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Experiments over the last 50 years have suggested a tentative correlation between the
surface (shear) viscosity and the stability of a foam or emulsion. We examine this
link theoretically using small-amplitude capillary waves in the presence of a surfactant
solution of dilute concentration, where the associated Marangoni and surface viscosity
effects are modelled via the Boussinesq–Scriven formulation. The resulting integro-
differential initial value problem is solved analytically, and surface viscosity is found
to contribute an overall damping effect to the amplitude of the capillary wave with
varying degree depending on the length scale of the system. Numerically, we find that
the critical damping wavelength increases for increasing surface concentration but the
rate of increase remains different for both the surface viscosity and the Marangoni
effect.

Key words: capillary flows, interfacial flows (free surface), thin films

1. Introduction
Capillary waves on a viscous fluid interface have recently been observed (Aarts,

Schmidt & Lekkerkerker 2004) to induce the spontaneous breakup of a thin liquid
film and to control the inherent stochastic process of the submicron rupture event.
Unlike gravity waves, these capillary waves have a short wavelength where the
restoring force of surface tension dominates over the influence of gravity and can
be found in the study of small-length-scale interfacial phenomena, for instance thin
liquid films (Scheludko 1967) and droplet coalescence (Blanchette & Bigioni 2006).
It is apparent that variations in surface tension can have dramatic knock-on effects
on the dynamics of the capillary waves, with applications found in both surface
chemistry (Edwards, Brenner & Wasan 1991) and interfacial fluid dynamics (Levich
& Krylov 1969).

Surface-active materials, or surfactants, often lead to the formation of foams
and emulsions by lowering the surface tension of a liquid interface (Levich &
Krylov 1969; Edwards et al. 1991; Batchelor et al. 2003). Gradients of surfactant
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Capillary waves with surface viscosity 645

concentration (and therefore the surface tension coefficient) caused by dilatational
deformations induce the Marangoni stress, which acts to oppose the changes in
surface area and slows down the drainage and rupture processes of a thin liquid film.
Moreover, the two-dimensional surfactant monolayer displays the rheological response,
whereby shearing deformations can introduce an extra surface shear viscosity. In
addition, a source of surface dilatational viscosity can result from the inherent
compressibility of the two-dimensional surfactant monolayer (Zell et al. 2014), in
direct contrast to the incompressible Newtonian bulk fluid which can be characterised
entirely by a single viscosity parameter µ. Furthermore, the dissipative nature of
the surfactant adsorption–desorption kinetic process can also contribute towards the
effective surface dilatational viscosity (Lucassen & Hansen 1966). With multiple
sources of surface viscosities, we henceforth denote the effective surface dilatational
and shear viscosities by µd and µs respectively. Finally, we note that the magnitudes
of µd and µs need not be comparable (Djabbarah & Wasan 1982), since they are
each responsible for different physical processes. The physical manifestation of
surface viscosity and its measurement remain controversial and subtle. For decades,
the literature has been unable to agree on measurements of µs and µd. The chief
difficulty lies with the fact that not only are surface viscosity and Marangoni effects
intimately intwined (Levich & Krylov 1969; Scheid et al. 2010; Langevin 2014),
but experiments give the total characteristics for both the surface and bulk phases
simultaneously and it is not trivial to extract the surface information a priori of the
establishment of a particular surface model.

For insoluble surface-active (surfactant) solutions, the intrinsic surface shear
viscosity is clearly defined. However, for soluble surfactant solutions, in particular
sodium dodecyl sulphate (SDS), the presence of a three-dimensional sublayer
adjacent to the surface alters the rate of surface deformation (Stevenson 2005),
which may explain the numerous inconsistencies in the reported literature on the
magnitudes of surface shear viscosities of surfactants. Some progress has been made
recently, namely by the experimental work of Zell et al. (2014), in which the use of
microbutton surface rheometry appears to yield relatively unambiguous measurements
of the surface shear viscosity µs of SDS. These authors report an upper bound of
µs ∼ O(10−8 Nsm−1), which suggests that surface shear viscosity need not be the
dominant surface phenomenon and that Marangoni effects and surface dilatational
viscosity may also have effects.

In insoluble surfactant solutions, the surface shear viscosity is often much higher
than O(10−8 Nsm−1); in particular, in the case of 1-eicosanol, it is found (Gavranovic
et al. 2006; Zell et al. 2014) to be at least 103–104 times higher than that of soluble
SDS solutions. Moreover, recent numerical (Gounley et al. 2016) and experimental
studies have concluded that surface viscosity effects in insoluble surfactants can give
rise to noticeable behaviours on the resulting dynamics, which cannot otherwise be
fully understood if we consider the Marangoni effect alone (Ponce-Torres et al. 2017).
In this paper, we shall investigate both the Marangoni and surface viscosity effects
in insoluble surfactant solutions with a particular focus on the dynamics of very thin
films with capillary waves close to critical damping. For such a thin-film geometry
of high wavenumber, we may consider a two-dimensional flow structure as well
as a low Reynolds number under the Stokes limit. Foreshadowed by the previous
numerical work (Gounley et al. 2016; Ponce-Torres et al. 2017), we anticipate a
similar importance of the Marangoni and surface viscosity effects on the capillary
wave in the two-dimensional thin-film case under the Stokes limit.

