes. The asymptotic analysis reveals
significant physical insights into how detonation propagation and failure are affected
by strong confinement.

Key words: detonation waves

1. Introduction
A detonation in a condensed-phase high explosive (HE) consists of a shock

sustained by the hydrodynamic flow induced by spatially distributed chemical reaction
in the explosive. In many multi-dimensional flow configurations, lateral motion of the
detonating explosive due to yielding of surrounding confinement induces streamline
divergence, which causes the shock to become divergently curved, whereupon the
dynamics of a steadily propagating detonation is controlled by the chemical energy
release that occurs within a subsonic elliptic flow region known as the detonation
driving zone, or DDZ. A review of this structure was recently presented by Short
& Quirk (2018b). The DDZ is the region encompassing the detonation shock and
sonic flow locus (relative to the frame of the detonation shock). The DDZ structure
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is influenced by the lateral size of the HE, the degree of reactivity and the strength
of the confinement.

For fixed confinement, decreasing the charge size causes an increase in divergent
curvature of the shock, which drives the flow sonic locus into regions of increasingly
incomplete reaction (Bdzil 1981). The available reactant energy that feeds into driving
the detonation forward consequently decreases, and the detonation propagation
speed drops. As a result of this mechanism, too small a charge size leads to the
inability of the detonation to propagate steadily, and typically the detonation fails.
For two-dimensional (2-D) axisymmetric cylindrical geometries, the variation of the
steady axial detonation speed with the inverse of the HE charge radius is known,
paradoxically, as the diameter effect curve, while the HE radius at which failure
occurs is known as the failure radius (Fickett & Davis 1979). In 2-D planar slab
geometries, the variation of the steady axial detonation speed with HE charge width
is known as the thickness effect curve, while the HE slab width at which failure
occurs is known as the failure thickness (Jackson & Short 2015).

A number of experiments on size effect curves and failure diameters/thicknesses
have been conducted on several HEs with no confinement (Campbell & Engelke
1976). Measurements of failure diameters suggest that there is a correlation
between detonation reaction zone size in a given HE and the failure diameter.
Specifically, the more sensitive the explosive (shorter reaction zone), the smaller
the failure diameter for unconfined charges. For an insensitive explosive such as
PBX 9502 (95 wt% TATB (2,4,6-triamino-1,3,5-trinitrobenzene)/5 wt% Kel-F 800
(poly(chlorotrifluoroethylene-co-vinylidene fluoride))), the detonation reaction zone
length is believed to be in the region of 1–1.5 mm (Seitz et al. 1989), while its
failure diameter is between 7.5 and 8 mm and its failure thickness is between
3.5 mm and 3.75 mm (Jackson & Short 2015). Non-ideal HEs with large reaction
zones have larger failure diameters. For example, ammonium-nitrate fuel oil (ANFO)
has a reaction zone thickness of 12–16 mm (Short & Jackson 2015) and a failure
diameter of 77 mm (Bdzil et al. 2002). Generally, for unconfined charges, the failure
diameter is approximately a few reaction zone thicknesses.

In contrast to unconfined explosives, there have been comparatively few studies on
the size effect curve and failure diameter/thickness for confined charges. We know that
strong confinement of the explosive significantly reduces the charge size that leads to
detonation failure. This is because strong confinement limits the amount of streamline
divergence in the DDZ, and thus the degree of energy losses to which the detonation
is subjected. The most detailed, relevant study on this effect is that of Ramsay (1985),
who examined the detonation failure thickness of PBX 9502 as a function of the
impedance and thickness of the surrounding confiner. These results are summarized
in figure 1. For aluminium confinement, the failure thickness decreased significantly
as the confiner thickness increased, down to the order of a reaction zone thickness.
For thin confinement walls of fixed width, the PBX 9502 failure thickness decreased
going from aluminium to lead to copper confinement, i.e. as the impedance of the
confiner increased.

The results of Ramsay (1985) for thin walls of the materials, aluminium, lead
and copper suggest that, for even higher density materials, such as tantalum or
platinum, the HE thickness at the failure point could be smaller than the reaction
zone thickness. This conjecture motivates us to consider the dynamics of detonation
propagation and failure for a problem of a strongly confined explosive (small material
interface deflection angle) in which the channel width is small relative to the reaction
zone length. As shown below, the consideration of this limit reveals some significant
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FIGURE 1. Summary of the PBX 9502 failure thickness results from Ramsay (1985).

insights into the dynamics of how confinement affects both detonation propagation
and failure. For all but the most sensitive of explosives, the latter requires a theory
for which the detonation speed D0(< DCJ) is such that 1 − D0/DCJ = O(1), where
DCJ is the Chapman–Jouguet (CJ) detonation speed (Fickett & Davis 1979), with the
relative departures of D0 from DCJ at the failure point increasing as the explosive
becomes more non-ideal (Campbell & Engelke 1976). In analogy with studies in
laminar flames, we refer to this as a thick detonation limit (Daou & Matalon 2001;
Short & Kessler 2009; Kurdyumov & Matalon 2013; Pearce & Daou 2014; Kagan,
Gordon & Sivashinsky 2015).

2. Model

We consider a steady, symmetrical detonation propagating axially with constant
speed D0 in either a 2-D planar or axisymmetric cylindrical geometry, as shown in
figure 2(a). The planar geometry has thickness T(= 2W), while the cylinder has radius
R(=W). Ahead of the detonation the HE/confiner material interface lies at the fixed
location r=W (figure 2a). Upon detonation arrival, the material interface between the
HE and confiner is deflected. For steady flow, and in a coordinate system travelling
with the detonation shock at speed D0, the material interface is stationary, and thus
the material interface boundary can be considered equivalent to an HE streamline
defining the edge of the deflected HE flow behind the shock. In contrast to our
previous studies that have set this boundary streamline to be straight (Chiquete et al.
2018; Chiquete, Short & Quirk 2019; Chiquete & Short 2019), here, we assume that
the shape of the streamline can be arbitrarily prescribed, thus enabling us to study
the effects on detonation propagation of boundary streamline curvature. In § 6, we
determine the curved HE boundary streamline (material interface) shape for a series
of confinement materials via multi-material simulation.

The detonation flow is governed by the 2-D reactive Euler equations. These are
written in non-dimensionalized form for general unsteady flows as

∂y
∂t
+
∂f r

∂r
+
∂f z

∂z
= g, (2.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

37
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.37


889 A3-4 M. Short, S. J. Voelkel and C. Chiquete

HE boundary
streamline/material

interface

Sy
m

m
et

ry
 li

ne

Curved
detonation

front

r

œe

W = T/2 or R

D0
z

HE boundary
streamline

Sy
m

m
et

ry
 li

ne

Detonation
front

≈ = 0

˙ = 0

˙(b)(a)

≈ = W
≈

FIGURE 2. (a) Schematic of steady axial detonation propagation in either a planar 2-D
geometry (W = T/2) or axisymmetric 2-D cylindrical geometry (W = R) in which the
HE boundary is deflected upon arrival of the detonation shock. For analysis purposes, the
(r, z) geometry in (a) is mapped to the shock- and deflected boundary-fitted frame (ξ , η)
as shown in (b).

where,

y= (ρ, ρur, ρuz, ρE, ρλ)ᵀ, f r = (ρur, ρu2
r + p, ρuruz, ur(ρE+ p), ρurλ)

ᵀ, (2.2a,b)

f z = (ρuz, ρuruz, ρu2
z + p, uz(ρE+ p), ρuzλ)

ᵀ, (2.3)

g= (−sρur/r,−sρu2
r/r,−sρuruz/r,−sur(ρE+ p)/r, ρΛ− sρurλ/r)ᵀ. (2.4)

Here, r and z denote spatial coordinates perpendicular and parallel to the undeflected
boundary streamline, respectively (figure 2a), t is time, while ρ, u, E and p are the
density, laboratory-frame flow velocity vector, total energy and pressure, respectively.
For the two-dimensional flow being considered, the velocity vector u= (ur, uz)

ᵀ. The
reaction progress variable, λ ∈ [0, 1], tracks the conversion of reactants (λ = 0) to
products (λ= 1) at the rate Λ. The symmetry parameter s= 0 for the planar geometry,
while s= 1 for the cylindrical geometry. The total energy and frozen sound speed c
are given by

E= e(ρ, p, λ)+
1
2
(u2

r + u2
z ), c2

=

(
∂e
∂p

)−1 ( p
ρ2
−
∂e
∂ρ

)
, (2.5a,b)

respectively, where e is the internal energy. The detonation shock conditions are

ρs(un,s −Dn,s)=−ρ0Dn,s, ps = ρ
2
0 D2

n,s

(
1
ρ0
−

1
ρs

)
,

es − e0 =
1
2

ps

(
1
ρ0
−

1
ρs

)
, λs = 0, ut,s = 0,

 (2.6)

where ut,s and un,s are the tangential and normal flow speeds at the shock, Dn,s is the
shock speed in the shock normal direction and ρ0 and e0 are the density and internal
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energy of the unshocked reactant material, respectively. The subscript {}s is used here
to denote the shock state.

