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Abstract. Let G be one of the N2-dimensional bicovariant ¢rst-order differential calculi on the
quantum groups Oq�N� or Spq�N�, where q is not a root of unity. We show that the second
antisymmetrizer exterior algebra sG^ is the quotient of the universal exterior algebra uG^ by
the principal ideal generated by y^y. Here y denotes the unique up to scalars bi-invariant 1-form.
Moreover, y^y is central in uG^ and uG^ is an inner differential calculus.
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1. Introduction

More than a decade ago, Woronowicz provided a general framework for covariant
differential calculus over arbitrary Hopf algebras, [12]. Since then, a theory of
covariant differential calculus on Hopf algebras has been developed. (for an over-
view, see [6, Chapter 14]). In his paper, Woronowicz also introduced the concept
of higher-order forms which is based on a braiding s:G
AG! G
AG. The braiding
s naturally generalizes the classical £ip automorphism. It turns out that
Woronowicz's external algebra wG^ is not simply a bicovariant bimodule but a
differential graded Hopf algebra [1], [6, Theorem 14.17]. However there are two
other concepts of exterior algebras which are also differential graded Hopf algebras,
[2, 7], [6, Theorem 14.18]. The `second antisymmetrizer' exterior algebra sG^ is also
constructed using the braiding; but it involves only the antisymmetrizer I ÿ s of
second degree while Woronowicz's construction uses antisymmetrizers of all
degrees. The universal exterior algebra uG^ can be characterized by the following
universal property. Each (left-covariant) differential calculus which contains a given
¢rst-order differential calculus G as its ¢rst-order part is a quotient of uG^. It seems
natural to enquire about the relation between these three concepts. For the quantum
groups GLq�N� and SLq�N� and their standard bicovariant ¢rst-order differential
calculi (abbreviated FODC) this problem was completely solved in [9].
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In this paper, we consider the quantum groups Oq�N� and Spq�N� together
with their standard bicovariant FODC. The main result is stated in Theorem 1.
Suppose that q is not a root of unity and let y be the unique up to scalars
bi-invariant 1-form in G. Then uG^=�y2� and sG^ are isomorphic differential
graded Hopf algebras. Further, y2 is central in uG^ and uG^ is an inner
differential calculus i.e. dr � y ^ rÿ �ÿ1�nr ^ y for r 2 uG^n. It is somehow
astonishing that the left-invariant parts of uG^2 and sG^2 differ only in the single
element y2.

This paper is organized as follows. Section 2 contains general notions and facts
about bicovariant bimodules and bicovariant differential calculi over Hopf algebras.
In Section 3, we recall the necessary facts about morphisms of corepresentations for
orthogonal and symplectic quantum groups. We give a brief introduction into the
graphical calculus with morphisms. The construction of bicovariant FODC on
orthogonal and symplectic quantum groups is reviewed. The main result is stated
in Theorem 1. In Section 4, a very useful criterion for the size of the space of
left-invariant 2-forms of uG^ in terms of the quantum Lie algebra is given. This
criterion applies to arbitrary left-covariant differential calculi. We show that
G
AG is the direct sum of 9 bicovariant subbimodules. Every bicovariant sub-
bimodule of G
AG which contains y
Ay, already contains the kernel of I ÿ s.
Section 5 exclusively deals with the universal differential calculus. The outcome
of the very technical calculations is that y^y is non-zero and the unique up to scalars
bi-invariant 2-form in uG^.