In §§ 2–4, we extend the previous work of Prosperetti (1976) and Shen et al.
(2017) to incorporate both surface shear and dilatational viscosity to the leading order,
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as described by the Boussinesq–Scriven model, into the dynamics of small-amplitude
capillary waves. We delineate the effects of the convective–diffusive Marangoni
stresses with surface viscosity effects in § 5. In § 6, we obtain an analytical form
of the critical damping wavelength for the clean case considering only the bulk
fluid viscosity. In § 7, we outline a numerical method to calculate the damping
ratio of a general higher-ordered system and construct a minimal pole matrix to
encode the information on the poles of the system with significant residue. Under
this approach, we identify the transition point of the wave from an underdamped to
an overdamped state of a general system and obtain numerically the correction to
this critical wavelength by surface viscosity and Marangoni effects. The article is
concluded in § 8.

2. Boussinesq–Scriven surface viscosity

Under the Boussinesq–Scriven model of surface viscosity (Scriven 1960; Aris 1963;
Slattery, Sagis & Oh 2007), the surface stress boundary conditions at the interface
between two Newtonian fluids can be written as

[n · T ] =∇s · σs, (2.1)

where T is the viscous stress tensor, ∇s=P ·∇ is the surface gradient operator for the
projection tensor P= I −nnT with normal vector n, [·] denotes the jump in magnitude
across the interface and σs is the surface viscous stress tensor, defined by

σs = σP + (µd −µs)(∇s · us)P + 2µsDs, (2.2)

where
Ds =

1
2(P : ∇sus + (∇us)

T
: P) (2.3)

is the surface rate of deformation tensor. The divergence of σs may be written (Scriven
1960) in the form

[n · T ] = ∇sσ + (µd +µs)∇s(∇s · us)

+µs[2Kus + n×∇s(n · ∇s × us)+ 2(n×∇sn× n) · ∇s(u · n)]
+n[2Hσ + 2H(µd +µs)∇s · us − 2µs(n×∇sn× n) : ∇sus], (2.4)

where

2H =−∇s · n, (2.5)
2K =−(n×∇sn× n) : ∇sn (2.6)

are the mean and Gaussian curvatures of a surface respectively and σ is the surface
tension coefficient. Neglecting higher-order terms, the leading-order surface stress
boundary condition in the context of small-amplitude capillary waves takes the
reduced form

[n · T ] =∇sσ̃ + 2Hσ̃n, (2.7)

where σ̃ is the surface tension augmented with the leading-order surface viscosity
contribution given by

σ̃ = σ + (µd +µs)∇s · us. (2.8)
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Capillary waves with surface viscosity 647

Using the equation of motion derived in § 3, the leading-order surface viscosity
effect on the small-amplitude capillary wave can naturally be characterised (Lopez &
Hirsa 1998) by the non-dimensional Boussinesq number

B≡ Bqd + Bqs =

(
µd +µs

µ

)
k, (2.9)

where Bqd = µdk/µ and Bqs = µsk/µ are the Boussinesq dilatational and shear
numbers respectively for dynamic viscosity µ and wavenumber k. More explicitly,
surface viscosity can be modelled to be proportional to the surfactant concentration
(Ponce-Torres et al. 2017). In the case of detergents, experimental work by Brown,
Thuman & McBain (1953) suggests a bi-partisan action of the special solute pairs
present in the detergent, where the primary constituent provides a large reservoir
of surface-active material while the secondary constituent, lesser in amount, forms
surface films of high viscosity. However, in the leading-order dynamics of the
Boussinesq–Scriven formulation, surface viscosity is shown in § 3 to not depend
explicitly on the surfactant concentration and enters only implicitly via the surface
tension coefficient.

The other non-dimensional numbers of the system that arise naturally in the
equation of motion are the viscosity (ε), surfactant diffusivity (ς ) and surfactant
strength (β) parameters, given by

(ε, ς, β)=
k
ω

(
νk,Dsk,

αΓ0

µ

)
, (2.10)

where Ds denotes the coefficient of surface diffusivity, ν = µ/ρ is the kinematic
viscosity for fluid density ρ, α = |dσ/dΓ | is the gradient of the surface tension
coefficient, ω is the frequency of the capillary wave and Γ0 is the initial surfactant
concentration, which is assumed to be much less than the critical micelle concentration
(cmc). In this system, these parameters act as the effective Reynolds, Schmidt and
Marangoni numbers respectively.

3. Equations of motion

The dynamics of an incompressible fluid of viscosity µ and density ρ in a region
of Reynolds number Re=Uλ/ν� 1 satisfies the Stokes equation

ρ(ut −F)=−∇p+µ∇2u, (3.1)
∇ · u= 0, (3.2)

where u = (u, v) is the two-dimensional fluid velocity field, p is the pressure and
F=−g j is the external (gravitational) force, with j denoting the upward unit vector in
the y direction, and g is the gravitational acceleration. The small-amplitude capillary
wave is given at the free surface F by the standing wave

F(x, y, t)= y− a(t) cos kx, (3.3)

where a(t) is the nonlinear time-dependent wave amplitude which satisfies the
small-amplitude conditions that a � λ = 2π/k and da/dt � vc = ω/k, where λ is
the wavelength and vc is the phase velocity.
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For vanishing Gaussian curvature in a two-dimensional space, the leading-order
tangential and normal stress components T‖ and T⊥ and the kinematic condition are
given by

T‖ ≡ 1
2µ(vx + uy)=∇sσ̃ , (3.4)

T⊥ ≡−p+ 2µvy = σ̃∇s · n, (3.5)
Ft + vFy = 0 (3.6)

respectively. The leading-order normal and tangent vectors are

n' (ak sin kx, 1), (3.7)
t' (1,−ak sin kx). (3.8)

Similarly to the small-amplitude condition, we consider a small departure from the
equilibrium surface tension and let the coefficient of surface tension σ be defined via
a linear equation of state,

σ(x, t)= σ0 − αΓ (x, t), (3.9)

where σ0 is the initial surface tension coefficient and Γ (x, t) is the (dilute)
concentration of a surfactant solution where adsorptive–desorptive processes are
neglected.