The non-dimensional scaling employed above is similar to that used by Short et al.
(2018) and given by

(r, z)=
(r̃, z̃)

l̃ref

, t=
t̃

(l̃ref /ũref )
, ρ =

ρ̃

ρ̃ref
, u=

ũ
ũref

, p=
p̃

ρ̃ref ũ2
ref
, e=

ẽ
ũ2

ref
,

DCJ =
D̃CJ

ũref
, c=

c̃
ũref

,

 (2.7)

where ˜{ } quantities are dimensional. However, in contrast to Short et al. (2018),
where a partial reaction length scale is used for l̃ref , for the purposes of conducting
the asymptotic analysis described in § 4, we initially set the reference length scale l̃ref
to be characteristic of the total length of the DDZ, i.e. representative of the distance
between the detonation shock and sonic flow boundary. We return to the discussion
of l̃ref to best present the results of the asymptotic analysis in § 5. Also, we take
ũref = 1 mm µs−1 and ρ̃ref = 1 g cm−3 as in Short et al. (2018).

3. Shock- and boundary streamline-attached frame
We are concerned with steady flows, and to facilitate the analysis, coordinates r and

z are transformed according to

r(ξ , η)=
(

1−
meh(η)

W

)
ξ, z(ξ , η)=D0t+ zs(ξ)+ η, (3.1a,b)

assuming that ahead of the detonation shock front the HE boundary streamline
(material interface) lies at r = W. The HE boundary streamline shape as a function
of η(6 0) is given by −meh(η), h(0)= 0, with me representing the magnitude of the
boundary streamline gradient at η = 0, so that h′(0) = 1. For the majority of cases
of interest, me > 0 and h(η) < 0 for η < 0, although some situations can arise where
me < 0 as discussed in § 6.2. In terms of the boundary streamline deflection angle
θe (figure 2a) at η = 0, me = tan θe. Also, W = T/2 (planar) or W = R (cylindrical),
while z= zs(ξ) is the steady shock shape, aligned so that zs(0)= 0.

The Jacobian
|J| =

∂r
∂ξ
−
∂r
∂η

∂zs

∂ξ
, (3.2)

should be positive to ensure an appropriate mapping from (r, z) to (ξ , η). This
generates the coordinate system shown in figure 2(b), where η= 0 is the transformed
shock position, ξ =W is the location of the deflected streamline boundary and ξ = 0
represents the axis of symmetry. Boundary conditions are applied along η= 0, ξ = 0
and ξ =W, thus reducing the problem to consideration of the flow domain η6 0 and
0 6 ξ 6 W.

Under (3.1), the steady version of the flow (2.1) becomes

∂Fξ

∂ξ
+
∂Fη

∂η
=G, (3.3)

where

Fξ = f r −
∂r
∂η
( f z −D0 y), Fη =−

∂zs

∂ξ
f r +

∂r
∂ξ
( f z −D0 y), G= |J|g, (3.4a−c)
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and

∂r
∂η
=−

ξme

W
h′(η),

∂r
∂ξ
= 1−

me

W
h(η), |J| = 1−

me

W
h(η)+

ξme

W
h′(η)

∂zs

∂ξ
. (3.5a−c)

Symmetry conditions are applied along the central axis (ξ = 0), while along the
boundary streamline (ξ =W) the only condition to be applied is that the normal flow
component is zero, giving

ur(ξ = 0, η)= 0, ur(ξ =W, η)=−meh′(η)(uz −D0). (3.6a,b)

On the shock front, the flow solution is determined from the jump conditions (2.6) as
a function of Dn,s =Dn,s(ξ), where, from the geometric shock surface evolution,

D0 =Dn,s

√(
∂zs

∂ξ

)2

+ 1. (3.7)

4. Thin channel, strong confinement, asymptotic analysis
Based on the discussion in § 1, we look for strong confinement solutions in

which the lateral extent of the charge is smaller than the detonation driving zone
thickness, the latter of which is characterized spatially by η = O(1). Consequently,
we set ξ = O(δ), δ � 1, with W = O(δ). We are then left with the objective of
setting a scale on the boundary streamline gradient me. As noted in § 1, our aim
is to develop a theory that can describe detonation propagation and failure regimes
in which the detonation speed D0 departs from DCJ by O(1) amounts, such that
1 − D0/DCJ = O(1). In the absence of any boundary streamline deflection (me = 0),
the leading-order solution is a detonation wave propagating at the Chapman–Jouguet
speed DCJ. Consequently, the streamline gradient must be sufficient in magnitude so
that the induced rate of change of mass flux through the detonation, and thereby
the associated energy change, from the boundary streamline deflection directly
influences the determination of the leading-order detonation structure, thus resulting
in departures of D0/DCJ from one by O(1) amounts. As is apparent below, this can
only be achieved if the boundary streamline gradient behind the shock is similar
in magnitude, asymptotically, to the lateral charge size, i.e. O(δ). Thus we also
set me = O(δ), with h′(η) = O(1). Concurrently, the magnitude of the shock slope
variation due to the boundary streamline deflection is O(δ). Consideration of other
scalings on me such that me = o(δ), for example me = O(δ2), would result in the
leading-order solution remaining as a detonation wave propagating at speed DCJ,
and a resulting theory would only describe departures of D0/DCJ from one by O(δ)
amounts. This limit is not of interest for the phenomena we wish to capture in the
current study. In addition, the latter weaker limit is likely to be included within the
richer limit me =O(δ) considered in this paper.

These balance arguments lead to the introduction of the scaled variables,

ξ̂ =
ξ

δ
, Ŵ =

W
δ
, m̂e =

me

δ
, (4.1a−c)

so that

r= δ
(

1−
m̂e

Ŵ
h(η)

)
ξ̂ , z=D0t+ δ2ẑs + η, (4.2a,b)
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giving ∂zs/∂ξ = δ∂ ẑs/∂ξ̂ , and

∂r
∂η
=−δ

m̂e

Ŵ
h′(η)ξ̂ ,

∂r
∂ξ
= 1−

m̂e

Ŵ
h(η), |J| = 1−

m̂e

Ŵ
h(η)+O(δ2). (4.3a−c)

With this, the shock normal speed Dn,s = D0 + O(δ2) from (3.7). Balance arguments
for the shock conditions and flow equations then lead us to consider O(δ) changes in
the lateral flow velocity component, and thus we define

ûr =
ur

δ
. (4.4)

We now seek solutions for which

uz = u0
z , p= p0, ρ = ρ0, e= e0, λ= λ0, ûr = û1

r , (4.5a−f )

all have O(1) variation. The normal flow velocity component at the shock becomes
un,s = u0

z +O(δ2), so that, to leading order, (2.6) become

ρ0
s (u

0
z,s−D0)=−ρ0D0, p0

s =ρ
2
0 D2

0

(
1
ρ0
−

1
ρ0

s

)
, e0

s − e0=
1
2

p0
s

(
1
ρ0
−

1
ρ0

s

)
, λ0

s =0,

(4.6a−d)
at η= 0. The shock tangential flow condition, ut,s = 0, also gives

û1
r,s =−u0

z,s
dẑs

dξ̂
, (4.7)

while the symmetry and boundary streamline conditions (3.6) lead to

û1
r (η, ξ̂ = 0)= 0, û1

r (η, ξ̂ = Ŵ)=−m̂eh′(η)(u0
z −D0). (4.8a,b)

With the axial detonation phase speed D0 constant for steady flows, guided by the
shock relations (4.6), we now seek solutions of the scaled flow equations

∂Fξ

∂ξ̂
= δ

(
G−

∂Fη

∂η

)
, (4.9)

for which

u0
z = u0

z (η), p0
= p0(η), ρ0

= ρ0(η), e0
= e0(η), λ0

= λ0(η). (4.10a−e)

In general, for each flow vector component, we find Fξ = O(δ), Fη = O(1) and G=
O(1), with the leading-order balance for each component occurring at O(δ) in (4.9).

For the continuity equation,

∂ û1
r

∂ξ̂
+

sû1
r

ξ̂
=−

1
ρ0

(
1−

m̂e

Ŵ
h(η)

)
d

dη
[ρ0(u0

z −D0)]. (4.11)

Integrating, and applying the symmetry condition (4.8),

û1
r =−

ξ̂

(1+ s)ρ0

(
1−

m̂e

Ŵ
h(η)

)
d

dη
[ρ0(u0

z −D0)], (4.12)
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so that û1
r increases linearly with ξ̂ . Then, applying the boundary streamline condition

(4.8) on û1
r ,

d
dη
[ρ0(u0

z −D0)] = (1+ s)
m̂e

Ŵ
h′(η)

(
1−

m̂e

Ŵ
h(η)

)−1

ρ0(u0
z −D0), (4.13)

which can be integrated to give

ρ0(u0
z −D0)=−ρ0D0

(
1−

m̂e

Ŵ
h(η)

)−(1+s)

, (4.14)

after the use of the first of the shock relations (4.6). Consequently, the boundary
streamline deflection induces a |J0

|
−1−s change in the mass flux magnitude through the

wave relative to its shock value (ρ0D0), where |J0
|=1− m̂eh(η)/Ŵ. Geometrically, |J0

|

simply represents the ratio of the modified domain width r= Ŵ − m̂eh(η) relative to
the initial HE width r= Ŵ at any η, i.e. it is a stretch factor. For m̂e > 0 and h′(η)>
0(h′(0) = 1), covering the majority of boundary streamline deflection cases studied
later in § 6, where −m̂eh(η) > 0 and increasing in magnitude with increasing distance
behind the shock, the magnitude of the mass flux monotonically decreases through
the wave. For such cases, a curved boundary streamline in which h′(η) decreases
from its shock value, h′(0) = 1, leads to a lowering of the rate at which the mass
flux decreases through the wave, relative to a boundary streamline deflection that is
assumed straight (h′(η)= 1). For one confinement case studied in § 6.2 where me < 0,
i.e. the boundary streamline is initially deflected into the HE, the magnitude of the
mass flux monotonically increases relative to its shock value in the region behind the
shock front where h′(η) > 0.