We close the introduction by ¢xing assumptions and notations that are used in the
sequel. All vector spaces, algebras, bialgebras, etc., are meant to be C-vector spaces,
unital C-algebras, C-bialgebras, etc. The linear span of a set fai j i 2 Kg is denoted
by hai j i 2 Ki. A always denotes a Hopf algebra. We write A� for the dual Hopf
algebra. All modules, comodules, and bimodules are assumed to be A-modules,
A-comodules, and A-bimodules if nothing else is speci¢ed. Denote the com-
ultiplication, the counit, and the antipode by D, e, and by S, respectively. We
use the notions `right comodule' and `corepresentation' of A as synonyms. By ¢xing
a basis in the underlying vector space, we identify corepresentations and the cor-
responding matrices. Let v (resp. f ) be a corepresentation (resp. a representation)
of A. As usual vc (resp. f c) denotes the contragredient corepresentation (resp. con-
tragredient representation) of v (resp. of f ). The space of intertwiners of cor-
epresentations v and w is Mor�v;w�. We write Mor�v� for Mor�v; v�. By End�V �
and V 
W we always mean EndC�V � and V 
C W , respectively. If A is a linear
mapping, A> denotes the transpose of A and trA the trace of A. Lower indices
of A always refer to the components of a tensor product where A acts (`leg
numbering'). The unit matrix is denoted by I . Unless it is explicitly stated otherwise,
we use Einstein convention to sum over repeated indices. Setea � aÿ e�a�1 for a 2 A
and eA � ker e � fea j a 2 Ag. We use Sweedler's notation for the coproduct
D�a� �P a�1� 
 a�2� and for right comodules DR�r� �

P
r�0� 
 r�1�. The mapping

AdR:A! A
A de¢ned by AdRa �
P

a�2� 
 Sa�1�a�3� is called the right adjoint
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coaction of A on itself. The mapping b / a :� Sa�1�ba�2�, a 2 A, b 2 B, is called the
right adjoint action of A on B, where B is an A-bimodule.

2. Preliminaries

In the next three subsections, we shall use the general framework of bicovariant
differential calculus developed by Woronowicz [12], see also [6, Chapter 14]. We
collect the main notions and facts needed in what follows.

2.1. BICOVARIANT BIMODULES

A bicovariant bimodule over A is a bimodule G together with linear mappings
DL:G!A
 G and DR:G! G
A such that (G;DL;DR� is a bicomodule and

DL�aob� � D�a�DL�o�D�b�; and DR�aob� � D�a�DR�o�D�b�;

for a; b 2 A and o 2 G. Let G be a bicovariant bimodule overA. We call the elements
of the vector space

GL � fo j DL�o� � 1
 og �resp: GR � fo j DR�o� � o
 1g�

left-invariant (resp. right-invariant). The elements of GI � GL \ GR are called
bi-invariant. The structure of bicovariant bimodules has been completely character-
ized by Theorems 2.3 and 2.4 in [12]. We recall the corresponding result: Let
(G;DL;DR� be a bicovariant bimodule over A and let foi j i 2 Kg be a ¢nite linear
basis of GL. Then there exist matrices v � �vij� and f � �f ij � of elements vij 2 A
and of functionals f ij on A, i; j 2 K such that v is a matrix corepresentation, f is
matrix representation of A, and

oi / a � f in�a�on; �1�

DR�oi� � on 
 vni ; �2�

for a 2 A, i 2 K . Conversely, if the corepresentation v and the representation f
satisfy certain compatibility condition, then there exists a unique bicovariant
bimodule G with (1) and (2) and foi j i 2 Kg is a basis of GL. In this situation
we simply write G � �v; f �.

2.2 BICOVARIANT FIRST ORDER DIFFERENTIAL CALCULI

A ¢rst-order differential calculus over A (FODC for short) is an A-bimodule G with
a linear mapping d:A! G that satis¢es the Leibniz rule d�ab� � da � b� a � db for
a; b 2 A, and G is the linear span of elements adb with a; b 2 A.