Using the waveform Γ (x, t)−Γ0= Γ̃ (t) cos kx, the governing equation for surfactant
concentration along a two-dimensional deforming surface (Stone 1990) is given by

Γ̃t + k2DsΓ̃ = k(at + νkΩ(0, t) ∗F(t)) (3.10)

to the leading order, ωz(x, y, t)=Ω(y, t) sin kx is the z component of the vorticity, ∗
is the convolution operator and F(t) is the auxiliary function

F(t)=
1

√
πνk2t

e−νk2t
− erfc

√

νk2t. (3.11)

The fluid velocity and the pressure can be decomposed into the sum of an inviscid
and a viscous part, i.e. (u, p)= (u′ + u′′, p′ + p′′). The inviscid part (u′, p′) satisfies
the Euler problem

ρ(u′t −F)=−∇p′, (3.12)
(Ft + v

′Fy)|y=0 = 0, (3.13)

with well-known solutions (Lamb 1932)

(φ, p′)=
(

1
k

da
dt

eky cos kx, −ρgy+
ρ

k
d2a
dt2

eky cos kx
)
, (3.14)

where u′ =∇φ. The viscous component (u′′, p′′) satisfies the Stokes problem

ρu′′t =∇p′′ +µ∇2u′′, (3.15)
0= v′Fy|y=0, (3.16)
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Capillary waves with surface viscosity 649

which is solved by introducing the streamfunction ψ , defined by u′′ = (ψy,−ψx). By
taking the curl of (3.15), we obtain the bi-harmonic equation

(∂t∇
2
−∇

4)ψ = 0. (3.17)

By writing ψ =Ψ (y, t) sin kx, the Stokes problem yields the solution

2kΨ =−e−ky
∫ y

−∞

Ωeky′ dy′ + eky

(∫ 0

−∞

Ωeky′dy′ +
∫ y

0
Ωe−ky′dy′

)
, (3.18)

Ω =Ω(0, t) ∗
y

√
πνt3

exp
(
−νk2t−

y2

4νt

)
, (3.19)

where we have the viscous pressure correction p′′(x, y, t)=µΩ(0, t)eky cos kx and the
boundary vorticity

Ω(0, t)= 2
(
−

T‖
µ
+ vx

)
. (3.20)

Henceforth, using non-dimensional variables τ = ωt, ε = νk2/ω and Ω̃ =Ω(0, t)/ω,
the boundary vorticity becomes the integral equation

Ω̃(0, τ )= f(τ )+ 2ε B Ω̃(0, τ ′) ∗F(τ ), (3.21)

where we have
f(τ )=−2[βΓ̃ (τ )+ δ(1+ B)Ȧ]. (3.22)

Here, A = a/a0 is the dimensionless amplitude, δ = a0k and ˙ = d/dτ denotes the
non-dimensional temporal derivative. By substituting the pressure and the velocity
into (3.5) and (3.10), we have the simultaneous equation

Ä+ 2εȦ+ A= εΩ̃(0, τ )− 2ε2Ω̃(0, τ ) ∗F(τ ), (3.23)
˙̃
Γ + ςΓ̃ = δȦ+ εΩ̃(0, τ ) ∗F(τ ). (3.24)

Equations (3.23) and (3.24) provide us with a dynamic equation system for the
amplitude and the surfactant concentration, the solution of which we outline in the
next section.

4. Solution of the simultaneous integro-differential equation

Let F(s)=L[A](s), G(s)=L[Γ̃ ](s) and Π̂(s)= sF(s)−A0 be the Laplace transforms
of A(τ ), Γ̃ (τ ) and Ȧ(τ ), and define the polynomial expressions Θ (i)

ε ≡Θ
(i)
ε (s+ ε) for

1 6 i 6 6 as

Θ (1)
ε = 2[(s+ ε)1/2 − ε1/2

], (4.1)

Θ (2)
ε = sε1/2

+ BεΘ (1), (4.2)

Θ (3)
ε = (s+ ς)Θ

(2)
+ βεΘ (1), (4.3)

Θ (4)
ε = (s

2
+ 2εs+ 1+ 2B′εs)Θ (2)

− 2ε2sB′2Θ (1), (4.4)

Θ (5)
ε = 2εsβ(B′εΘ (1)

−Θ (2)), (4.5)

Θ (6)
ε = δΘ

(2)
− B′εΘ (1), (4.6)
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where B′ = 1 + B. The rational function Π̂ε = Π̂ε(s + ε) = P(s1/2)/Q(s1/2) is
decomposed into its partial fraction