Returning to (4.12), we can now write û1
r in the form

ρ0û1
r = ρ0D0

m̂e

Ŵ
h′(η)

(
1−

m̂e

Ŵ
h(η)

)−(1+s)

ξ̂ . (4.15)

With this, the tangential shock condition (4.7) gives the shock slope,

dẑs

dξ̂
=−

m̂e

Ŵ

ρ0D0

ρ0
s u0

z,s

h′(0)ξ̂ , (4.16)

so that the shock shape is given by

ẑs =−
m̂e

2Ŵ

ρ0D0

ρ0
s u0

z,s

ξ̂ 2, (4.17)

noting that h′(0) = 1 and ẑs(0) = 0 by definition. With the aid of (4.12) and (4.14),
the leading-order axial momentum equation results in

dp0

dη
− ρ0D0

(
1−

m̂e

Ŵ
h(η)

)−(1+s) du0
z

dη
= 0, (4.18)

with the leading-order rate equation resulting in

ρ0D0

(
1−

m̂e

Ŵ
h(η)

)−(1+s) dλ0

dη
=−ρ0Λ. (4.19)
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Consideration of the energy equation remains to close the system. After using (4.12),
the leading-order energy equation results in

ρ0(u0
z −D0)

dE0

dη
+

d
dη
(p0u0

z )−
p0

ρ0

d
dη
[ρ0(u0

z −D0)] = 0. (4.20)

Noting that E= e+ ((u0
z )

2
+ δ2(û1

r )
2)/2, and de/dη= e,p dp/dη+ e,ρ dρ/dη+ e,λdλ/dη,

where { },p = ∂{ }/∂p etc., and then using (4.14), (4.18) and (4.19) to eliminate
dp0/dη, dρ0/dη and dλ0/dη, we can rewrite the energy equation (4.20) with the only
derivatives in η associated with u0

z ,

[(c0)2 − (u0
z −D0)

2
]
du0

z

dη
=−

e0
,λ

ρ0e0
,p

Λ−
(c0)2

ρ0
ρ0D0(1+ s)

[
1−

m̂e

Ŵ
h(η)

]−(2+s) m̂e

Ŵ
h′(η).

(4.21)
Equations (4.14), (4.18), (4.19) and (4.21) are solved subject to shock relations (4.6)
at η= 0. An implication of (4.21) is that the system contains a saddle point when the
axial flow becomes sonic, i.e. when (u0

z −D0)
2
= (c0)2. This equates to an eigenvalue

problem for the detonation phase speed D0, such that any trajectory passing through
the sonic flow saddle point, subject to (4.6), must involve the cancellation of the two
terms on the right-hand side of (4.21) at the saddle point. For specific choices of the
reaction rate and equation of state (see § 5), this would typically necessitate the use of
a shooting method, iterating on D0 until the appropriate trajectory for u0

z (η) is found
that can pass through the saddle. Of particular significance in (4.14), (4.18), (4.19)
and (4.21) is that, for any fixed streamline deflection component h(η), the solution
depends only on the ratio m̂e/Ŵ. Thus once one thickness effect curve (D0 versus
m̂e/Ŵ) has been calculated, for example for varying m̂e at fixed Ŵ, the variation is
known for all Ŵ.

Physically, the left-hand side of (4.21) is related to the longitudinal propagation
and advection of acoustic and kinetic energy. The first term on the right-hand side
represents an energy deposition due to chemical reaction that serves to accelerate the
longitudinal flow from a subsonic state immediately behind the shock to a downstream
sonic state. It is always positive for an irreversible reaction. The second term on the
right-hand side of (4.21) is an energy contribution resulting from the effects of the
boundary streamline deflection, specifically the induced rate of change of mass flux
through the wave (this term can alternatively be written as +((c0)2/ρ0) d/dη[ρ0(u0

z −

D0)]. It serves to either counteract or reinforce the acceleration of longitudinal flow
depending on the sign of the gradient of the streamline deflection, −meh′(η). For
me > 0 and h′(η) > 0, i.e. where the boundary streamline moves outward, the term
is negative and thus serves to reduce the energy available to drive the longitudinal
flow acceleration. The larger the magnitude of the streamline deflection, the greater
the associated energy loss, consequently reducing the magnitude of the eigenvalue
solution D0. As will be seen in § 6, for too large an energy loss, there is no eigenvalue
solution for D0, corresponding to the loss of steady flow solutions. For me< 0, where
the boundary streamline deflection is inward at least initially, i.e. when −meh′(η) > 0,
the rate of change of mass flux is positive, an effect which supports the longitudinal
acceleration of the flow. As will be seen in § 6, this latter scenario can result in the
eigenvalue solution D0 rising above DCJ. Finally, based on the form of the energy
change resulting from the boundary streamline deflection, being proportional to h′(η),
we expect that curvature of the boundary streamline will play a significant role in
determining the detonation propagation and failure properties.
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4.1. HE streamlines shapes
After specifying the boundary streamline shape, the steady flow streamline paths
within the HE region can also be calculated. To leading order these are determined
by

dr
dη
= δ

û1
r

u0
z −D0

=−
m̂e

Ŵ
h′(η)

[
1−

m̂e

Ŵ
h(η)

]−1

r, (4.22)

after using (4.14) and (4.15). Integrating gives

r= δαŴ
(

1−
m̂e

Ŵ
h(η)

)
,

dr
dη
=−δαm̂eh′(η), (4.23a,b)

with α(0 6 α 6 1) signifying the streamline label. The symmetry line r = 0 is a
streamline, with the streamline gradient along the shock (η = 0) increasing from the
symmetry line to the boundary. The gradient of a given HE streamline at any η is a
fixed multiple of the corresponding boundary streamline gradient. Consequently, the
HE streamlines bend toward the symmetry axis if the boundary streamline also bends
in that direction (§ 6.2).

5. Equation of state and reaction rate models
The analysis above is valid for any equation of state (EOS) and reaction rate law.

We now present results for both the ideal and stiffened condensed-phase detonation
models (Short, Bdzil & Anguelova 2006; Short et al. 2008), whereupon the EOS
model for the internal energy, e, the specific reaction enthalpy of the HE, q(= q̃/ũ2

ref ),
and frozen sound speed, c, are given by

e=
p+ A
(γ − 1)ρ

− qλ, q=
D2

CJ

2(γ 2 − 1)

(
1−

A
ρ0D2

CJ

)2

, c=
[
γ p+ A
ρ

]1/2

, (5.1a−c)

respectively, where γ is the adiabatic exponent, A is the stiffened constant and, as
before, ρ0 is the initial density of the HE and DCJ is the Chapman–Jouguet speed. The
ideal condensed-phase model (Short et al. 2008; Chiquete & Short 2019) is recovered
by setting A= 0. Having A> 0 allows for a non-zero sound speed in the unshocked
explosive (Short & Quirk 2018b), since the initial pressure p0 = 0. The parameter A
mimics the effects of molecular attraction in solid- or liquid-state matter (Le Métayer
& Saurel 2016). The required partial derivatives of e in (5.1) are

e,p =
1

(γ − 1)ρ
, e,λ =−q. (5.2a,b)

The reaction rate, Λ, is pressure dependent and given by

Λ= kpn(1− λ)ν, (5.3)

where k is a rate constant, n is the pressure exponent and ν is a reaction-order variable.
Variations of the above model have been used to study the flow physics of a variety
of detonation confinement problems, e.g. Bdzil (1981), Sharpe & Braithwaite (2005),
Short et al. (2018) and Short & Quirk (2018a,b). The model has consistently captured
the primary detonation flow physics that are present when more complex equation- of
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state and reaction rate models are used. The fixed model parameter choices are (Short
& Quirk 2018b; Short et al. 2018; Chiquete & Short 2019)

ρ0 = 2, DCJ = 8, γ = 3. (5.4a−c)

Below, we explore the detonation dynamics for changes in A, n and ν. Finally, for
the ideal and stiffened models, the shock conditions (4.6) become

u0
z,s =

2D0

γ + 1

(
1−

A
ρ0D2

0

)
, p0

s = 2
ρ0D2

0

γ + 1

(
1−

A
ρ0D2

0

)
,

ρ0
s = (γ + 1)ρ0

[
γ − 1+

2A
ρ0D2

0

]−1

, λ0
s = 0.

 (5.5)

With (5.1) and (5.2), the energy equation (4.21) becomes

[(c0)2 − (u0
z −D0)

2
]
du0

z

dη
= (γ − 1)qΛ−

(c0)2

ρ0
ρ0D0(1+ s)

[
1−

me

W
h(η)

]−(2+s) me

W
h′(η).

