ON G-MATRICES OF ARBITRARY POWERS

RICHARD J. TURYN

A C-matrix is a square matrix of order $m+1$ which is 0 on the main diagonal, has ± 1 entries elsewhere and satisfies $C^{\prime}=\epsilon C, C C^{\prime}=m I$. Thus, if $\epsilon=-1, I+C$ is an Hadamard matrix of skew type $[3 ; 6]$ and, if $\epsilon=1$, $i I+C$ is a (symmetric) complex Hadamard matrix [4]. For $m>1$, we must have $\epsilon=(-1)^{(m+1) / 2}$. Such matrices arise from the quadratic character χ in a finite field, when m is an odd prime power, as $\left[\chi\left(a_{i}-a_{j}\right)\right]$ suitably bordered, and also from some other constructions, in particular those of skew type Hadamard matrices. (For $\epsilon=1$ we must have $m=a^{2}+b^{2}, a, b$ integers.) Goldberg [2] showed that if a skew Hadamard matrix of order $m+1$ exists then one of order $m^{3}+1$ also exists, i.e. the theorem of this paper for $\epsilon=-1, n=3$. Goethals and Seidel ([1]) pointed out an early result of Belevitch, the theorem for $\epsilon= \pm 1, n=2$. J. Wallis [5] pointed out that both of these results hold for $\epsilon= \pm 1$ and gave a proof of the theorem for $n=5$ and 7 . It is clear that it is sufficient to prove the theorem for n prime. In this paper we finish the theorem by proving it for all odd primes p. The construction here is a direct generalization of the ones given by Wallis; it coincides with Goldberg's for $n=3$. As a consequence of the theorem we have some (presumably) new Hadamard matrices, and skew type Hadamard matrices. The smallest candidates for new (skew type) orders of Hadamard matrices are $15^{11}+1$ and $15^{13}+1$.

If we start with an arbitrary C-matrix of order $m+1$ we may form an equivalent one with first row all +1 , first column ϵ, except the 0 on the main diagonal. The remaining core matrix of order m, say W, satisfies $J W=W J=0, W^{\prime}=\epsilon W, W W^{\prime}=m I-J$, with J the matrix with all entries $=1$. Conversely, given W which satisfies these conditions, we can border it and get a C-matrix. In the remainder of the paper we assume that p is an odd prime, and W a matrix satisfying the conditions above. Define a G-string to be a sequence of p symbols, each I, J or W, such that each I is followed by a J and each J preceded by an I, where the last symbol is considered to be followed by the first one for the purpose of deciding which sequences are G-strings. Any sequence of length p of symbols I, J, W, is to represent the Kronecker product G of the corresponding matrices, i.e. a matrix of order m^{p}. The matrix of order m^{p} we construct is the sum of all the G-strings.

Lemma 1. If G_{1} and G_{2} are different G-strings then there is a position in which G_{1} has W and G_{2} has J or vice-versa.

[^0]Proof. If all the positions which have a W in either string have a W in the other, the two strings are identical, since each must be completed uniquely from the set of W 's in it by adding consecutive pairs I, J in the vacant places. Thus assume that G_{1} has a W in a position (which we may write as the first) in which G_{2} does not have a W. If G_{2} has a J there, we are done, so assume

$$
\begin{aligned}
G_{1} & =W \times \ldots \text { and } \\
G_{2} & =I \times J \times \ldots,
\end{aligned}
$$

since a J must follow an I. Then the second position in G must have an I, as otherwise we are finished, and thus the third a J. We now have

$$
\begin{aligned}
& G_{1}=W \times I \times J \times \ldots \text { and } \\
& G_{2}=I \times J \times \ldots,
\end{aligned}
$$

so that the third position in G_{2} must have an I, etc. Since each G-string has at least one W, p being odd, G_{2} has a W somewhere; the smallest index for which G_{1} or G_{2} has a W corresponds to a J in the other.

Lemma 2. If G_{1} and G_{2} are different G-strings there is a position in which G_{1} has $a W$ and G_{2} an I, or conversely.

Proof. This follows from Lemma 1 by interchanging I and J and reading backwards.

Lemma 3.

(1) $G^{\prime}=\epsilon G$.
(2) $G_{i} G_{j}=0$ if $G_{i} \neq G_{j}$.
(3) $G_{i}{ }^{*} G_{j}=0$ if $G_{i} \neq G_{j}$, i.e. different G_{i} and G_{j} do not have non-zero entries in the same place (Hadamard product).