Π̂ε(s+ ε) ≡
10∑

i=1

ci

s1/2 + zi
(4.7)

=
(U0s− A0)Θ

(2)Θ (3)
+ Γ̃0Θ

(2)Θ (5)

Θ (4)Θ (3) − Γ̃0Θ (5)Θ (6)
, (4.8)

where −zi are the roots of the polynomial Q(s1/2). In the absence of the Marangoni
effect, the surface viscosity case is given by

Π̂ε(s+ ε)=
(U0s− A0)Θ

(2)

(s2 + 2εs+ 1+ 2B′εs)Θ (2) − 2ε2sB′2Θ (1)
. (4.9)

By comparison with Lagrange polynomial interpolation, we have

P(s1/2)

Q(s1/2)
≡ P(s1/2)

k∏
i=1

1
s1/2 + zi

(4.10)

=

k∑
i=1

P(−zi)

σ
(k)
i (−zi)

1
s1/2 + zi

, (4.11)

where σ (n)i is the nth-order cyclic polynomial given by

σ
(n)
j =

n−1∏
i=1

(zj+i mod(n) − zj). (4.12)

It follows that by comparing (4.7) and (4.11), the coefficients ci are ci = P(−zi)/

σ
(10)
i (−zi). Let

Z(n, j)=
n∑

i=1

P(−zi)

σ
(n)
i

(−zi)
j
; (4.13)

it follows (see appendix A) that the condition

deg Q− deg P= 2 (4.14)

implies Z(n, 0) = 0, where deg X is the degree of the polynomial X. By taking the
inverse Laplace transform of (4.8), we obtain

Πε(τ )=
Z(10, 0)
√

πt
−

10∑
i=1

P(−zi)

σ
(10)
i

ziez2
i τerfc(ziτ

1/2). (4.15)

Finally, the non-dimensional amplitude is given by

A(τ )= 1+
10∑

i=1

zi

σ
(10)
i

P(−zi)ϕ(zi, τ ; ε), (4.16)

where ϕ = ϕ(zi, τ ; ε) satisfies

ϕ(zi, τ ; ε)=
1

z2
i − ε

(
e(z

2
i −ε)τerfc(ziτ

1/2)+
zi

ε1/2
erf[(ετ )1/2] − 1

)
. (4.17)
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5. Surface viscosity effects on the wave amplitude
As shown in § 4, the leading-order surface viscosity effects on the dynamics of

small-amplitude capillary waves are characterised by the parameter B, and, similarly,
the Marangoni effect can be reduced to the non-dimensional variables ς and β given
in § 2. In what follows, we use water under room temperature and pressure (rtp),
i.e. at 25 ◦C, with density ρ = 103 kg m−3, surface tension σ = 7.2 × 10−2 N m−1

and viscosity µ= 8.9× 10−4 Pa s, as a test system with surfactant Schmidt number
Sc = ν/Ds = 104. We define λ(0)c to be the wavelength for which the capillary
wave undergoes critical damping, henceforth known as the critical wavelength. The
superscript denotes the clean case, which we understand as a system without the
addition of surface-active material, i.e. β = B = 0. We will look at this critical
wavelength in more detail in § 7, but here we note a harmonic oscillator approximation
of λ(0)c (Denner 2016) whereby

λ(0)c = 21/3πlvc/Θ (5.1)

for Θ = 1.0625 and the viscocapillary length scale

lvc =
µ2

ρσ
. (5.2)

In figure 1, we compare the effect of surface viscosity with that of the equivalent
bulk viscosity ν, and the Marangoni effect with that of simple reductions in the
surface tension coefficient σ = σ0 − αΓ0. Here, we use the phrase equivalent to
denote the quantities of bulk viscosity and simple reductions in surface tension that
result in an identical effect on the overall wave amplitude due to surface viscosity
and the Marangoni effect respectively under the limit of either a large or a small
wavelength. For wavelengths near critical damping, in figure 1(a), an increase in B
exhibits a relatively large difference from an equivalent increase in ν, as compared
with the case for λ= 950λ(0)c in figure 1(d). This difference decreases as we increase
the wavelength into less damped regions, as shown in figure 1(b,c). In contrast,
the picture is reversed for the Marangoni effect, where equivalent changes in the
surface tension coefficient are almost identical to increases in surfactant concentration
(through β) near critical damping in figure 1(e), and their difference increases with
larger wavelength from figure 1( f ) to 1(h), where the dynamic Marangoni effect
vastly overshadows the static changes in the surface tension coefficient. Henceforth,
we can approximate the Marangoni effect on the wave amplitude near the critical
wavelength with the equivalent reduction in σ .

In figure 2, we see in more detail the mechanisms of surface viscosity and the
Marangoni effect at different wave amplitudes for different wavelengths. Both effects
admit relatively self-similar solutions, and on increasing either the surface viscosity or
the surfactant concentration, the damping is increased, as expected. One of the explicit
differences is that the Marangoni effect reduces the surface tension and, thus, lowers
the frequency ω, while the surface viscosity leaves ω unchanged. This is due to the
surface viscosity being dependent on the surfactant concentration only to the linear
order, and it does not feature in the leading-order nonlinear amplitude equation (3.23)
explicitly, as noted previously. The consequence on the amplitude of this ω lowering
is a horizontal drift of the waveform for systems with the Marangoni effect, as is
evident from figure 2(d,f ), as opposed to relatively centred waveforms in the cases of
surface viscosity in figure 2(c,e).
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FIGURE 1. The wave amplitude as a function of the dimensionless time τ for water at
approximate room temperature and pressure for Sc= 104, comparing the influence of the
surface viscosity and Marangoni effects for various values of B (with β = 0) and β (with
B= 0). Here, ν0= 8.9× 10−7 m2 s−1 and σ0= 0.072 N m−1 denote the baseline kinematic
viscosity and surface tension respectively. The modified surface tension in (e,f ) represents
a clean system (i.e. β = B= 0) with σ = σ0 − αΓ0.