(5.6)
Thus, the chemical energy deposition term, (γ − 1)qΛ, only varies with the reaction
rate for constant γ and q. Also, we have, without loss of generality, reverted to the
use of the unscaled quantities me = δm̂e and W = δŴ, where me and W represent
physically measurable quantities. For the purposes of discussion in § 6, we now write
(5.6) in the form

ω
du0

z

dη
= (γ − 1)qΛ− σ , ω= (c0)2 − (u0

z −D0)
2,

σ =
(c0)2

ρ0
ρ0D0(1+ s)

[
1−

me

W
h(η)

]−(2+s) me

W
h′(η),

 (5.7)

where ω is a sonic flow parameter and σ is the energy change associated with the
rate of change of mass flux through the detonation. The detonation speed eigenvalue
D0 for the asymptotically derived system (5.7), given any geometry parameters s and
W and confinement conditions specified by me and h(η), is determined by a shooting
method similar to that described in § 4. Specifically, we make an initial guess for the
eigenvalue D0. With that D0, the shock condition at η = 0 for u0

z is given by (5.5),
whereupon the ordinary differential equation for u0

z (η), given by (5.7), is integrated
numerically. Note that this also requires the determination of p0(η), ρ0(η) and λ0(η)
obtained from the simultaneous integration of (4.18) and (4.19) and the use of (4.14).
The eigenvalue D0 is then iterated on until the (positive) rate term (γ − 1)qΛ and
(negative) energy change term σ exactly cancel at the sonic flow point (ω = 0),
allowing the trajectory for u0

z (η) to pass through the saddle point.
It remains to set the reference length scale that we will use for clarity of

presentation of the asymptotic results. In § 6, we will set l̃ref to be the familiar
and standard choice for detonation propagation studies, namely l̃ref = l̃1/2 is the length
over which 50 % of the reactants are consumed in the 1-D, steady, CJ wave (Short
& Quirk 2018b). This has the benefit that l̃1/2 varies only with the model parameters
choices A, n and ν for fixed ρ0, DCJ and γ . Significantly, l̃1/2 does not vary with
changes in the channel width. Adopting this scale, the channel width W appearing
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in (5.7) now becomes W = W̃/l̃1/2, so that W is always referenced relative to a fixed
scale. The downside of using l̃1/2 as the reference length is that it does not reflect
the changes in overall reaction zone length that occur when the detonation speed
D0 drops below DCJ as a result of varying me or W (as seen in § 6). The second
alternative reference length scale l̃ref = l̃ηs , more naturally suited to the development
of the asymptotic analysis in § 4, is set to the length between the detonation shock
and flow sonic point for each HE boundary streamline deflection case such that
the position of the sonic flow point (§ 4) is always at η = −1. We will denote
the channel width relative to this scale as Wηs . The scaling between W(= W̃/l̃1/2)

and Wηs(= W̃/l̃ηs) is determined by the ratio of the two reference length scales, i.e.
W = (W̃/l̃ηs)(l̃ηs/l̃1/2) = Wηs(l̃ηs/l̃1/2). Since η = ηs at the sonic point scaled with the
reference length scale l̃1/2 is larger than one (see § 6), then l̃ηs/l̃1/2 > 1, and thus
choosing l̃1/2 as the reference scale will result in numerically larger values of W than
of Wηs for any fixed W̃. Consequently, me/W <me/Wηs for fixed me. However, since
Wηs depends on the location of the sonic flow point, adopting l̃ηs will mean that each
individual confinement case will now have a different reference length scale. Thus,
for clarity purposes, we present the majority of results in § 6 for the asymptotic
analysis using the fixed reference length scale l̃ref = l̃1/2, where W = W̃/l̃1/2 for each
set of A, n and ν parameters.

5.1. Zeldovich–von Neumann–Döring detonation structure
Figure 3 shows the variation in pressure, reaction progress variable and chemical
energy deposition rate (γ − 1)qΛ through the 1-D, Zeldovich–von Neumann–Döring
(ZND) detonation structure running at the CJ speed (DCJ = 8) for various choices
of A, n and ν, and with l̃ref = l̃1/2. For n = 2 and ν = 0.5, the pressure for A = 0
is uniformly higher through the wave than for A= 12.8, while the reaction progress
variable variations are similar (figure 3a). The reaction rate and thus (γ − 1)qΛ for
A= 0 (k= 7.21869× 10−4 which sets λ= 1/2 at η=−1) is uniformly larger through
the wave than for A= 12.8 (k= 9.67560× 10−4) (figure 3b). For A= 12.8 and ν= 0.5,
the pressure and rate term (γ − 1)qΛ through the first part of the wave for n= 2 is
similar to that for n= 2.25 (k = 3.58579× 10−4), while toward the tail, the pressure
and rate term (γ − 1)qΛ for n= 2.25 remain above that for n= 2. Thus increasing
the reaction exponent n mostly affects the detonation structure at the rear section of
the wave. For A= 12.8 and n= 2, significant changes are seen between ν = 0.5 and
ν = 1.5. For ν = 1.5, the rate term (γ − 1)qΛ near the shock front dominates that
of ν = 0.5, before decreasing significantly below that of ν = 0.5 (figure 3b). This
results in a more rapid energy release near the shock and an extended tail of reaction
downstream. This information will be useful in § 6 below, which analyses the effect
of yielding confinement on detonation propagation for varying A, n and ν.

6. Results
6.1. Linear HE boundary streamline

We first consider the effects of a straight HE boundary streamline, −meh(η)=−meη,
with −meh′(η)=−me. Curved streamlines are considered below in § 6.2. For practical
problems, me would be obtained via a shock polar analysis (see § 6.2), based on the
material properties of a given confinement material. Figure 4(a) shows the variation
of the steady detonation speed D0, obtained via solution of the asymptotically derived
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FIGURE 3. Variation of (a) pressure (p, solid lines) and reaction progress variable
(λ, dotted lines) and (b) chemical energy deposition rate (γ − 1)qΛ with longitudinal
distance behind the shock for the 1-D, ZND detonation structure running at the CJ speed
(DCJ = 8) for various choices of A, n and ν. For the case A = 12.8, n = 2 and ν = 1.5,
only a partial region of the reaction zone structure is shown due to the length of the
reaction-depletion tail.

system (5.7) using the shooting method described in § 5, with (1+ s)me/W (s= 0 for
planar geometries, s=1 for cylindrical geometries) for A= 0,A= 6.4 and A= 12.8, and
with n= 2 and ν = 1/2. The values A= 0, 6.4 and 12.8 correspond to sound speeds
in the ambient reactant material of c0 = 0, 1.789 and 2.530, respectively. Each curve
shows a monotonic decrease in D0 with increasing (1+ s)me/W, along with a critical
value of (1+ s)me/W beyond which no steady solutions are possible. In each case, the
critical point corresponds to a turning point in the D0 versus (1+ s)me/W relation. In
a separate article (Voelkel, Chiquete & Short 2019), we show that the loss of steady
solutions as me/W increases corresponds to the failure (or detonability limit) of the
detonation.

Based on figure 4(a), for both s= 0 and s= 1, the propagation speed D0 decreases
for fixed (1+ s)me/W as A increases. Increasing the stiffness parameter A also reduces
the ratio (1+ s)me/W at which steady solutions are lost (detonation failure), with a
significantly larger value of D0 for A = 12.8 at the point of failure than for A = 0.
Thus, for a fixed boundary streamline gradient me, quenching occurs in a larger charge
dimension W for A = 12.8 than for A = 6.4, which in turn fails at a larger W than
for A = 0. Alternatively, for fixed W, a detonation in an HE with a stiffer equation
of state, i.e. one having a larger A, will quench for smaller me. This implies that a
detonation in an HE with a lower A is able to propagate when confined by materials
with smaller impedances.

Referring to the energy (5.6), the dominant effect of the geometry for larger
D0 occurs through the (1 + s) factor in the energy change term σ , with the
[1 − meh(η)/W]−(2+s) factor in σ becoming more significant between s = 0 and
s= 1 for lower D0 and near the failure point. Thus, for larger D0, the energy change
associated with the rate of change of mass flux is approximately double that for a
cylinder with a radius W than a slab with half-thickness W. Consequently, when D0
is plotted as a function of (1+ s)me/W the variations are similar for s= 0 and s= 1
for any given A for larger D0, with deviations observed for lower D0 and at the
turning (failure) point.

