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For each characteristic p, let Fp be the prime field and let Qp be a fixed universal field which
is algebraically closed and of infinite transcendence degree over Fp. When p = 0 we take
fip = C. Let F be a subfield of Qp and let R be an integral domain whose quotient field is F.
We abbreviate SL(2, R), PGL(2, R), PSL(2, R) to SL(R), PGL(R), PSL(i?) respectively, and we
cohsider PSL(/?) as a group of projective transformations of the projective line ^(Qp) and of
the " subline " 9>(F) <= &>(Q.P). The elements of PSL(£) are classified by the number of fixed
points they have on ^(F). If x e PSL(i?) has one such fixed point P, then P is the unique fixed
point of x on &(Q.P) and x is called parabolic. All other x (except the identity E) have two
distinct fixed points on @{Q.p) and x is called hyperbolic if these are on 0"(F), and elliptic other-
wise. We put symbols for operators on the right.

Let K be a knot type with group nK, and consider homomorphisms 9: nK -> PSL(flp).
We shall call such a 9 a parabolic representation if nK9 is nonabelian and x9 is parabolic for
every meridian xenK. The abbreviation of " parabolic representation " will henceforth be
" p-rep ", instead of " rep " as used in [6], [7]. Note that, because nK is finitely generated,
nK8 c PSL(/?) for some integral domain R which is finitely generated over Fp. We call two
p-reps 6i>92: nK-+VSL(Clp) simply equivalent when there exists yePGL(fip) such that
xd2 = Y'1 x9t Y for all xenK. Suppose that an over presentation of nK has been selected.
Then, according to [7, §2], there is an algebraic set Mo whose points are in one-one correspon-
dence with the simple equivalence classes of p-reps in PSL(C), and Mo is defined by polynomial
equations with rational integral coefficients. (There is an error in [7, §2], but it has no influence
on the present paper.) If 9: nK-* PSL(C) is a p-rep we write Z = Z(9) for the corresponding
point of Mo. Suppose that Z(0) is a generic point of a subvariety N of Mo which is also
defined over 1. Then, for each positive prime p we consider Np, the reduction of N modulo p,
which is an algebraic set in characteristic p defined by reducing the polynomial equations
defining N modulo p. We shall say that the p-rep 9:nK-> PSL(£2p) is a reduction ofd modulo
p if B corresponds to a generic point Z of a component of Np. The number of equivalence
classes of reductions of 9 modulo p is the number, / say, of components of iVp.

Suppose that B is a reduction of 9 modulo p and nKB is a transitive group of projective
transformations of the projective line 3P{Fq), where q is a power of/? and Fq is the field with q
elements. (According to Dickson's Theorem C of [7, §6], this implies that nKB = Lq: = PSL(F,)
except possibly when q = 9 or q — 2r with r > 1.) Then B is a permutation representation of
nK of degree q+1, and there is a standard method of associating unbrahched and branched
q + l sheeted covering spaces of S3- k with B (cf. [1,§8]). As in [6], we write %q+l = <%q+1(K,B)
for theunbranched covering space, and Jtq+1 for the completion of '%q+1 to a branched covering
space. We call the groups #1<^? + 1 : = H1(Wq+1,l), HxJlq+l: = Hl(J/q+1,l) respectively
unbranched and branched homology invariants of the pair (K, 9) at p. There are / pairs of such
invariants, and the collection of all the unbranched or branched homology invariants of (AT, 8)
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at p may be called respectively an unbranched or a branched parabolic invariant of K at p. This
is in accord with a suggestion of Fox in the introduction to [2]. The importance of,the para-
bolic invariants is due to the ease of computing them and their effectiveness in distinguishing
isomorphism classes of knot groups.

The image of a p-rep 9 in characteristic zero is only rarely a Fuchsian group, because nKO
usually does not lie in PSL(R), and when nKO <=• PSL(R) we generally find that nKO is indiscrete.
In fact, the only Fuchsian groups G known to be the image of a parabolic representation are
isomorphic to the free product Cr * Cs of cyclic groups of relatively prime orders r,s> 1. The
modular group PSL(Z) is the simplest group of this sort and PSL(Z)« C2*C3. For each odd
integer s> 1 there is a Hecke group Usx C2 * Cs (whose definition is recalled in §1) and the
simplest Hecke group is n 3 = PSL(Z). The Hecke groups may be regarded as the immediate
generalization of the modular group, and ITS is of the form nKO for infinitely many knot types
K, including 2-bridge knot types. The collection of all (unbranched or branched) homology
invariants of A'at a prime/? corresponding to p-reps 0: nK-> ITS may be called the (unbranched
or branched) Hecke invariant of{K, s) at p. In this paper we shall apply the highly developed
theory of Fuchsian groups to establish properties of Hecke invariants which are apparently not
shared by more general parabolic invariants. Our main result is Theorem 3 of §3, which gives
a lower bound for the Betti numbers of the unbranched Hecke invariants of (K, s) at a prime p
not dividing s. The results of this paper are a necessary preliminary to any assault on Con-
jecture B of [6], and our main purpose in writing this paper is to raise interest in that con-
jecture in the hope that someone will try to prove it.