We also observe that the surface viscosity effect weakens for large wavelengths
λ � λc but is very potent for small wavelengths λ ∼ λc. A particular consequence
of this potency is its ability to alter the onset behaviour in interfacial phenomena,
a number of which occur near the region of the critical wavelength. The stochastic
nature of many of the interfacial instabilities (Aarts et al. 2004) is often kickstarted
by the small-amplitude local disturbances on the interface. Hence, a small change in
surface material, and thus the wave damping, can have a significant effect in starting
or delaying the initialisation process of more complex phenomena. Furthermore, it
would be of interest to obtain the modification to the critical wavelength upon the
addition of a small amount surface-active material. However, we need to consider the
definition of the critical wavelength for a higher-order system as it is not as readily
defined as in a second-order system.

6. Capillary wave dispersion and the critical wavelength
To quantify the changes to the critical wavelength due to the presence of the

Marangoni and surface viscosity effects, we must first obtain the critical wavelength
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FIGURE 2. The wave amplitude as a function of the dimensionless time τ for water at
approximate room temperature and pressure for Sc = 104, showing the influence of the
surface viscosity and Marangoni effects for various values of B (with β = 0) and β (with
B= 0) for different wavelengths λ.

in the clean case. Following Lamb (1932), the general dispersion relation for an
interface with both the Marangoni effect and surface viscosity can be found (derivation
in appendix B) to take the form

W0(Z; ε)
(

1+ Z + B+
β

ε2(Z2 − 1)

)
+

(
B+

β

ε2(Z2 − 1)

)
(Z − 1)3 = 0, (6.1)

where
iω
ε
= Z2
− 1 (6.2)
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and

W0(Z; ε)= Z4
+ 2Z2

− 4Z + 1+
1
ε2
. (6.3)

On specialising to the clean case, (6.1) reduces to

(iω′ + 2ε)2 − 4ε2

(
1+

iω′

ε

)1/2

+ 1= 0, (6.4)

as derived from linearised hydrodynamics (Lamb 1932; Levich 1962). The dispersion
relation admits a solution of the form

ω′ = 2iε −
1
2

h−
(

1−
1
4

h2
−

8iε3

h

)1/2

, (6.5)

where h2
= (1/3)− J1/3

+ − J1/3
− for

J± =
1

27
−

2
3
ε4
+ 2ε6

±
2

3
√

3
ε3
√

f(ε), (6.6)

where the polynomial f(ε) is given by

f(ε)= 11ε6
− 18ε4

− ε2
− 1. (6.7)

For ε� ε?, the wave frequency can be written as

ω′ ∼
1
2

h2
− h+ 2iε

(
1+

ε2

h

)
(6.8)

and the damping coefficient can be extracted as Im(ω′) ∼ 2ε, where ε? ∈ R+ is the
transition value defined by the (largest positive) root of the polynomial f, i.e.

ε? = sup
R+
{ε : f(ε)= 0}. (6.9)

By solving (6.7) exactly, we obtain

ε? =

(
6
11 +

1
33

(
3
2(5571− 341

√
93)
)1/3
+

1
33

(
3
2(5571+ 341

√
93)
)1/3

)1/2

, (6.10)

with the numerical value ε?' 1.3115. Reintroducing dimensional variables, we define
P,Q and the variable K by

K = k? −
σε?2

3ν2ρ
, (6.11)

P=−
σ 2ε?4

3ρ2ν4
, (6.12)

Q=−
(

gε?2

ν2
+

2σ 3σ ?6

27ρ3ν6

)
. (6.13)
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It follows from the definition of ε that the critical wavenumber k? satisfies the cubic
equation

K3
+ PK +Q= 0. (6.14)

We require the real solution given by

K =
{
−

1
2 Q+∆1/2

}1/3
+
{
−

1
2 Q−∆1/2

}1/3
, (6.15)

where

∆1/2
≡

(
Q2

4
+

P3

27

)1/2

(6.16)

=
gε?2

2ν2

(
1+

4σ 3ε?4

27ρ3ν4g

)1/2

. (6.17)

By inspecting (6.15), the critical wavenumber under the limit k� (ρg/σ)1/2 is k? ∼
(gε?2/ν2)1/3, corresponding to the gravity-dominated regime with ω0∼ (gk)1/2. For k>
(ρg/σ)1/2, the critical wavenumber reduces to

k? ∼ ε?2
σρ

µ2
=
ε?2

lvc
, (6.18)

corresponding to the capillary-dominated regime with ω0 ∼ (σk3/ρ)1/2.
For ε � ε?, we note that Re(ω′) = 0 and the system is in an overall overdamped

regime. The damping ratio is given by expanding ω′
−

(since ω′
+
�ω′

−
and would thus

rapidly damp the motion) in (6.5) in ascending powers of ε−1, i.e.