EXTERIOR ALGEBRAS FOR QUANTUM GROUPS 59

https://doi.org/10.1023/A:1017543912858 Published online by Cambridge University Press

https://doi.org/10.1023/A:1017543912858


A FODC G is called bicovariant if there exist linear mappings DL:G!A
 G and
DR:G! G
A such that

DL�adb� � D�a��id
 d�D�b�;
DR�adb� � D�a��d
 id�D�b�

for all a; b 2 A. It turns out that �G;DL;DR� is a bicovariant bimodule. A bicovariant
FODC is called inner if there exists a bi-invariant 1-form y 2 G such that
da � yaÿ ay; a 2 A: By the dimension of a bicovariant FODC we mean the
dimension of the vector space GL of left-invariant 1-forms. Let G be a bicovariant
FODC over A. Then the set RG � fa 2 eA jo�a� � 0g is an AdR-invariant right ideal
of eA. Here o:A ! GL is the mapping

o�a� � Sa�1�da�2�: �3�
Conversely, for any AdR-invariant right ideal R of eA, there exists a bicovariant
FODC G such that RG � R (cf. [6, Proposition 14.7]).

The linear space

XG � fX 2 A� jX �1� � 0 and X �p� � 0 for all p 2 RGg
is called the quantum Lie algebra of G. We recall the main property. The space XG is
an adR-invariant subspace of the dual Hopf algebra A� satisfying D�X � ÿ 1
 X 2
XG 
A� for X 2 XG, [6, Corollary 14.10].

2.3. HIGHER-ORDER DIFFERENTIAL CALCULI

In this subsection, we brie£y repeat two concepts to construct higher-order
differential calculi (DC for short) to a given bicovariant FODC G. Let G � �v; f �
be a bicovariant bimodule.

Obviously the tensor product G
k � G
A � � � 
A G�k factors) is again a
bicovariant bimodule. De¢ne the tensor algebra G
 �LkX 0 G


k, G
0 � A, over
A. It is also a bicovariant bimodule. Since bicovariant bimodules are free left
A-modules we always identify �G
A � � � 
A G�L and GL 
 � � � 
 GL. This justi¢es
our notation oi 
 oj instead of oi 
A oj for oi;oj 2 GL. There exists a unique
isomorphism s:G
A G! G
A G, of bicovariant bimodules called the braiding
with s�o
 r� � r�0� 
 �o / r�1��, o; r 2 GL. Moreover, s ful¢ls the braid equation

�s
 id��id
 s��s
 id� � �id
 s��s
 id��id
 s�
in G
A G
A G. Let sJ denote the two-sided ideal in G
 generated by the kernel of
A2:

G
AG! G
AG; A2 � idÿ s:

We call sG^ � G
=sJ the second antisymmetrizer exterior algebra over G. Since s is a
morphism of bicomodules �G
AG�L is invariant under s. So there exist complex
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numbers sijst such that s�os
ot� � sijstoi
oj . By [12, (3.15)] we have

sijst � f sj �vit�: �4�

Let s:A! GL 
 GL be de¢ned by s�a� � o�a�1�� 
 o�a�2��: Let uJ denote the
two-sided ideal of G
 generated by the vector space s�RG�. Then uG^ � G
=uJ
is called the universal exterior algebra over G. Both sG^ and uG^ are N0-graded
algebras, bicovariant bimodules over A as well as differential graded Hopf algebras
over A. They are related by uJ � s J. Their left-invariant subalgebras uG^L and
sG^L are both quadratic algebras over the same vector space GL.

3. Orthogonal and Symplectic Quantum Groups, their Standard FODC, and
the Main Result

In this section we recall general facts about orthogonal and symplectic quantum
groups. Throughout, A denotes one of the Hopf algebras O�Oq�N�� and
O�Spq�N�� as de¢ned in [3, Subsection 1.4]. We give a brief introduction into the
graphical calculus with morphisms of corepresentations of A and we recall the con-
struction of the standard bicovariant FODC over A. At the end we state our main
result.