This paper is arranged as follows. In §1 we define the Hecke groups in the precise form in
which we need them, and establish their most important properties. This material is pre-
sumably well known, but, because this paper is intended for knotters rather than for experts on
Fuchsian groups, we felt it wise to be explicit. In §2 we discuss certain subgroups T of IIS.
The material here is a generalization of classical theorems about the modular group (see page
304 of Fricke's textbook [3]) and it may also be well known, but I cannot find a reference for
it. In §3 we prove the advertised main theorem about H1'2iq+l. Finally, in §4 we restate
Conjecture B in an improved form and discuss the Hecke invariants at primes/? > 3 for p-reps
on PSL(Z) when Kis one of the three torus knots 3lt 9U 819.

This paper could not have been written without the assistance of David Singerman, who
brought his paper [8] to my attention and explained how to use the results therein to prove our
Theorem 2 of §2 in the case where n s is PSL(Z). A part of the proof of Theorem 3 was de-
veloped in a discussion with Gareth Jones, who is a ready source of wisdom about group theory.

1. Hecke groups. Let 5 > 1 be a fixed odd integer. We define the Hecke group n , in terms
of the Morgan-Voyce polynomials /} —fjiy), 9j = 9j{y) following [7, §5] as follows. The
Morgan-Voyce polynomials are defined inductively by

/ o = 1> 0o = 1> 1 ,, ,-.
fj+i=fj+y9j, 9j+i=fj+i+9j-)

Let st > 1 be a divisor of s and let nt = K^i - !)• In particular, let n = \(s-1). Then there
is a factor xni(y) offn{y) and
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L(y) =

The degree of Xn,(y) ' s i ^ i ) . where <f> is the Euler function. We are mainly interested in
Xn(—y) whose roots are

£; = 2+'lcos2njls = (2cosnj/s)2, (1.2)
where

lgj<s, (j,s)=l. (1.3)
Note that £y = ^s_y. The largest root of /„(—j) = 0 (which is also the largest root of
/ . ( -J0 = 0) is £ = {,=<;,_!. Let

(-!$ i ) i n P S L ( R ) - ( L 4 )

Then we define the Hecke group Ils by

ns = (A,B\ (1.5)

THEOREM 1. The Hecke group Us is a Fuchsian group with a presentation

Us = \C,D:C2 = iy = E\ (1.6)
which is related to (1.5) by

C = (AB)"A, D = AB, A = D-"C, B = A-lD. (1.7)

Proof. The only part of the proposition which is not contained in Theorem 6 of [7] is the
assertion that IIS is Fuchsian, i.e., that n s acts discontinuously on the upper half-plane. To
verify this, we need the explicit formulae

- C - 1 :> (1.8)

(1.9)

The elements C,DePSL(U) are elliptic linear fractional transformations of the upper half-
plane ty = {zeC | Im(z) > 0}. Hence each transformation has a unique fixed point in °U, say
P0D = P0 and Qo C = Qo. We calculate readily that

Another calculation shows that Po and Qo have the same euclidean distance from the point
O = (0,0) on the euclidean boundary V of "U. In terms of the standard non-euclidean (NE)
metric on % in which the geodesies are euclidean semicircles with centres on V or euclidean
straight lines perpendicular to V, let st be the NE line segment Po Qo. Let s0 be the NE
segment Pooo = {i+i< 11 ^ ^ ( 4 / ^ — 1)}, and let s2 = Po Qi be the reflection of st in s0. Let
s3 = {if 11 ^ 1/VO be t n e NE segment Q0<x>, and let s4 be the reflection of s3 in s0. Then
s4 = {l + i? |?^ l/VO has finite endpoint QuQi = QoA and 54 = J 3 /4 . If we close the

https://doi.org/10.1017/S0017089500002056 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002056