Im(ω′)∼
1
2ε
+O

(
1
ε2

)
. (6.19)

This agrees with the asymptotic approximations by Levich (1962), which suggests that
an increase of viscosity would decrease the damping for ε� ε?.

Using (6.18), the analytical critical wavelength (the value of λ with associated
damping ratio ζ = 1) of the capillary wave is given by

λ?c =
2π

ε?2
lvc. (6.20)

For water under rtp, we have λ?c
.
= 40.1894 nm. In comparison, a harmonic oscillator

approximation (Denner 2016) in (5.1) gives the result λ(0)c
.
= 40.9838 nm. We

consider the relative error between the harmonic oscillator and the analytical critical
wavelengths, ∣∣∣∣21/3

Θ
−

2
ε?2

∣∣∣∣ ε?22
' 0.01977. (6.21)

We observe that the system is largely second-order in the neighbourhood of the critical
wavelength, as the harmonic oscillator value of λc is within 2 % of the analytical value
from the wave dispersion.

7. Damping ratio for a generalised system
For systems of a higher order, the damping ratio ζ is not naturally defined and we

usually inspect the root-locus diagram in order to decompose the system into a sum of
first- and second-ordered systems to provide an estimate calculation. Here, we consider
a numerical method to obtain an equivalent damping ratio, whereby ζ > 1 when the
area of the amplitude below the settling value vanishes for all time almost everywhere.
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The critical wavelength is then the supremum of the set of wavelengths such that the
above property holds. We express this as

λc = sup
λ∈R+

{
λ : lim

T→∞

∫ T

0
A(λ, τ )[1−H(A(λ, τ ))] dτ→ 0 a.e.

}
, (7.1)

where H(x) is the Heaviside step function.
For underdamped waves, even for second-order systems, logarithmic decrement or

fractional overshoot methods tend to break down or become less accurate near regions
of critical damping. Hence, to determine the damping ratios in the neighbourhood of
ζ ≈ 1, we adapt the area method in (7.1). We consider that the area under the t-axis
is given by the function

Ξ(ζ)=

∫
∞

0
dt {Λ(ζ , t) [1−H(Λ(ζ , t))]}, (7.2)

where Λ(ζ , t) satisfies the normalised harmonic oscillator equation

d2Λ

dt2
+ 2ζ

dΛ
dt
+Λ= 0 subject to Λ(ζ , 0)= 1,

dΛ
dt
(ζ , 0)= 0. (7.3)

The generalised (numerical) damping ratio for ζ 6 1 can then be obtained by the
inverse operation

ζ =Ξ−1(X), (7.4)

where X is the area under the t-axis of a generalised system. This numerical method
agrees well with logarithmic decrement and fractional overshoot schemes in the
relevant underdamped regimes.

In cases where the higher-order system can readily be approximated locally by a
second-order system, we note that its dominant poles have a larger residue and time
constant tc = 1/(ζnωn) relative to other poles, where ζn and ωn are the damping ratio
and frequency associated with each pole. In cases that are not clear cut, i.e. where all
the poles are closer together with tc and residues of a similar magnitude, the numerical
definition of the damping ratio above only provides an estimate of the true damping
ratio and we need to examine the poles in more detail.

To encode such information into a convenient form, we construct the minimal pole
matrix {ζ (λ)}. To decompose the system, we first consider the minimal realisation of
the transfer function. For a general system, let Θ1 = {qi ∈C : Q(−qi)= 0} and Θ2 =

{pj ∈ C : P(−pj) = 0} be the sets of poles and zeros of the transfer function tf(s) ≡
P(s)/Q(s), which can be written in the form

tf(s)=
∏

qi∈Θ1,pj∈Θ2

(
s+ pj

s+ qi

)
. (7.5)

By applying the pole-zero cancellation procedure, we obtain the minimal realisation
of the transfer function, henceforth known as the minimal transfer function mtf(s),
defined by

mtf(s, ϑ) =
Pm(s)
Qm(s)

(7.6)

=

∑
qi,m∈Θ1,m(ϑ)

res(−qi,m)

s+ qi,m
, (7.7)
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where the polynomials Pm(s) and Qm(s) satisfy

deg(Qm + Pm)6 deg(P+Q) (7.8)

and Θ1,m(ϑ) ⊆ Θ1 is the set of poles of Q with significant residues (tolerance of
order ϑ),

Θ1,m(ϑ)=

{
qi,m ∈C :Q(−qi,m)= 0,

|res(qj)|

maxqi∈Θ1 |res(qi)|
=O(ϑ)

}
. (7.9)

Returning to the construction of the minimal pole matrix, we let the first column
of the matrix illustrate the order of the poles of the minimal transfer function in dot
form; the second column considers the relative magnitudes of their time constant tc;
the third column compares their relative residues; the fourth column gives the damping
ratios ζn associated with each pole. Furthermore, to the right of the line separator, we
provide an estimated equivalent second-order damping ratio of the entire system using
the area numerical method described previously. We say that a system is second-order
dominant if one set of complex conjugate poles dominates the other poles (i.e. having
the largest tc and residue). In diagrammatic form for ϑ = 1, we have

{ζ (λ; β, B)} =

 pole relative relative associated
type tc residue ζn
{•, ••} (0, 10) (0, 10) [0,∞)

∣∣∣∣∣∣
numerical

ζ
[ 0,∞ )

 . (7.10)

For example, for λ = 6.22λ?c at rtp, the clean case for water exhibits the following
minimal pole matrix: {

•• 1 1 0.75
•• 1 2.30 0.45

∣∣∣∣ 0.45
}
, (7.11)

from which we observe that the system is second-order dominant since the set of
complex conjugate poles with associated damping ratio 0.45 dominates (in the sense
of residue) the other, and, thus, we can deduce that the true damping ratio of the
system is close to the approximate second-order value.