Figure 4(b) shows the variation in the sonic flow location ηs as a function of
(1+ s)me/W for each of the cases shown in figure 4(a). For each case, as (1+ s)me/W
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FIGURE 4. (a) Variation of D0 with (1+ s)me/W for slab (s= 0) and cylindrical (s= 1)
geometries with n = 2 and ν = 0.5 and for A = 0 (k = 7.21869 × 10−4), A = 6.4 (k =
8.34124 × 10−4) and A = 12.8 (k = 9.67560 × 10−4). (b) The corresponding variation of
the sonic flow location ηs (solid lines) and the reaction progress at the sonic point λs
(dashed lines) along each trajectory shown in (a).
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FIGURE 5. Sonic flow point variation of (a) (γ − 1)qkpn and (b) σ , the energy change
associated with the rate of change of mass flux through the detonation due to the boundary
streamline deflection, as a function of me/W for A= 0 and A= 12.8 for s= 0, n= 2 and
ν = 0.5.

increases, the sonic flow location moves further downstream of the shock, i.e. the
DDZ length increases, and thus the ratio of the DDZ length to W increases. We
note the significant increase in ηs above one as (1 + s)me/W increases. Similarly,
the reaction progress variable decreases as (1 + s)me/W increases. Thus, increasing
(1+ s)me/W corresponds to ever decreasing regions of reaction progress in the DDZ
with an associated decrease in D0, even though the DDZ length is growing. The
degree of reaction progress at the sonic flow point is smaller for A = 12.8 than
A = 6.4, which in turn is smaller than for A = 0, for fixed (1 + s)me/W, with the
difference again increasing as (1 + s)me/W increases, resulting in the D0 decrement
between A = 12.8, A = 6.4 and A = 0 observed in figure 4(a). The mechanisms
responsible for this trend are further explored below.

Figure 5(a,b) shows the variation of the reaction rate related energy factor
(γ − 1)qkpn and σ with me/W at the sonic flow point for s = 0, n = 2 and ν = 0.5
and for A = 0 and A = 12.8. The behaviour for A = 6.4 lies between that of A = 0
and A = 12.8. Interestingly, in both cases, the σ variation is non-monotonic, first
increasing as me/W increases, before decreasing near the failure point. The ratio
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σ/(γ − 1)qkpn is (1 − λ)ν . For both A = 0 and A = 12.8, σ < (γ − 1)qkpn for all
me/W with the ratio σ/(γ − 1)qkpn increasing monotonically from zero as me/W
increases. Consequently, the value of λ at the sonic point, λs, must decrease with
increasing me/W (figure 4b) to ensure that the chemical energy term (γ − 1)qΛ and
the energy term σ , associated with the rate of change of mass flux, cancel at the
sonic point.

Further insights into the D0 versus me/W behaviour seen in figure 4(a) can be
obtained from figure 6(a) which shows a comparison for A = 0 and A = 12.8 of
the variation of (γ − 1)qΛ, σ and ω with η for me/W = 0.005, s = 0, n = 2 and
ν = 0.5. For A = 0, D0 = 6.945 at me/W = 0.005, while for A = 12.8, D0 = 6.732.
Near the shock (η= 0), the energy term (γ − 1)qΛ associated with chemical reaction
is significantly greater for A = 0 than A = 12.8 as also seen for the ZND wave
structure (§ 5), with the variations for A = 0 and A = 12.8 decreasing monotonically
with increasing |η|, until the sonic flow point ω = 0 is reached. Similarly, the sonic
parameter ω is uniformly larger for A= 0 than A= 12.8, with again both variations
decreasing monotonically. The energy term σ shows less of a difference between
A = 0 and A = 12.8. At the sonic flow points, (γ − 1)qΛ − σ = 0 with ω = 0.
Figure 6(b) shows the corresponding variation of (c0)2ρ0D0/ρ

0 and (γ − 1)qkpn

with η for me/W = 0.005. The term (c0)2ρ0D0/ρ
0 is the coefficient multiplying the

boundary streamline deflection influence in σ for s = 0 (see (5.7)), with h(η) = η.
Thus, for fixed me/W, the variation in σ enters through this coefficient term. The
term (γ − 1)qkpn is the coefficient term multiplying (1 − λ)ν in the energy term
(γ − 1)qΛ. Thus, at the sonic point, we must have

[(1− λ)ν]A=12.8

[(1− λ)ν]A=0
=
[(c0)2ρ0D0/ρ

0
]A=12.8[(γ − 1)qkpn

]A=0

[(c0)2ρ0D0/ρ0]A=0[(γ − 1)qkpn]A=12.8
. (6.1)

Now, [(c0)2ρ0D0/ρ
0
]A=12.8 > [(c0)2ρ0D0/ρ

0
]A=0 (figure 6b) but with the ratio close to

one. However, with [(γ − 1)qkpn
]A=0 > [(γ − 1)qkpn

]A=12.8, a result of the equation-
of-state dependence on A manifested through the decrease in pressure for increasing
A, then [(1 − λ)ν]A=12.8 > [(1 − λ)ν]A=0. Consequently, λ at the sonic point, λs, for
A= 12.8 must be smaller than λs for A= 0, since ν is fixed, as shown in figure 4(b).
The DDZ is thus terminated when ω= 0 at a point of more incomplete reaction as A
is increased.

We have previously noted in figure 4(b) the increase in |ηs| as me/W increases, with
the fixed reference length scale l̃1/2 adopted (§ 5). As discussed in § 5, the alternative
length scale l̃ηs , as guided by the asymptotic analysis (§ 4), represents the distance
between the detonation shock and sonic flow point. Adopting the reference length
scale l̃ηs rescales ηs = −1 in all cases, and allows us to recast figure 4(a) in terms
of Wηs . The rescaling of figure 4(a) is presented in figure 7. Although the asymptotic
results are identical, just that W has been rescaled to Wηs based on setting ηs =−1,
we observe an increase in numerical size of me/Wηs relative to me/W, verifying the
description of the role of the length scale choice discussed in § 5. However, with
l̃ηs , as each separate confinement case for varying me and channel width will have
a different reference length scale, we proceed with using the fixed scale l̃1/2 as the
chosen reference scale for clarity of discussion.

We now explore the effect of varying the pressure exponent n in the reaction rate
(5.3) for fixed A and ν. Figure 8(a) shows the variation of the asymptotically derived
propagation speed D0 from (5.7) with me/W for A = 12.8, s = 0, ν = 1/2 and n =
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and A= 12.8 as a function of η for me/W = 0.005, s= 0, n= 2 and ν = 0.5.
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FIGURE 7. A rescaling of figure 4(a), showing the variation of D0 now with (1+ s)me/Wηs

for slab (s= 0) and cylindrical (s= 1) geometries with n= 2 and ν = 0.5 and for A= 0,
A= 6.4 and A= 12.8.

1.75, n= 2 and n= 2.25. Again, each curve is characterized by a monotonic decrease
in D0 with increasing me/W and a critical value of me/W, beyond which no steady
solutions are possible, corresponding to a turning point in the D0 versus me/W relation.
The speed D0 decreases more rapidly with me/W as n increases, with the critical
value of me/W also decreasing as n increases, while D0 increases at the critical point.
Consequently, for a fixed charge width W, the larger the rate exponent n the smaller
the boundary streamline deflection the detonation can withstand. This implies that a
detonation in an HE with a lower reaction rate state-sensitivity (smaller n) is more
capable of propagating when confined by materials with smaller impedances over one
with a larger state sensitivity (larger n). Note that increases in n are associated with
a longer reaction tail in the ZND structure (§ 5). Here, we conjecture that as the
reaction rate is weakened in the tail, a given boundary streamline deflection gradient
will lead to more of the reaction being cutoff in the DDZ to achieve the reaction
rate required to balance the energy loss term σ . This is indeed the case, as shown in
figure 8(b). For each n, as me/W increases, the reaction progress variable at the sonic
point decreases as me/W increases, while the sonic flow location moves increasingly
downstream of the shock, i.e. the DDZ length increases. Moreover, at any fixed me/W,
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FIGURE 8. (a) Variation of D0 with me/W for s = 0, A = 12.8, ν = 0.5 and n = 1.75
(k = 2.61113 × 10−3), n = 2 (k = 9.67560 × 10−4) and n = 2.25 (k = 3.58579 × 10−4).
(b) The corresponding variation in ηs (solid lines) and λs (dashed lines).

-2-4-6
˙

-8-10 -2-4-6
˙

-8-10

200(a) (b)

190

180

170

160

150

10

8

6

4

2

0

40
35
30
25
20
15
10
5

0

140
135
130
125
120
115
110
105
100

(c
0 )2 ® 0

D
0/

®0

(©
 -

 1
)q

kp
n

n = 1.75
n = 2.25

˜ = 1.0
˜ = 1.5

FIGURE 9. Variation of (c0)2ρ0D0/ρ
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function of η for A= 12.8, me/W = 0.004, s= 0, and (a) ν = 0.5, n= 1.75 and n= 2.25
and (b) n= 2, ν = 1 and ν = 1.5.

the reaction progress variable at the sonic point is smaller as n increases. The variation
of (c0)2ρ0D0/ρ

0 and (γ − 1)qkpn with η for me/W= 0.004, s= 0, ν= 1/2 and n= 1.75
(D0= 7.251) and n= 2.25 (D0= 6.814) are shown in figure 9(a) . At the sonic point,

[(1− λ)ν]n=1.75

[(1− λ)ν]n=2.25
=
[(c0)2ρ0D0/ρ

0
]n=1.75

[(c0)2ρ0D0/ρ0]n=2.25

[(γ − 1)qkpn
]n=2.25

[(γ − 1)qkpn]n=1.75
. (6.2)

From figure 9(a), the right-hand side is dominated by the factor

[(γ − 1)qkpn
]n=2.25/[(γ − 1)qkpn

]n=1.75,

where [(γ − 1)qkpn
]n=2.25�[(γ − 1)qkpn

]n=1.75, so that [(1−λ)ν]n=1.75< [(1−λ)ν]n=2.25
and [λs]n=2.25 < [λs]n=1.75. Thus, the decrease in reaction rate in the reaction tail as n
increases results in the DDZ terminating at a point of more incomplete reaction, as
conjectured.