20 ROBERT RILEY

segments s3, sA by the point oo, the path st s2 s^s3 is the boundary of an open NE polygonal
region R of <&r. It is easy to see that st meets s3 in a right angle at Qo, and likewise s2 meets
s4 in a right angle at Qx. The angle at Po between si and s2 is bisected by s0; let 6 = angle
5j j o = angle J 0 J 2 - Let P* =($,0)eV and consider the euclidean right triangle P0OP+.
The angle PoOP* = 0 and cos0 = OPJOP0 = ^{Icosnjsy1 = cosn/s. But 0 < 0 < rc/2;
so 0 = n/s. The transformation Z) is a NE rotation of exact period s about the fixed point Po;
so the angle of rotation necessarily has the form Injjs for some integer j such that (J, s) = 1.

= S, D4

The situation when s = l,i = 3.2470.

G is the centre of the dashed circle. The transforms of *3 by powers of D are indicated by
s3,s3D,...,s3D

6.
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(The value of j is irrelevant but it turns out that./ = —2.) Consequently, for some exponent r,
s2 = *i iy. Finally note that {A, £>> = II5, from (1.7).

We now appeal to the theorem of Poincare stated in Note 6, page 64 of Chapter 1 of [4]
and proved in [5]. The conclusion is that IIS acts discontinuously on °U and that R is a funda-
mental open region for the action. Poincard's theorem also verifies the completeness of the
relations in (1.6), and this method should be taken as the standard proof of Theorem 1. |

The final reference, [9], appeared several months after the present paper was submitted
for publication. It is closely related to the contents of this section, and it contains a reference
to E. Hecke's own work on Hecke groups.

2. Subgroups of Hecke groups. This section is devoted to the application of the material
summarized in the first two sections of Singerman's paper [8] to the determination of the genus
of a certain subgroup F of a Hecke group IIS. It is convenient to define the class of the element
g of a group G to be the set of all conjugates of powers g* of g such that g~" ± E\{ g ± E. By
S&G we mean C/[G, G].

A Fuchsian group G which has no hyperbolic boundary elements has a canonical presen-
tation as follows:

{ aubu...,ag,bg hyperbolic, g = genus((?U
uuu2,...,uh elliptic, > (2.1a")
vl,v2,...,vt parabolic. J

Relations: u^ = u^=... = uh
m"= f[ Lai>bi]' U ui" tl »* = E- (2-lb)

Every nontrivial element of G is in the class of exactly one of the generators (2.1a). When G
is presented by (2.1), define M(G) by

= 2g-2+t+ £ {l-— 1. (2.2)

The Riemann-Hurwitz formula asserts that, if Gt <= G is a subgroup of finite index N — [G: Gt],
then

iV=M(Gi)/M(G). (2.3)

The presentation (1.6) for IIS is not quite in the form (2.1), but this is no problem because
it is readily apparent from (1.6) that the genus of Ils is zero, that the number of parabolic
classes t = 1 (certainly / ^ 1, and t > 1 would give 21ITS a torsion-free direct summand), that
h = 2 and ml=2,m2=s, say. Consequently

M(US) = S-^. (2.4)

Let p be an odd prime which does not divide s. Then the factorization of xJj) modulo p
has the form

xilXy)--.fXy) (modP), (2.5)
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where

de g / 1 ) = degX
(2) = . . . = d e g / ) = ^ - ) = r, say. (2.6)

For eachj with 1 ^j ^ /, let ^ e Q , be a root of x(7). Then there is a surjective homomorphism
<f>j

p: n s ->Lpr defined by

in PSL(fip). Then </>£ is called a reduction ofHs modulo p . Up to equivalence there are exactly
/ such reductions, where two homomorphisms 9l,02: Gt -> G2 are equivalent if G2 has an
automorphism i/r such that 62 = 0t ^. Let Tl^/j?) denote the subgroup of ITS consisting of all
y such that the protective transformation ycj>p acting on the projective line ^ ( i y ) leaves oo
fixed. To simplify the notation we fix one reduction <j>p and write

1 = 1,. (2.8)
We also set q = pT, where /• is defined in (2.6).