We take this analysis to the region near critical damping, i.e. for ζ → 1+ and
ζ → 1−. In the clean case, we take the analytical result λ?c = 2πlvc/ε

?2 to be the
definition of the critical (damping) wavelength. The relevant minimal pole matrices
take the form

{ζ (λ→ λ?+c )} =

{
•• 1 1 1
•• 1− 1+ <1

}
, (7.12)

{ζ (λ→ λ?−c )} =

{
• 1− 1 1
• 1 1− 1

}
. (7.13)

We can see that this transition from λ?+c → λ?−c for the clean case boasts a
transformation of the complex conjugate into two separate first-order poles, or, in
diagrammatic form, we have

••

••
→
•

•
, (7.14)

i.e. a 22–12 transition.
Extending to contaminated systems, we summarise the results of the minimal pole

matrices of the system at the critical transition in table 1, where the notation 1a2b
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β = B= 0 β > 0, B= 0 β = 0, B> 0 β, B> 0

••

••
→
•

•

••

••
→
•

•

•

••

••

→
•

•

•

••

••

→
•

•

22
→ 12 22

→ 12 1122
→ 12 1122

→ 12

TABLE 1. Schematic of poles at the transition from λ?+c → λ
?−
c for water at room

temperature and pressure.

denotes a system with a first-order and b second-order poles with significant relative
residue. We note that the effect of surface viscosity is to introduce an extra first-order
pole (with unit damping ratio) to the system, while the Marangoni effect does not
change the pole composition for the underdamped region before the critical damping
transition. Moreover, we observe at this critical damping transition that the system
enters the overdamped regime if its minimal pole matrix is of the 12 type irrespective
of its type in the underdamped regime prior to the transition. Henceforth, we shall
define a generalised higher-order (capillary) wave to be in overall overdamped motion
if its minimal pole matrix is of the 12 type.

Using the definition of the overdamped regime for a generalised higher-order
system, we determine numerically the corrections to the critical wavelength for
increasing surface viscosity (through B), surfactant concentration (through β) and
bulk viscosity (through θ , where

ν = (1+ θ)ν0 (7.15)

in figure 3). We note that the curves denoting surface viscosity and the Marangoni
effect intersect near B ' 0.65 and that while the Marangoni curve is roughly
exponential, the surface viscosity curve is the sum of two exponential functions.
Moreover, we observe that a small amount of surface viscosity present in the system
has an amplified effect on the system and that a sevenfold increase in critical
wavelength for B = 1 results in very different dynamics and mechanisms as the
sub-100 nm brings forward the possibility of long-range molecular interactions as well
as the hydrodynamics. Also of consideration is the proximity of the critical wavelength
to the wavelengths of the visible spectrum of light, which allows thin-film behaviours
to be captured by light scattering methods. Hence, the presence of surfactants could
determine whether or not we would be within such a range as to allow interferometry
techniques.

Comparisons of the range with experimental and computational results on
surface viscosity can be made using values reported previously in the literature.
Experimentally, Kanner & Glass (1969) summarised in table 2 the surface viscosities
for both surfactant and polymeric films, where, for a dilute amount of sodium lauryl
sulphate and polydimethylsiloxane in particular, the surface viscosity corresponds to
a lower bound of B = O(1) for k = O(106). A similar correspondence can be found
with the upper bound surface shear viscosity of O(10−8 N s m−1) found in Zell
et al. (2014) for soluble surfactants. We note that this measurement does not include
surface dilatational viscosity and so corresponds to the case (Lucassen & Hansen
1966) where diffusional transport between the surface and the bulk is neglected, and
assumes that the bulk viscosity and density are constant right up to the interface.
More recently, Gounley et al. (2016) characterised the influence of both shear and
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FIGURE 3. Independent corrections to the critical wavelength for increasing surface
viscosity (via B, with θ =β= 0), bulk viscosity (via θ , where ν/ν0= 1+ θ and β=B= 0)
and Marangoni effect (through β, with θ = B= 0).

dilatational surface viscosity on droplets in shear flow in the range B=O(100)–O(101)

for a range of capillary numbers.
Beyond the cmc value, the Marangoni effect should in principle have no overall

contribution to the capillary wave; the dotted curve in figure 3 would end abruptly
at the cmc value. The combination of surface viscosity together with the Marangoni
effect is, however, not straightforward; as in previous experimental studies (Brown
et al. 1953; Kanner & Glass 1969), surface viscosity also appears to alter the ability
of the Marangoni effect to lower surface tension. It would therefore be fruitful in
a future contribution to investigate this surfactant interference mechanism through a
more systematic experimental and theoretical study. In particular, a numerical approach
similar to that of Sinclair, Levy & Daniels (2018) could include the use of a nonlinear
equation of state for the surface tension coefficient σ . The effect of the deviation
from the linear equation of state on the amplitude of the capillary wave would aid
the analysis near the cmc value of the surfactant solution.

