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ON C-MATRICES OF ARBITRARY POWERS 

RICHARD J. TURYN 

A C-matrix is a square matrix of order m + 1 which is 0 on the main 
diagonal, has ± 1 entries elsewhere and satisfies C = eC, CC — ml. Thus, 
if e = — 1, 7 + C is an Hadamard matrix of skew type [3; 6] and, if e = 1, 
il + C is a (symmetric) complex Hadamard matrix [4]. For m > 1, we 
must have e = (—l)(OT+i>#. Such matrices arise from the quadratic 
character x hi a finite field, when m is an odd prime power, as [x(&* — CLJ)] 
suitably bordered, and also from some other constructions, in particular those 
of skew type Hadamard matrices. (For e = 1 we must have m = a2 + b2, a, b 
integers.) Goldberg [2] showed that if a skew Hadamard matrix of order 
m + 1 exists then one of order mz + 1 also exists, i.e. the theorem of this 
paper for e = — 1, n = 3. Goethals and Seidel ([1]) pointed out an early 
result of Belevitch, the theorem for e = ± 1 , n = 2. J. Wallis [5] pointed 
out that both of these results hold for e = ± 1 and gave a proof of the theorem 
for n = 5 and 7. I t is clear that it is sufficient to prove the theorem for n prime. 
In this paper we finish the theorem by proving it for all odd primes p. The 
construction here is a direct generalization of the ones given by Wallis; it 
coincides with Goldberg's for n — 3. As a consequence of the theorem we have 
some (presumably) new Hadamard matrices, and skew type Hadamard 
matrices. The smallest candidates for new (skew type) orders of Hadamard 
matrices are 1511 + 1 and 1513 + 1. 

If we start with an arbitrary C-matrix of order m + 1 we may form an 
equivalent one with first row all + 1 , first column e, except the 0 on the 
main diagonal. The remaining core matrix of order w, say W, satisfies 
JW = WJ = 0, W = eW, WW = ml - / , with / the matrix with all 
entries = 1. Conversely, given W which satisfies these conditions, we can 
border it and get a C-matrix. In the remainder of the paper we assume that p 
is an odd prime, and W a matrix satisfying the conditions above. Define a 
G-string to be a sequence of p symbols, each 7, J or W, such that each I is 
followed by a / and each / preceded by an I, where the last symbol is con
sidered to be followed by the first one for the purpose of deciding which 
sequences are C-strings. Any sequence of length p of symbols 7, 7, W, is to 
represent the Kronecker product G of the corresponding matrices, i.e. a 
matrix of order mp. The matrix of order mv we construct is the sum of all the 
C-strings. 

LEMMA 1. If Gi and Gi are different G-strings then there is a position in which 
G\ has W and Gi has J or vice-versa. 
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Proof. If all the positions which have a, W in either string have a W in the 
other, the two strings are identical, since each must be completed uniquely 
from the set of W's in it by adding consecutive pairs I , J in the vacant places. 
Thus assume that G\ has a W in a position (which we may write as the first) 
in which G2 does not have a W. If G2 has a / there, we are done, so assume 

Gi = W X . . . and 

G2 = I X / X . . . , 

since a J must follow an I. Then the second position in G must have an / , 
as otherwise we are finished, and thus the third a J. We now have 

G I = W X I X J X . . . and 

G2 = I X / X . . . , 

so that the third position in G2 must have an i", etc. Since each G-string has 
at least one W, p being odd, G2 has a W somewhere; the smallest index for 
which Gi or G2 has a W corresponds to a J in the other. 

LEMMA 2. / / Gi and G2 are different G-strings there is a position in which 
G1 has a W and G2 an I, or conversely. 

Proof. This follows from Lemma 1 by interchanging / and J and reading 
backwards. 

LEMMA 3. 

(1) G' = eG. 
(2) GiGj = 0 if Gt 9* Gj. 
(3) G*Gj = 0 if d 9^ Gj, i.e. different d and Gj do not have non-zero entries 

in the same place (Hadamard product). 

Proof. The first statement follows from the fact that each G-string has an 
odd number of W's and W = eWy V = I, J' = J. The second follows from 
Lemma 1 since JW = WJ = 0, and the third from Lemma 2 since W*I = 0. 

We let Wp be the matrix of order mv which corresponds to the sum of all 
the G-strings, so that e.g. 

W Z ^ W X W X W + I X J X W + W X I X J + JXWXL 

This is Goldberg's original construction but as restated by Wallis (Goldberg 
considered the corresponding 0,1 matrix). For the exceptional case p — 2 we 
have the Belevitch construction 

W2=WXW-IXJ + JXL 

We now have Wv' = eWp and from Lemma 3 we know that WVWV' = 
X) GiG/, the sum taken over all G-strings. 