Proof. The first statement follows from the fact that each G-string has an odd number of W^{\prime} 's and $W^{\prime}=\epsilon W, I^{\prime}=I, J^{\prime}=J$. The second follows from Lemma 1 since $J W=W J=0$, and the third from Lemma 2 since $W^{*} I=0$.

We let W_{p} be the matrix of order m^{p} which corresponds to the sum of all the G-strings, so that e.g.

$$
W_{3}=W \times W \times W+I \times J \times W+W \times I \times J+J \times W \times I
$$

This is Goldberg's original construction but as restated by Wallis (Goldberg considered the corresponding 0,1 matrix). For the exceptional case $p=2$ we have the Belevitch construction

$$
W_{2}=W \times W-I \times J+J \times I
$$

We now have $W_{p}{ }^{\prime}=\epsilon W_{p}$ and from Lemma 3 we know that $W_{p} W_{p}{ }^{\prime}=$ $\sum G_{i} G_{i}{ }^{\prime}$, the sum taken over all G-strings.

Lemma 4. W_{p} has ± 1 entries except 0 on the main diagonal.

Proof. From part 3 of Lemma 3 we know that all entries of W_{p} are $0,+1$ or -1 , and clearly W_{p} is zero on the main diagonal as all G_{i} are. We will now show that all other entries are +1 or -1 . A pair of subscripts (row and column) for W_{p} consists of two p-tuples (i_{1}, \ldots, i_{p}), (j_{1}, \ldots, j_{p}) with $1 \leqq i_{k}, j_{k} \leqq m$. If $i_{k} \neq j_{k}$ for all k then $W \times W \times \ldots \times W$ is not zero in that entry. If $i_{k}=j_{k}$ but $i_{k-1} \neq j_{k-1}(k \bmod p)$ then we take the k th symbol in a G-string as I and the $(k+1)$ th as J. In general, for each block of exactly t consecutive $(\bmod p)$ indices such that

$$
i_{k+r}=j_{k+r}, 0 \leqq r \leqq t-1,
$$

we let the k th, $(k+2)$ th, $(k+4)$ th, \ldots symbols be I, the symbols following I be J, and complete to a G-string with W in all other positions. We thus get a G-string which has a non-zero entry in the desired position.

As a corollary, we note some interesting numerical identities.
Corollary.

$$
\begin{gather*}
m^{p}-1=(m-1)^{p}+p \sum_{k=1}^{p-1 / 2} \frac{m^{k}(m-1)^{p-2 k}}{k}\binom{p-k-1}{k-1} \tag{1}\\
\sum_{k \geqq 1}\binom{k}{i-k}\binom{p-k-1}{k-1} \frac{p}{k}=\binom{p}{i} \tag{2}\\
\left.\sum_{k \geqq 1} \frac{\binom{i}{i-k}\binom{p-i}{2 k-i}}{(p-1} \begin{array}{l}
k
\end{array}\right) \tag{3}
\end{gather*}
$$

Proof. The second statement is equivalent to the first (expand m^{p} as $\left.((m-1)+1)^{p}\right)$, and the third is a modification of the second, the sums being taken for $k \geqq 1, i \leqq 2 k \leqq 2 i$, for the binomial coefficients to be defined. The first statement of the corollary is a count of the non-zero entries in a row of W_{p} : a G-string with $k>0$ pairs $I \times J$ in it, which starts with an I will correspond to the $p G$-strings obtained by translating it $(\bmod p)$; all the resulting G-strings are distinct because p being prime, there can be no periodicities. Each such G-string arises in this way from k different G-strings with an initial I, i.e. there are k choices for the initial I. Each row of W has $m-1$ nonzero entries, each row of J has m. Finally, there are $\binom{p-k-1}{k-1}$ G-strings which start with I and have $k-1$ other I 's: treating $I \times J$ as one symbol we have two symbols and want to use $k-1$ times $I \times J$ and $p-2 k$ times W, in the remainder of the G-string. Since the count applies for any W which is zero on the main diagonal and ± 1 elsewhere, e.g. $J-I$, the statement is true for all $m>0$, and thus all m.