The main result of this section is a presentation for the abelianized group 9IF = r / [F , r ] .
We will get this by computing the various quantities h,mu..., mh, t, g of a canonical presenta-
tion (2.1) for F. The parabolic class number / is, according to the summary in [8], the number
of cycles in A<j>, considered as a permutation of the points of ^(Fq). But A(j> has one fixed
point and order p , whence A<j> must be the product of qjp ^-cycles and one 1-cycle. This
implies that

t = p'-1+l. (2.9)

We next consider h and the mt. The u, of (2.1) for F are induced (in Singerman's language)
by the elliptic elements C, D of (1.7). The involution C induces v elliptic elements u of F, where
v is the number of cycles of the permutation C0 of length less than 2. Such cycles must be
fixed points; so either C induces no elliptic elements, or else C induces two elliptic elements
and these are involutions. From (1.9) and (1.10) we see that the number of classes of involu-
tions induced by C is the number of solutions of

z2 + a2 = 0, 5 = & ,_ , ( -& (2-10)

in Fq. Clearly (2.10) has solutions in Fq if and only if - 1 is a square in Fq, or, equivalently, if
and only if q = + I(mod4).

Now consider the elliptic elements u of F induced by D. Since D has order s, Dfy has order
slt where sl \ s. To see that s^ = s, consider the multiplier K of D and the multiplier ic
Then K is a root of the cyclotomic polynomial <X>s(x), and we recall that

It is well known that Xs— 1 has no multiple factors modulo p , so that, in Clp[x],

Rl | S
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where Om is the reduction of Om(mod/>). Also, R is a root of Os(x). Hence a comparison of
degrees shows that, if jcv = 1, then s | v, which implies that j j = s. The permutation D4> may
contain only s-cycles and 1-cycles, and furthermore there are either two or zero 1-cycles.
Hence q+1 = the number of fixed points of D(j> (mods), so that, if q = + l(mods), then D
induces two elliptic elements of order s, and, if q = — l(mod.s), then D induces no elliptic
elements of P.

We finally determine the genus of T indirectly using (2.3) and the information about M{T)
deduced from the above results. The index N of (2.3) = q+1 = the number of points of ^(F,).
Hence

[(5-2)/2s] ' ' ,t

The calculation splits into four cases and the results are summarized in the following theorem.

THEOREM 2. The abelianized group S&T depends only on s and p, and not on the specific
reduction 4>J

P ofUs. Write 9IP = F@T where T is the torsion subgroup and F is a free abelian
summand ofrankfs{p). Then the genus g = gs(p) ofF,f=fs(p) and the torsion numbers of T
are determined by the value ofq(mod4) and q(mods), by

1 (2.12)
and the following table.

(I) g=+l(mod4) and q=+l(mods) .
r -I nr— 1 I I

g = (s—2) ; torsion numbers 2, 2, s, s.

4s 2

(II) q = + l(mod 4) and q = — l(mod s).

/ - 2 p r " 1 + l / + 1 . ,
g = ; torsion numbers 2, 2.

4 2s

(III) gE=-l(mod4) and g=+l(mods).

Pr-2pP~1-l P r -1
g = ; torsion numbers s, s.

4 2s
(IV) q = -l(mod4) and q = —l(mods).

g = (s —2) ; no torsion.
4s 2

3. The homology of the unbranched covering spaces. Let nK be a knot group which has a
surjective parabolic representation 6: nK -»ns for some odd s > 1.

LEMMA. There is a presentation

7iK=\x1,...,xv:r2,...,ry\ (3.1)
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in which the generators xt are conjugate meridians of nK and such that 9 can be normalized with
respect to (3.1) so that

xl0 = A, x26 = B .(3.2)

where A, B are defined in (1.4).

Proof. We start with an arbitrary over-presentation

nK = I x u . . . , x v _ ! : r 2 , . . . , rv_ x I. (3.3)
The representation 9 can be normalized with respect to (3.3) so that x19 = A. Since B is
conjugate to A in ITS, there is a We Us such that B = W~1AW. Because 8 is surjective there is
a wenK such that W = wO. Let x = w"1jt1w; then x is a meridian of nK which is conjugate
to xt and satisfies xO = B. It is now obvious that, by adjoining the new generator x and the
relation x = w-1xi w to (3.3) (with w written out as a word in xu..., xv_ t) , and suitably re-
naming the generators and relations, we produce the required presentation. |

Let p be an odd prime not dividing s and let <$> = <j)J
p be one of the / reductions of ITS

modulo p . Then 4>: II, -*• Lq, where q = pr and r is determined by (2.6). Again write
T = II™j(j>) and let M = 8~1(r) be the pre-image of T in nK. Then the unbranched (q+1)-
sheeted covering space # , + 1 of the introduction has fundamental group nl^iq+i « M. Con-
sequently Hl'%q+lx 21Mand we are ready to apply Theorem 2.