Finally, we explore the effect of varying the reaction order in the rate form (5.3) for
fixed A and n. Figure 10(a) shows the variation of the asymptotically derived solution
for D0 from (5.7) with me/W for A= 12.8, s= 0, n= 2 and ν= 0.5, ν= 1 and ν= 1.5.
Figure 10(b) shows the variation in the location of the sonic point relative to the shock
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FIGURE 10. (a) Variation of D0 with me/W for s= 0, A= 12.8, n= 2 and ν = 0.5 (k=
9.67560 × 10−4), ν = 1 (k = 1.15912 × 10−3) and ν = 1.5 (k = 1.40239 × 10−3). (b) The
corresponding variation in ηs (solid lines) and λs (dashed lines).

(η = 0) and the value of the reactant progress variable λs at the sonic flow point as
a function of me/W. Increasing the reaction order leads to a more rapid drop in D0
as me/W increases (figure 10a). The value of me/W at the critical point is reduced
for increasing ν, while D0 also decreases at the critical point for increasing ν. The
latter feature differs from the D0 behaviour at the critical point for increasing A and
n. Increasing the reaction order leads to a higher reaction rate at the shock, but a
longer reaction tail (§ 5). The length of the ZND wave is formally infinite for ν > 1,
while the DDZ length for me/W > 0 is finite and shortens as me/W increases. For
ν = 1, the DDZ length reaches a minimum near the critical point before increasing
again. The reaction progress variable at the sonic point decreases for each ν as me/W
increases, with a more rapid decrease as ν increases (figure 10b). Figure 9(b) shows
the variation of (c0)2ρ0D0/ρ

0 and (γ − 1)qkpn with η for me/W = 0.004, s= 0, n= 2
and ν = 1 (D0 = 6.373) and ν = 1.5 (D0 = 5.880). As before, at the sonic point,

[(1− λ)ν]ν=1

[(1− λ)ν]ν=1.5
=
[(c0)2ρ0D0/ρ

0
]ν=1

[(c0)2ρ0D0/ρ0]ν=1.5

[(γ − 1)qkpn
]ν=1.5

[(γ − 1)qkpn]ν=1
. (6.3)

Unlike the previous cases, from figure 9(b), the ratio on the right-hand side is
approximately one (≈1.016), and thus the observed variation in λs (figure 10b) is
a result of the reaction-order dependence of the rate term. With the right-hand side
of (6.3) being close to one, we must have [λs]ν=1 > [λs]ν=1.5, confirming the results
seen in figure 10(b). In summary, increasing the stiffened constant A, pressure rate
exponent n and reaction order ν causes D0 to drop more rapidly as me/W increases,
leading to smaller values of me/W at which the critical point is reached, i.e. in
each case, the detonation’s ability to overcome the energy deficit caused by the rate
of change of mass flux through the wave associated with the boundary streamline
deflection is diminished.

In order to ascertain the accuracy of the asymptotic analysis in § 4, we now
compare the asymptotically calculated variation of D0 obtained from (5.7) with
varying boundary streamline deflection angle θe (where me = tan θe, § 2) for
A= 0, n= 2, ν = 0.5 and s= 0, with a numerical solution of the full flow equations
(2.1). The simulations are conducted in a 2-D planar domain (s= 0) with an imposed
linear boundary streamline shape −meη and use the rate and EOS models described
in § 5 with A = 0, n = 2 and ν = 0.5. The simulation results are obtained using a
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shock- and HE boundary streamline-fitted strategy described in Chiquete et al. (2018),
Chiquete & Short (2019). In each of these simulations, the charge size W and final
boundary streamline deflection angle θe are fixed. Initial conditions consist of a fully
confined ZND wave (§ 5) with the boundary streamline angle initially set to zero.
The linear HE boundary streamline is then rotated in time until the desired θe is
reached, whereupon the detonation is allowed to relax to its steady state solution
corresponding to θe. For each W, the angle θe is increased until a critical point is
obtained, beyond which no steady solutions exist and failure ensues. The simulations
had a resolution corresponding to 20 points per unit length based on the reference
scale l̃1/2 defined in § 5. Comparison is then made between the asymptotically and
numerically derived solutions for D0 for each W and θe as shown in figure 11(a) for
three values of W.

For the full simulations based on (2.1), and for the channel half-width W = 1.956,
the detonation fails when the boundary streamline is deflected through θe = 1◦, for
W = 4.8735 through θe = 2.5◦ and for W = 9.6316 through θe = 5◦. Guided by the
position of the sonic point flow location ηs calculated in figure 4(b) for A = 0, the
channel half-width W = 1.956 is smaller than the reaction zone thickness (ηs) across
the range of θe simulated, while the choice W = 4.8735 is still shorter, but now more
comparable to ηs, whereas W = 9.6316 is comparable to ηs. For the charge sizes
W = 1.956 and W = 4.8735, we see from figure 11(a) that the agreement between the
simulation results for the propagation speed D0 at any given θe and the asymptotic
prediction of D0 for the same θe and W is excellent. In addition, the failure points
are in excellent agreement. Even for W = 9.6316, where the DDZ and charge width
are comparable, we again observe very good agreement, except for a small variation
near the critical point. In figure 11(b), we recast the results of figure 11(a) so that D0
for the simulation and asymptotic results are shown as a function of me/W. In this
case, the asymptotic results collapse onto the same curve, i.e. that shown in figure 4(a)
for A= 0, while the variation of D0 with me/W for the simulation results with W =
1.956 and W = 4.8735 collapse onto each other, and onto the asymptotic result. The
simulation results for D0 versus me/W for W= 9.6316 also collapses to those for W=
1.956 and W = 4.8735, except close to the failure point. We thereby conclude that the
asymptotic theory is capturing the essential physical elements of the dynamics of thin
channel, heavily confined, detonation propagation, and the scaling choice me = O(δ)
in § 4 is the appropriate limit to adopt.

6.2. Curved HE boundary streamline
While the assumption of a straight boundary streamline shape −meη allows for a
systematic study of the detonation structure and speed as me/W is varied, as noted
above, the energy equation (4.21) implies that, in the thin channel limit, curvature of
the HE boundary streamline can have a significant effect on the detonation dynamics.
In order to be guided by some physics-based HE boundary streamline shapes, we
first conduct a series of multi-material simulations using the methodology described in
Short & Quirk (2018b). Specifically, we consider a planar 2-D channel geometry, in
which a detonation propagates axially in the HE channel, with the HE confined axially
by an inert metal (Short & Quirk 2018b). The HE is described by the ideal-condensed-
phase model described in § 5, with A= 0, n= 2 and ν= 1/2 (k≈ 7.21869× 10−4). The
half-thickness of the channel is W = 9.6316, one of the cases considered in figure 11.
For the confiner, which we model as a fluid under high-pressure shock loading (Short
& Quirk 2018b), we use a Mie–Grüneisen equation of state with a reference curve
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FIGURE 11. (a) Comparison of the asymptotically calculated variation in D0 (solid lines)
with boundary streamline deflection angle θe (figure 2a) for W = 1.956, W = 4.8735
and W = 9.6316 with the corresponding numerical simulations of the full flow equations
(2.1) (shown as circles) for each θe calculated for A = 0, n = 2 and ν = 0.5. For both
the asymptotic and simulation calculations, the HE boundary streamline shape (−meη) is
linear. (b) A rescaling of (a), where now the variation in D0 is plotted with me/W, so
that the asymptotic curves collapse onto each other.

that invokes a linear shock speed (Us) – particle speed (up) Hugoniot-state variation,
where Us = cc + scup (Davis 1998; Menikoff 2007). Here, cc is the confiner sound
speed at the ambient state, while sc is the slope dUs/dup. The corresponding internal
energy e is

e=
c2

ct2

2(1− sct)2
+

1
Γc0ρc0

(
p−

ρc0c2
ct

(1− sct)2

)
, t= 1−

ρc0

ρ
, (6.4a,b)

where Γc0 is the Grüneisen gamma and ρc0 is the ambient confiner density
(Short & Quirk 2018b). For the purposes of this article, we first consider three,
high density, strongly confining materials – platinum (Pt) (cc = 3.68 mm µs−1,
sc = 1.46, ρc0 = 21.449 g cm−3, Γc0 = 2), tantalum (Ta) (cc = 3.43 mm µs−1,
sc = 1.19, ρc0 = 16.656 g cm−3, Γc0 = 1.5) and lead (Pb) (cc = 2.03 mm µs−1,
sc = 1.47, ρc0 = 12.346 g cm−3, Γc0 = 2). The multi-material (MM) simulations are
conducted with a two-layer adaptive mesh refinement strategy as described by Short &
Quirk (2018b), with a fine grid resolution of 80 points per unit length (the reference
length scale l̃1/2 is that set in § 5).