As usual we set e � 1 in the orthogonal and e � ÿ1 in the symplectic case.
Throughout the deformation parameter q is not a root of unity, and NX 3. We
always use the abbreviations

q̂ � qÿ qÿ1; �2�q � q� qÿ1; r � eqNÿe; and x � 1� rÿ rÿ1

qÿ qÿ1
:

Recall that R denotes the complex invertible N2 �N2-matrix [3, (1.9)], R̂ab
st � Rba

st ,
and C � �Ci

j �, Ci
j � eiqRjdij0 de¢nes the metric. Here we set ei � 1 for iWN=2 and

ei � e otherwise. The parameter Rk are determined as follows. Let k0:�
N � 1ÿ k for k � 1; . . . ;N. Then set Rk � �N � 1ÿ e�=2ÿ k for kWN=2 and
Rk0 � ÿRk for all k � 1; . . . ;N. The matrix K is given by Kab

st � Ca
bB

s
t , where

B � Cÿ1 � eC. We need the diagonal matrix D � B>C. Sometimes we use the
notation Cab � Ca

b , Cab � Ca
b . Then �Cab� 2 End�C;CN
CN � and �Cab� 2

End�CN
CN ;C�. The N2 generators of A are denoted by uij, i; j � 1; . . . ;N,
and we call u � �uij� the fundamental matrix corepresentation. The element
U �Pi;j D

j
iu

i
j is called the quantum trace. Note that

�Cab� 2Mor�1; u
u�; �Cab� 2Mor�u
u; 1�; C> 2Mor�uc; u�: �5�

For T � �Tab
st � 2 End�CN
CN� de¢ne the q-trace tr1qT 2 End�CN� by �tr1qT �bt �
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Ds
aT

ab
st . We often use the following well known relations between R̂, R̂ÿ1, K , and D.

Cy
z R̂

yz
st � rÿ1Cs

t ; R̂ab
yzC

y
z � rÿ1Ca

b ; �6�
R̂ÿ R̂ÿ1 � q̂�I ÿ K�; �7�
x � trD; �8�
tr1qR̂ � rI; tr1qI � xI ; tr1qK � I : �9�

The mapping gi 7! R̂i;i�1; ei 7!Ki;i�1 de¢nes a representation of the Birman^Wenzl^
Murakami algebra C�q; r�, [11]. We shall give a brief introduction into the graphical
calculus with morphisms, see also [8, Fig. 1 and Fig. 6]. The calculus is justi¢ed
in [10]. Using the graphical calculus formulas and proofs become more transparent.
In order to distinguish the places for the corepresentation u and uc we use arrows
in the graph (Figure 1). A vertex stands for u, resp. uc, if the corresponding edge
is downward directed, resp. upward directed. Since for orthogonal and symplectic
quantum groups u and uc are isomorphic, it appears that one edge has two directions.
For instance, the intertwiner C> 2Mor�u; uc� is represented by a vertical edge
downward directed at the bottom and upward directed at the top. Removing a curl
by rotating part of the diagram clockwise (resp. anti-clockwise) acquires a factor
r (resp. rÿ1) (First Reidemeister move). A closed loop gives the factor x.

The matrix R̂ has the spectral decomposition

R̂ � qP̂� ÿ qÿ1P̂ÿ � rÿ1P̂0;

where P̂t, t 2 f�;ÿ; 0g, is idempotent.
We repeat the method of Jurc o [5] to construct bicovariant FODC overA. For the

more general construction of bicovariant FODC over coquasitriangular Hopf
algebras see [6, Section 14.5]. Let `� � �`�ij � be the N �N-matrix of linear
functionals `�ij onA as de¢ned in [3, Section 2]. Recall that `� is uniquely determined
by `�ij �umn � � �R̂�1�imnj and the property that `�:A! End�CN � is a unital algebra
homomorphism. Note that `�ij �Sumn � � �R̂��mi

jn . De¢ne the bicovariant bimodules

G� � �u
 uc; e� 
 `ÿc 
 `��;
where e� � e and eÿ is the character onA given by eÿ�uij� � ÿdij. The structure of G�

R	

R

R
R

	

	
	

= r
�1 , = r

�1 ,
	 R

� = q̂

? ?