8. Conclusion

In this work, the surface viscosity effect has been incorporated into the integro-
differential initial value problem describing the wave dynamics of small-amplitude
capillary waves via the Boussinesq–Scriven surface model. We have shown that,
particularly at length scales close to the critical damping wavelength, a very small
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amount of surface viscosity can dramatically increase the critical wavelength of
the capillary waves, in contrast to the Marangoni effect which becomes prominent
at larger wavelengths. In view of the important role that capillary waves play in
inducing the rupture process of thin films (Aarts et al. 2004), we anticipate the
various interfacial phenomena controlling the wave dynamics at the very minute
length scale to contribute towards the understanding of the stability of foams with
non-trivial surface viscosity. In particular, the correction of the critical wavelength
due to surface viscosity and Marangoni effects, which we summarised in figure 3
using numerical methods, is bound to alter the onset of fluid instabilities for very
thin liquid films. It is also useful towards the optimisation of additives to achieve
desired increases in the critical wavelength. Finally, we expect the concept of a
critical damping wavelength and its correction by surface material to be useful for
a further number of general interfacial phenomena, such as the onset of thin-film
quasi-elastic wrinkling and Faraday-like instabilities in the same length scale.
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Appendix A. The condition deg Q− deg P > 2 ⇒ Z(n, 0)= 0

We consider the rational expression

f̂(s) ≡
P(s,m)
Q(s, n)

(A 1)

=
sm
+$1sm−1

+ · · · +$m−1s+$m

sn + ς 1sn−1 + · · · + ςn−1s+ ςn
, (A 2)

where P(s,m) is a polynomial of order m in s,

Q(s, n)=
n∏

i=1

(s− qi) (A 3)

is a polynomial of order n>m in s with distinct roots qi and∑
16i1<i2<···<ik6n

qi1qi2 · · · qik = (−1)kςn−k. (A 4)

On rewriting f̂(s) using a partial fraction decomposition, we have

f̂(s)=
n∑

i=1

P(qi)

Q′(qi)

1
s− qi

, (A 5)

and by taking an inverse Laplace transform, we obtain

f(t) =
n∑

i=1

P(qi)

σ
(n)
i (qi)

e−qit (A 6)

=

∞∑
j=0

(−1)jZ(n, j)
tj

j!
, (A 7)
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where qi are roots of the polynomial Q(s, n) and

Z(n, j)=
n∑

k=1

P(qj)

σ
(n)
j (qj)

qj
k. (A 8)

Expansion of (A 2) for large s and inversion termwise gives

f(t)∼
tn−m−1

(n−m− 1)!
+
($1 − ς1$m)tn−m

(n−m)!
+O(tn−m+1). (A 9)

Comparison with (A 8) shows that Z(n, j)= 0 if

0 6 j 6 n−m− 2, (A 10)

which reduces to the condition

deg Q− deg P > 2. (A 11)

Appendix B. The contaminated wave dispersion relation

Following Lamb (1932) and using the equations of motion in § 3, the dispersion
relation for a contaminated surface with non-trivial Marangoni effect and surface
viscosity can be obtained from the determinant of the matrix M , given by

M =


1
n
(n′2 + 2εn′ + 1)

i
n

[
1+ 2εn′

(
1+

n′

ε

)1/2
]

i
(
β

n′
+ (2+ B)ε

)
n′ + 2ε +

(
β

n′
+ Bε

)(
1+

n′

ε

)1/2

 , (B 1)

where we have considered the waveform solutionu
v
F

=

−ikAeky

−mCemy

−kAeky
+ ikCemy

−
k
n
(A− iC)

 exp(ikx+ nt) (B 2)

for the fluid velocities u, v and the free surface F, where A, C ∈C, n= iω and n′ =
iω/ω0 for

m2
= k2
+

n
ν

(B 3)

and

ω2
0 = gk+

σ0k3

ρ
. (B 4)

Similarly, the pressure p is given by

p
ρ
= An exp(ky+ ikx+ nt)− gy. (B 5)
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Evaluation of the determinant of M gives(
Z4
− 1+

1
ε2

) [
1+ Z2

+

(
β

ε2(Z2 − 1)
+ B

)
Z
]

=

(
1
ε2
+ 2(Z2

− 1)Z
) [

2+ B+
β

ε2(Z2 − 1)

]
, (B 6)

where
n′

ε
= Z2
− 1. (B 7)

Factorisation yields

W0(Z; ε)
(

1+ Z + B+
β

ε2(Z2 − 1)

)
=−

(
β

ε2(Z2 − 1)
+ B

)
(Z − 1)3, (B 8)

where W0(Z; ε)= 0 is the dispersion relation clean case result. This can be shown if
we let β, B= 0 in (B 8), i.e.(

Z4
− 1+

1
ε2

)
(Z2
+ 1)= 2

(
1
ε2
+ 2(Z2

− 1)Z
)
. (B 9)

Factorisation gives (
Z4
+ 2Z2

− 4Z + 1+
1
ε2

)
(Z + 1)= 0, (B 10)

which reduces to
W0(Z; ε)= 0 (B 11)

if we neglect the spurious root Z + 1= 0.
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