The resulting material interface shapes (interface displacement versus axial distance)
for the Pt, Ta and Pb confinements, obtained when the detonation is propagating
steadily, are shown in figure 12(a–c). Due to the density difference between the
confiner and HE, and that we are modelling both as a fluid, a Kelvin–Helmholtz
instability develops along the material interface. However, as demonstrated below,
averaging of the interface displacement shows that near the detonation shock, the
displacement is approximately linear in η, the interface then curves concavely relative
to the HE, before becoming approximately linear again. The bending of the interface
is a result of the drop in pressure through the reaction zone behind the detonation
shock. The recovery of the latter linear behaviour arises when the interface pressure
becomes low enough that it can no longer support the outward acceleration of the
interface. The characteristic deflection shapes of the material interfaces observed
in figure 12 are consistent with those obtained for a range of other, lower density,
confining materials (Short & Quirk 2018b).
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FIGURE 12. Multi-material simulation derived interface shapes (MM) for (a) Pt (D0 =

7.054), (b) Ta (D0= 6.678) and (c) Pb (D0= 5.204) confinements. The interface deflection
is shown as a function of axial distance in a frame whose origin is the point at which the
detonation shock intersects the material interface. Also shown are the two interface shapes
−meη and −meh(η), where me is obtained from shock polar analysis and h(η) is given by
the quadratic/linear function (6.5) with parameters hw and hg fitted to the multi-material
interface shapes. The locations of the sonic flow point along the interfaces are additionally
shown for the multi-material simulations [Sonic (MM)] and the asymptotic theory (§ 4)
using the fitted interface shape −meh(η) [Sonic (−meh(η))].

For the asymptotic analysis described in § 4, we have prescribed that the HE
boundary streamline shape is given, generally, by the function −meh(η). The interface
or boundary streamline gradient −me at η= 0 should be consistent with that obtained
via a shock polar analysis at the intersection point of the detonation shock and
material interface. Such an analysis can be performed, as in Short & Quirk (2018b),
with the detonation shock/material interface intersection point propagating axially
at the steady detonation phase speed D0 obtained directly from the multi-material
simulations for each confiner material, i.e. D0 = 7.054 for Pt, D0 = 6.678 for Ta and
D0 = 5.204 for Pb. The results of the shock polar analysis are shown in figure 13,
which shows the pressure along the HE detonation and confiner shocks at the
intersection point as a function of the streamline turning angle θ for the given D0.

The crossing point of the two shock pressures gives the relevant streamline turning
angle θe (figure 2a) for the HE/confiner pair, whereupon me = tan θe. We find that
for Pt, θe = 3.44135◦ (me = 0.060135), for Ta, θe = 4.50810◦ (me = 0.078844) and for
Pb, θe= 6.78256◦ (me= 0.118934). Thus, as expected, the magnitude of the boundary
streamline gradient at η= 0 increases as the confiner density decreases. Figure 12(a–c)
also shows a plot of the linear streamline shape −meη for each of the three confiner
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FIGURE 13. Shock polar analysis showing the detonation shock pressure (solid lines)
and confiner shock pressure (dashed lines) at the material interface intersection point as
a function of streamline turning angle θ for Pt (D0 = 7.054), Ta (D0 = 6.678) and Pb
(D0 = 5.204) confinement materials. The dotted lines show the flow streamline turning
angle θe (me = tan θe) at the detonation/confiner shock pressure crossing points.

materials. In each case, near η = 0, the shock-polar-based linear streamline shape is
in excellent agreement with the multi-material simulations, as it should be.

With me determined, we find that the interface shapes in the multi-material
simulations for Pt, Ta and Pb through the extent of the DDZ (figure 12) can be
fitted to a smooth quadratic/linear function h(η) defined by

h(η)= η(1+ hwη), η > ηt; h(η)= hg(η− ηt)+ ηt(1+ hwηt), η < ηt, (6.5a,b)

where

ηt =
hg − 1

2hw
, (6.6)

and hw(> 0) and hg(> 0) are fitting parameters. Here hw is a parameter related to
the curvature of the streamline (−2mehw/(1+m2

e(1+ 2hwη)
2)3/2) for η > ηt, while hg

is a parameter related to the streamline gradient (−mehg) when the streamline shape
transitions to a linear function of η (for η < ηt). With a least squares fitting approach,
we find that for Pt, hw = 0.043529 and hg = 0.586298, for Ta, hw = 0.045000 and
hg = 0.605888, and for Pb, hw = 0.029654 and hg = 0.656009. The resulting material
interface or boundary streamline shapes −meh(η) for each of the confiner materials is
shown in figure 12(a–c). In each case, near η= 0, the streamline gradient −meh′(η)≈
−me, but h′(η) decreases below one due to curvature of the interface, bending the
interface concavely, before limiting to h′(η) = hg(< 1) for η < ηt. In the context of
the energy equation (4.21), such a change in the streamline gradient −meh′(η) of the
curved boundary streamline will reduce the rate of change of mass flux through the
wave relative to that with a fixed boundary streamline gradient (where −meh′(η) =
−me). This limits the redistribution of energy that would otherwise serve to drive
the acceleration of the longitudinal flow from subsonic behind the shock to sonic.
Consequently, for any given me, based on (4.21), we expect that the detonation phase
speeds will be greater for the curved boundary streamline shapes −meh(η) shown in
figure 12(a–c) compared to those obtained with the corresponding straight boundary
streamline assumption −meη.
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FIGURE 14. Detonation phase speed (D0) variations for the three confinement cases
corresponding to θe= 3.44135◦ (Pt), θe= 4.50810◦ (Ta) and θe= 6.78256◦ (Pb). Shown are
the results for the multi-material simulations (MM), the asymptotic results calculated from
(5.7) both for the curved boundary streamline shapes −meh(η) (Asymp (CW)) based on
(6.5) and the straight streamline shapes −meη (Asymp (SW)), and finally the shock- and
boundary streamline-fitted simulation results using the curved streamline shapes −meh(η)
(SF (CW)) and straight streamline shapes −meη (SF (SW)).

With the three curved boundary streamline shapes −meh(η) now set using (6.5),
corresponding to θe = 3.44135◦ (Pt), θe = 4.50810◦ (Ta) and θe = 6.78256◦ (Pb),
where me= tan θe, the corresponding detonation speed D0 from the asymptotic theory,
through the solution of (5.7), can be calculated for each of the curved streamline
shapes −meh(η). The asymptotic predictions of D0 for the Pt, Ta and Pb curved
−meh(η) shapes are shown in figure 14. Compared with the asymptotic results
assuming a straight boundary streamline shape (where −meη), for the θe values
corresponding to both Pt and Ta, D0 is significantly larger for the curved streamline
shape, as predicted. For Pt, D0 = 7.092 for −meh(η) compared to D0 = 6.575 for
−meη, while for Ta, D0 = 6.731 for −meh(η) compared to D0 = 5.707 for −meη.
Moreover, for the Pb confinement derived curved boundary streamline shape, a steady
solution now exists with D0 = 5.111, whereas for the straight streamline assumption,
the detonation has failed. Consequently, for curved boundary streamlines that bend
concavely as in figure 12(a–c), the values of the initial streamline gradient −me over
which steady solutions are possible is significantly extended. In summary, for any
fixed channel size W, as conjectured, the asymptotic theory shows that a curved
boundary streamline in the thin channel limit has a significant effect on the dynamics
of detonation propagation and the range of me over which steady solutions are
possible.

For completeness, we have also conducted numerical simulations for the curved
boundary streamline shapes −meh(η) (6.5) derived from the Pt, Ta and Pb multi-
material confinement simulations based on the shock- and boundary streamline-fitted
approach described in § 6.1. Figure 14 also shows that the asymptotic results for
D0 obtained from (5.7) for the three curved boundary streamline shapes to be in
excellent agreement with D0 obtained from the shock- and boundary streamline-fitted
numerical simulations, with the difference in D0 increasing slightly for the weaker
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FIGURE 15. Streamline shapes within the DDZ for a shock- and boundary streamline-
fitted simulation based on the curved boundary streamline shape −meh(η) for Pb (solid
blue lines), and compared with the asymptotic results derived from § 4.1 (dashed red
lines).

Pb confinement material. Again, we conclude that the asymptotic theory is capturing
the essential physical elements of the dynamics of strongly confined detonation
propagation in thin channels when the boundary streamline is, realistically, curved.
While not the objective of the current study, which is to use the multi-material
simulations to generate physics-based curved streamline shapes, both the shock- and
boundary streamline-fitted results and the asymptotic results for D0 based on −meh(η)
are in good agreement with the multi-material simulations, showing that the fitted
curved boundary streamline shapes contain the primary elements of the effect of the
material interface deflection on the DDZ.

The internal steady-flow streamline shapes derived from the asymptotic analysis
(§ 4.1) show that the internal streamlines should follow the boundary streamline
shape. Thus, for the three curved boundary streamline shapes obtained above, the
streamlines should be straight near η= 0, bend inward and then straighten. Figure 15
shows the internal streamline shapes from the asymptotic theory in § 4.1 for the
curved boundary streamline shape −meh(η) for Pb, compared with an equivalent
shock- and boundary streamline-fitted simulation result. The agreement in internal
streamline shape is excellent, and follows the described prescription.