�q̂

= r

?

, = x

?

, =

?

.
??

	 w 	 w

	 w

R =
R =

R =

,

Figure 1. The graphical representation of (6), (7), and (9).
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can easily be described as follows. There exists a basis fyij j i; j � 1; . . . ;Ng of �G��L
such that the right adjoint action and the right coaction are given by

yij / a � e��a�1��S�`ÿmi �`�jn �a�2��ymn; a 2 A;
DRyij � ymn 
 umi �uc�nj ; i; j � 1; . . . ;N:

In particular

yij / ust � �R̂sm
iy R̂

jy
tnymn; y / ust � ��R̂2�smtn ymn; �10�

where y �Pi yii is the unique up to scalars bi-invariant element. De¢ning
da � yaÿ ay for a 2 A, �G�; d� becomes a bicovariant FODC over A. The basis
fX�ij g of the quantum Lie algebra X� dual to fyijg is given by

X�ij :� e�`ij ÿ dij :� e�S�`ÿiy �`�yj ÿ dij:

One easily checks that X�0 :� �Dÿ1�jiX�ij � e��Dÿ1�ji`ij ÿ x is an adR-invariant element
of A�. The braiding s of G� can be obtained as follows. Inserting v � u
 uc and
f� � e� 
 `ÿc 
 `� into equation (4) the braiding matrices of G� and Gÿ coincide

s � �Rÿ23R̂12 �Rÿ134
�R23; �11�

where the matrices �R, �R, and �Rÿ are de¢ned as follows. For a complex
N2 �N2-matrix T with T̂ 2Mor�u
 u� de¢ne the matrices �Tab

st � T̂ ts
ba,

�Tab
st � T̂ sa

tb , and �T � � �T �ÿ1. Note that �T 2Mor�uc 
 u; u
 uc� and �T 2Mor�uc 
 uc�.
Now we can formulate our main result.

THEOREM 1. Let A be one of the Hopf algebras O�Oq�N�� or O�Spq�N��, NX 3,
and q not a root of unity. Let G be one of the bicovariant FODC G�, and
2x� �qÿ qÿ1��rÿ rÿ1� 6� 0 in case of Gÿ. Denote the unique up to scalars bi-invariant
1-form by y.

�i� Then the quotient uG^=�y2� and the second antisymmetrizer algebra sG^ are
isomorphic bicovariant bimodules.

�ii� The bi-invariant 2-form y2 is central in uG^. The calculus uG^ is inner, i.e.

dr � y ^ rÿ �ÿ1�nr ^ y; r 2 uG^n: �12�

Remark. Theorem 1 is true for the quantum group SLq�2� and the 4D�
biocovariant FODC as well, [9, Theorem 3.3(iii)]. In cases SLq�N� and GLq�N�,
NX 3, we have uG^ �s G^, [9, Theorem 3.3(ii)]. For the quantum super group
GLq�m j n� the relation uG^ �s G^ was proved in [7, Section 5.3].

Remark. The isomorphism of bicovariant bimodules uG^=�y2� and sG^ implies its
isomorphy as differential graded Hopf algebras.
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4. Proof of the Theorem

In the ¢rst part of this section, we study the duality of GL 
 GL and X 
 X in more
detail. In the second part, we examine how G
A G splits into bicovariant sub-
bimodules. We shall prove that the space of bi-invariant elements of G
A G gen-
erates the whole bimodule kerA2.

4.1. DUALITY

There is a useful criterion to describe the dimension of the space of left-invariant
2-forms of uG^ in terms of the quantum Lie algebra.