Lemma 5. $W_{p} W_{p}{ }^{\prime}=m^{p} I_{p}-J_{p}\left(I_{p}\right.$ and J_{p} are of order $\left.m^{p}\right)$.

Proof. We have $W W^{\prime}=m I-J, J J^{\prime}=m J, I I^{\prime}=I$. It is therefore clear that $W_{p} W_{p}{ }^{\prime}$ can be expressed as a linear combination of the various p-fold Kronecker products of I and J. We know that $W_{p} W_{p}{ }^{\prime}=\sum G_{i} G_{i}{ }^{\prime}$ and that $G_{1}=W \times W \times \ldots \times W$ contributes $m^{p} I_{p}-J_{p}$ (plus other terms) to $W_{p} W_{p}{ }^{\prime}$, and that I_{p} and J_{p} cannot arise in any other product $G_{i} G_{i}{ }^{\prime}$.

We now ask how any other p-fold product P of I and J, one containing at least one I and at least one J, can arise from $G_{i} G_{i}{ }^{\prime}$. If P contains $J(I)$ in position j it cannot appear in a product $G_{i} G_{i}{ }^{\prime}$ if G_{i} has an $I(J)$ in position j. This is the only type of restriction there is. Thus, assume P has exactly b blocks of consecutive $J \prime s, b>0$, and that it has a total of $c J$'s which are preceded by J. Then P contains $b I$'s followed by J and $p-c-2 b I$'s followed by I; if P occurs in $G G^{\prime}$ we have

$$
\begin{array}{rcc}
P & G & G G^{\prime} \\
b: I \times J & W \times W & (m I-J) \times(m I-J) \\
& \text { or } & I \times J
\end{array}
$$

There are $\binom{b}{j} G$-strings which have $I \times J$ pairs in j of the positions corresponding to the $b I \times J$ pairs in P, so that the coefficient of P in $\sum G_{i} G_{i}{ }^{\prime}$ is

$$
(-1)^{c} m^{p-c-2 b}\left\{\sum_{j}\binom{b}{j} m^{b-j}(-1)^{b-j} m^{j}\right\}=0 .
$$

The $(-1)^{c}$ factor arises from the c non-initial J 's, $m^{p-c-2 b}$ arises from the non-final I 's, m^{j} arises from the $j I \times J$ pairs and $(-1)^{b-j} m^{b-j}$ from the $b-j W \times W$ pairs.

We have thus shown:
Theorem. If there is a C-matrix of order $m+1$ there is a C-matrix of order $m^{n}+1$ for every integer n.

Corollary. If there is a (real) Hadamard matrix of skew type of order $m+1$ and n is odd there is an Hadamard matrix of skew type of order $m^{n}+1$ and a (symmetric) complex Hadamard matrix of order $m^{t}+1, t=2^{t} n, i \geqq 1$.

We note that different matrices W can be used, provided they are of the same order and the same matrix W is used consistently in each position, so that $W \times W^{\prime} \times W^{\prime \prime}+I \times J \times W^{\prime \prime}+J \times W^{\prime} \times I+W \times I \times J$ would work equally well for W_{3} if $W, W^{\prime}, W^{\prime \prime}$ are cores of C-matrices of the same order. The assumption that p is a prime is used only in the calculation of the corollary and could be omitted. Thus, the theorem automatically gives us somewhat different possible constructions for composite odd n : the matrix
for $n=9$ obtained by applying the cube construction twice is not the same as the matrix W_{9}, and is not equivalent to it under a permutation of the nine Kronecker product coordinates.

References

1. J. M. Goethals and J. J. Seidel, Orthogonal matrices with zero diagonal, Can. J. Math. 19 (1967), 1001-1010.
2. K. Goldberg, Hadamard matrices of order cube plus one, Proc. Amer. Math. Soc. 17 (1966), 744-746.
3. Marshall Hall, Jr., Combinatorial theory (Blaisdell, Waltham, Mass., 1967).
4. R. Turyn, Complex Hadamard matrices, Combinatorial structures and their applications (Gordon and Breach, New York, 1970).
5. J. Wallis, On integer matrices obeying certain matrix equations, to appear in J. Combinatorial Theory.
6. J. Williamson, Hadamard's determinant theorem and the sum of four squares, Duke J. Math. 11 (1944), 65-81.

Raytheon Company,
Sudbury, Massachusetts

[^0]: Received October 14, 1970.