Finally, we consider a fourth confinement material, namely beryllium (Be).
While it is a low-density metal (ρc0 = 1.85 g cm−3), it has a high sound speed
(cc = 7.99 mm µs−1), and thus Be possesses a large material impedance. The
dynamics of detonation propagation under Be confinement has been discussed
extensively by Short & Quirk (2018b). The high sound speed means that energy
transmitted into the Be, due to pressure loading from the HE detonation, can propagate
ahead of the detonation. This causes the material interface ahead of the detonation to
deflect into the HE, thus compressing the effective HE volume on detonation shock
arrival. This provides a nozzling effect to the propagation dynamics, the result of
which is that the detonation structure becomes relatively planar, and its phase speed
can be driven above DCJ (Short & Quirk 2018b). The Be effectively acts like a strong
confiner, although the confinement mechanism is different than the Pt, Ta and Pb
materials considered above. While the asymptotic theory developed in § 4 has not
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FIGURE 16. As for figure 12, but now for the multi-material simulation derived interface
shape (MM) for Be (D0 = 8.230) confinement.

been designed to capture all the upstream details observed for Be confinement, it
can shed significant light on how the deflection of the material interface into the HE
(where −meh′(η) > 0) influences the detonation propagation.

As above, a multi-material simulation for Be confinement with W = 9.6316 has
been conducted with the equation of state (6.4) parameters cc = 7.99 mm µs−1,
sc = 1.13, ρc0 = 1.85 g cm−3 and Γc0 = 2 for Be. The resulting material interface
shape is shown in figure 16. Upstream of the detonation shock (η= 0), the material
interface is deflected into the HE. Sufficiently far downstream, the pressure of the
detonation products forces the Be interface to deflect outward. The detonation speed
from the multi-material simulation is D0= 8.230, above that of DCJ. In order to mimic
the effect of the Be confinement through the asymptotic theory developed in § 4, we
can fit the interface shape −meh(η), with h(η) given by (6.5), to the multi-material
interface region behind the detonation shock, as shown in figure 16. In doing so,
we take W = 9.23768, the half-width of the HE at the point where the detonation
shock meets the material interface, as determined by the multi-material simulation.
The fitting gives me=−0.158065, hw= 0.198 and hg=−0.482672. Note that there is
no equivalent shock polar theory that applies to the case of Be confinement due to
the subsonic or weakly supersonic nature of the flow in the Be, as discussed in Short
& Quirk (2018b), and thus me must be fitted in addition to hw and hg. Consequently,
at η = 0, the streamline gradient −meh′(η) > 0 and the interface moves into the HE.
The interface is now curved convexly, and so its gradient decreases, and a point is
reached where −meh′(η) = 0. Subsequently, the interface is deflected outward, and
−meh′(η) < 0.

The basic dynamics of how the detonation speed is significantly increased by the
Be confinement, compared with the Pt, Ta and Pb confinement materials discussed
above, can now be understood through the relative contributions of the second term
on the right-hand side of the energy balance equation (4.21) (or equivalently (5.7)).
This describes the counteraction or reinforcement of longitudinal flow acceleration
resulting from the HE boundary streamline deflection, specifically the induced rate
of change of mass flux through the detonation wave. In the Be confinement region
where −meh′(η) > 0, the rate of change of mass flux is now positive, an effect that,
like the chemical energy contribution, supports the longitudinal acceleration of the
flow. Note that steady solutions are not possible if −meh′(η) were to remain positive.
However, once the Be interface deflects outward, as in figure 16, −meh′(η) < 0
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and the rate of change of mass flux is now negative, so that steady-flow solutions
can be accessed. For the Be-based boundary streamline shape given by −meh(η)
in figure 16, this can now be applied directly to the asymptotic theory (5.7) to
determine the asymptotically derived detonation speed and compared to the value
obtained from the multi-material numerical simulation. The asymptotic theory (5.7)
gives D0 = 8.121, a value both above DCJ and in reasonable agreement with the
multi-material simulation (D0 = 8.230), despite the assumptions made in fitting
−meh(η). The enhanced acceleration of the flow caused by the boundary streamline
deflection into the HE allows the detonation to propagate above DCJ. Clearly, the
asymptotic theory derived in § 4 is able to capture some of the primary dynamics of
how the interface deflection affects the detonation propagation under Be confinement.

7. Summary

We have formulated an asymptotic theory for how the limit of strong confinement
affects 2-D steady detonation propagation and failure in a 2-D planar or axisymmetric
cylindrical geometry, where the detonation speed D0 departs from the Chapman–
Jouguet speed DCJ by O(1) amounts, such that 1−D0/DCJ=O(1). The theory is based
on the limit of a small channel width or radius relative to the detonation driving zone
length. It describes the effect that the confiner shape has on the detonation structure
and speed, considering confinement both driven outward by the high explosive
detonation, and also initially inward by certain types of high-sound-speed confiners.
It details the rate-of-change in mass flux through the wave as a function of the HE
boundary streamline (confiner) shape.

A one-dimensional energy balance differential equation is derived through the
asymptotic theory, which shows how the longitudinal acceleration of subsonic flow
behind the shock is influenced by chemical reaction and the effects of the boundary
streamline deflection, specifically via the induced rate of change of mass flux through
the wave. The energy change associated with the latter serves to either counteract
or reinforce the acceleration of longitudinal flow depending on the sign of the
gradient of the streamline deflection at the detonation shock. The asymptotically
derived energy equation has a saddle structure at the sonic flow point, resulting in an
eigenvalue problem for the determination of the steady detonation speed (D0), which
must correspond to a cancellation of the chemical energy deposition and confinement
energy effects at the sonic point. For given boundary streamline gradient (me) at the
detonation shock, half-channel width or radius (W) and boundary streamline shape
(−meh(η)), the DDZ structure is determined by the value of D0 that allows the
flow solution to pass smoothly through the saddle point. In the present work, D0 is
obtained from the asymptotic theory via a shooting method. For me> 0 and h′(η)> 0,
i.e. where the boundary streamline moves outward, the larger the magnitude of the
streamline deflection the greater the associated energy loss given to supporting the
boundary streamline deflection, which leads to a lowering of the detonation speed
D0. For too large an energy loss, there is no solution for D0, corresponding to the
loss of steady-flow solutions, and detonation failure.

The asymptotic analysis is valid for general equations-of-state and chemical reaction
rates in the HE, while revealing significant physical insights into how detonation
propagation and failure is affected by confinement. We have explored specific results
for the ideal and stiffened equations of state, the latter based on the magnitude of a
stiffened constant A, along with a standard pressure-dependent reaction rate for which
changes in the pressure exponent n and reaction order ν have also been studied. An
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analysis is first conducted for an assumption of a straight boundary streamline shape.
For this case, the energy balance equation shows that D0 depends only on the ratio
of me/W. We have calculated D0 as a function of me/W for variations in A, n and
ν. For increasing A, n and ν, the rate of decrease of D0 becomes more rapid for
increasing me/W, while simultaneously decreasing the range of me/W over which
steady solutions are possible (failure limit). We have related these observations to
changes in the rate-of-reaction and degree of reaction progress (λs) at the sonic flow
point, leading to physical insights on what drives the decrease in λs. We have also
compared the asymptotic results to numerical simulations based on a shock- and
streamline boundary-fitted approach and found excellent agreement.

The energy balance equation shows that the detonation speed and failure limit
has a significant dependency on curvature of the HE boundary streamline. In order
to obtain physically meaningful boundary streamline shapes, we conducted a series
of multi-material simulations to obtain material interface shapes for confinement
by the dense metals platinum (Pt), tantalum (Ta) and lead (Pb). Quadratic/linear
functional form fits to the multi-material interface shapes were used to obtain the
curved HE boundary streamline shapes for study in the asymptotic analysis. For Pt,
Ta and Pb confinements, the material interface is straight near the detonation shock,
bends concavely further downstream, and then limits again to a constant gradient. A
shock polar analysis is used to obtain the boundary streamline gradient at the shock.
Using the resulting curved boundary streamline shapes in the asymptotic theory, the
changes in D0 relative to a straight streamline are observed to be significant. Our
asymptotic theory shows that the curvature of the boundary streamline inhibits the
rate of decrease of mass flux through the wave due to the streamline deflection. This
then leads to a significantly larger D0 than that calculated with a straight streamline
based on the same boundary streamline gradient at the shock. Curved boundary
streamlines also significantly extend the range of me/W over which steady solutions
are possible. For instance, using the boundary streamline (material interface) shape
obtained from the Pb confinement simulation, a steady solution exists for the curved
boundary streamline, but not for a straight streamline. When compared with numerical
simulations based on a shock- and streamline-fitted approach, the asymptotic theory
for the calculation of D0 for curved boundary streamlines is found to be in close
agreement. The final case we studied is for beryllium (Be) confinement, a high sound
speed metal. Multi-material simulations shows that the Be interface is forced into the
HE region, before expanding out. Fitting the boundary streamline shape for Be, the
asymptotic theory shows that the inward bending of the streamline positively assists
the acceleration of the flow to sonic, driving D0 above the Chapman–Jouguet speed
for the case studied. The theory provides significant insights on this complex flow
interaction problem.

In summary, we have developed a theory for understanding the dynamics of
detonation confinement, for which analytical results are limited in the literature. The
asymptotic theory captures the essential physical elements of the dynamics of thin
channel, strongly confined, detonation propagation and failure mechanisms. Extensions
to more complex equations of state and rate laws will be considered next, especially
for the insensitive high explosive PBX 9502, although we do not envisage any
significant new physics than that revealed with our simpler models.
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