LEMMA 4. Wp has ± 1 entries except 0 on the main diagonal. 
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Proof. From part 3 of Lemma 3 we know that all entries of Wp are 0, + 1 or 
— 1, and clearly Wp is zero on the main diagonal as all d are. We will now 
show that all other entries are + 1 or — 1 . A pair of subscripts (row and 
column) for Wv consists of two ^-tuples (ii, . . . , ip), (ji, . . . Jp) with 
1 ^ iityjjt ^ *». If ik y£ j k for all k then W X W X . . . X W is not zero in 
that entry. If ik = j k but ik-i 9e jk-i (k mod p) then we take the &th symbol 
in a G-string as I and the (k + l ) th as / . In general, for each block of exactly 
t consecutive (mod p) indices such that 

it+r = jk+r, O g r é f - 1 , 

we let the &th, (k + 2)th, (k + 4)th, . . . symbols be 7, the symbols following 
I be / , and complete to a G-string with W in all other positions. We thus get 
a G-string which has a non-zero entry in the desired position. 

As a corollary, we note some interesting numerical identities. 

COROLLARY. 

(1) ^ . .« . - t f+rgf^kf^' i*: 1 ) 

*èl [ /> — 1 ] 
\ jfe / 

Proof. The second statement is equivalent to the first (expand mv as 
((m — 1) + l ) p ) , and the third is a modification of the second, the sums 
being taken for k ^ 1, i ^ 2k ^ 2i, for the binomial coefficients to be defined. 
The first statement of the corollary is a count of the non-zero entries in a 
row of Wp: a G-string with k > 0 pairs I X / in it, which starts with an i" will 
correspond to the p G-strings obtained by translating it (modp); all the 
resulting G-strings are distinct because p being prime, there can be no 
periodicities. Each such G-string arises in this way from k different G-strings 
with an initial 7, i.e. there are k choices for the initial J. Each row of W has 

m — \ nonzero entries, each row of / has m. Finally, there are 

G-strings which start with I and have k — 1 other J's: treating I X J as one 
symbol we have two symbols and want to use k — 1 times I X J and p — 2k 
times W, in the remainder of the G-string. Since the count applies for any W 
which is zero on the main diagonal and ± 1 elsewhere, e.g. J — I, the state
ment is true for all m > 0, and thus all m. 

LEMMA 5. WVWP = mvIp — Jp (Ip and Jp are of order mv). 

e^v 
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Proof. We have WW = tnl - J, J J' = mJ, IF = L I t is therefore clear 
that WpWp' can be expressed as a linear combination of the various £-fold 
Kronecker products of I and / . We know that WVWP' = £ GtGi and that 
Gx = W X W X . . . X IF contributes m % - Jv (plus other terms) toWpWp', 
and that / j , and Jp cannot arise in any other product GtG/. 

We now ask how any other £-fold product P of I and J , one containing 
at least one I and at least one / , can arise from GtG/. If P contains J (I) in 
position j it cannot appear in a product G id' if Gt has an I (J) in position j . 
This is the only type of restriction there is. Thus, assume P has exactly 
b blocks of consecutive J 's , b > 0, and that it has a total of c Fs which are 
preceded by / . Then P contains b Fs followed by / and p — c — 2b Fs 
followed by J; if P occurs in GG' we have 

P G 
bilXJ WX W 

or I XJ 
c : (J) J W 

p - c-2b: 1(1) W 

There are ( . ] G-strings which have I X J pairs in j of the positions corre

sponding to the b I XJ pairs in P , so that the coefficient of P in ]T dG/ is 

(-i)w-*-2* { E (&.) m*-'(-i)*-w} = o. 

The (— l ) c factor arises from the c non-initial Fs, mp~c~2b arises from the 
non-final J's, mj arises from the j I X J pairs and (—l)b~Jmb"j from the 
b - j WXW pairs. 

We have thus shown: 

THEOREM. If there is a C-tnatrix of order m + 1 there is a C-matrix of order 
mn + 1 for every integer n. 

COROLLARY. If there is a (real) Hadamard matrix of skew type of order 
m + 1 and n is odd there is an Hadamard matrix of skew type of order mn + 1 
and a (symmetric) complex Hadamard matrix of order ml + 1, t — 2*n, i ^ 1. 

We note that different matrices W can be used, provided they are of the 
same order and the same matrix W is used consistently in each position, so 
that WXW XW" + IXJXW" + JXW XI+WXIXJ would 
work equally well for Wz if W, W, W" are cores of C-matrices of the same 
order. The assumption that p is a prime is used only in the calculation of the 
corollary and could be omitted. Thus, the theorem automatically gives us 
somewhat different possible constructions for composite odd n: the matrix 

GG' 
(ml - J) X (ml - J) 

iXmJ 
ml — J 
ml — J . 
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for n = 9 obtained by applying the cube construction twice is not the same 
as the matrix W9, and is not equivalent to it under a permutation of the nine 
Kronecker product coordinates. 
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