THEOREM 3. The Betti number b - b(K, 8,j,p) ofH^^, satisfies

b^l+fsip), (3.4)
where fs(p) is defined in Theorem 2.

Proof. Write H = ker 6. The system of groups and homomorphisms under consideration
is summarized by the commutative diagram (3.5) in which the rows are exact, the vertical
arrows represent canonical inclusion homomorphisms, and Q',Q" denote restrictions of 6 to the
appropriate subgroups.

nK -̂  n s

M ^ T - < £ > (3.5)

t ,. T

It is easy to see that 6 induces a surjective homomorphism 0*: 91M -• 9IF. This shows that
b ^ / . To show that equality does not hold it is sufficient to exhibit heH such that no nonzero
power of h lies in [M, M], because h would then generate a free summand of ker 0*. Suppose
that 9 has been normalized as in the lemma. Let wl = (jctx2)''xlenK, where n = $(s— 1) as
usual. Then w19 is the element C of (1.7); so hx: = w\ must lie in ker 9 = H. But hv represents
s+1 ¥= 0 in VLnK x Z, whence h™$[nK, nK] for any nonzero m.

4. Conjecture B. In this section we consider the relation between the two homology
invariants H1'^p+l,HiJip+l at a prime p > 3 of a p-rep 9: nK-> n 3 = PSL(Z). In this case
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the polynomial xn(y) is 1 + y and the numbers r, / of (2.6) are both 1. The formulae of Theorem
2 simplify to/3Q?) = 1 +2g(p), where

P ^ (4.D

in which j(p) is determined by the value of p (mod 12) as follows.

p= 1 5 7 11 (mod 12)

; 0 , ) = _ 1 3 - 5 - 7 +11
1 3 2 6{

The lower bound 1 +/of Theorem 3 becomes 2+2g(p). We shall also need

where r(p) is defined by the bottom line of (4.2). As further notation, let bX denote the Betti
number of H1X: = H^X; 1) and let Tt X denote the torsion subgroup of Ht X. Then the
desired relation is the

SHARPENED CONJECTURE B. Given 0:7iA:-> PSL(Z) and a prime p > 3, the relation between
the homology invariants HfllpJr u HlJ(p+1 is as follows.

b%p+1=2+bJtp+1. (4.4)

According to Theorem 3 the assertion 4.4 implies that

bJ/p+l^2g(p). (4.5)

Write mpfor the order of T{J/p+1 and upfor the order of T^p+l. Then

bJip+l = 2g(p) ~mp = d(p)up; (4.6)

bJ/p+ j > 2g(p) => mpjup is an integer which divides d(p). (4.7)

No general assertion is made about the comparison of the torsion coefficients of Tl
altp+l,

•'1"/™P+I-

The final topic is the question whether the homology invariants for a p-rep 0: nK-* PSL(Z)
can be computed as functions of p by simple formulae. It seems that they can be, at least when
K is a torus knot. A general answer to this question would be both important and interesting,
and might be a step towards a substitute for the Alexander matrix which solves the correspond-
ing problem for cyclic representations. To encourage further investigations along these lines
we present conjectured formulae for the cases K= 3 ^ ^ and 8J9. Our tables suggest that
formulae probably exist for non-torus knots such as 85,818 which are similar to, but more
complicated than, those given below. Unfortunately, much more data would be required to
guess them, and the machine time required to calculate the invariants at/? is a rapidly increasing
function of/?.

We use the notation of [6, §6] to describe groups Tt X; i.e., if Tt X is the direct sum of
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cyclic groups of orders au..., am, we write Tt X = au..., am. These will always be ordered
so that aj\aJ+1 for j<m. When the torsion number a is repeated e times we abbreviate
a,...,a to a(e).

The knot groups nK for K= 31,91,819 each have a unique p-rep on PSL(Z) listed in
[6, §3], using the table of group presentations in the microfiche section of the issue of Mathe-
matics of Computation containing [6]. It is conjectured that the relations bJ(p+, = 2g(p),
b<%p+1 = 2+bJ(p+l hold for all primes p > 3 for these three knots. The torsion invariants
are:

7V f
P + i

^1 ^o+ 1 =

6

HP)'
6d(p)

HP)'

18

HP) J

where ep =

>19

HP)

2

P-3
I 2

(psl(mod4)),

(p = 3(mod 4)).
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