LEMMA 2.LetA be an arbitraryHopf algebra,G a left-covariant FODC overAwith
quantum Lie algebra X , and uG^ the universal differential calculus over G. Then

dimu G^2L � dimfT 2 X 
 X j m�T � 2 Xg;

where m:X 
 X ! A� denotes the multiplication map.
Proof. We use the following simple lemma from linear algebra without proof. Let

B:V �W ! C be a nondegenerate linear pairing of ¢nite-dimensional vector
spaces and U a subspace of V . Then the induced pairing B:V=U �U? ! C with
U? � fw 2W j B�u;w� � 0 for u 2 Ug is also nondegenerate. Applying this lemma
to the non-degenerate pairing h�; �i:GL 
 GL � X 
 X ! C, [12, p. 164], and
U �s�R� we have T � aijXi 
 Xj 2 U? if and only if

0 � ho�p�1��
o�p�2��; aijXi
Xji � aijXi�p�1��Xj�p�2�� � m�T ��p�
for p 2 R. Hence, T 2 U? if and only if m�T � 2 X . Consequently U? � mÿ1�X�,
where mÿ1�X� denotes the pre-image of X under m. Since the induced pairing is
nondegenerate too and uG^2L � GL 
 GL=s�R� by de¢nition, the assertion of the
lemma is proved.

Remark. Suppose G to be bicovariant. Since for f :V ! V linear,
�ker f �? � im f >, the pairing also factorizes to a nondegenerate pairing of
sG^2L � X ^ X , where X ^ X � A>2 �X 
 X� and A>2 is the dual mapping to
A2H�GL 
 GL�.

We proceed with a result for a dual pairing of a comodule and a module.

PROPOSITION 3. Let V be a right A-comodule, W a right A�-module, and
h; i:V �W ! C a nondegenerate dual pairing of vector spaces. Moreover

hv;w � f i � hv�0�f �v�1��;wi;

for v 2 V, w 2W, and f 2 A�.
If P 2Mor�V � then P> 2Mor�W �. If in addition P2 � P, then the induced pairing

imP � imP> ! C is nondegenerate too.
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Proof. Since P 2Mor�V �;Pv�0� 
 v�1� � �Pv��0� 
 �Pv��1�. For v 2 V , w 2W , and
f 2 A� we thus get

hv;P>w � f i � hv�0�f �v�1��;P>wi
� hPv�0�f �v�1��;wi
� h�Pv��0�f ��Pv��1��;wi
� hPv;w � f i
� hv;P>�w � f �i:

Since the pairing is nondegenerate the ¢rst assertion follows.
Since P and P> are morphisms, the corresponding subspaces are invariant. Let

v0 2 imP, i.e. v0 � Pv0, and suppose 0 � hv0;P>wi for all w 2W . Then 0 �
hPv0;P>wi � hP2v0;wi � hv0;wi. Since the pairing is nondegenerate, v0 � 0.
Similarly, one shows that imP separates the elements of imP>.

COROLLARY 4. LetA be an arbitrary Hopf algebra, G a bicovariant FODC overA
with quantum Lie algebra X , and P 2Mor�DR�;P2 � P. We restrict DR to �G
A G�L
or a suitable quotient. Then imP is a DR-invariant subspace of �G
A G�L
�uG^2L resp: sG^2L �, and imP> is an adR-invariant subspace of X 
 X �mÿ1�X� resp.
X ^ X�. The induced pairing imP � imP> ! C is nondegenerate.

Proof. (i) Since s�R� and �kerA2�L are DR-invariant, and since mÿ1�X� and
A>2 �X 
 X� are adR-invariant, the mappings DR and adR are well-de¢ned on both
quotients uG^2L and sG^2L resp. mÿ1�X 
 X� and X ^ X .

It follows from [12, (5.17) and (5.21)] that for r 2 �G
A G�L;Y 2 X 
 X , and
f 2 A�

hr�0�f �r�1�� ; Y i � hr ; Y / f i:

Thus Proposition 3 applies to our situation.
Let B be a right A�-module with respect to adR. For the space of invariants we use

the notation B0 � fb 2 B j b / f � e�f �b; f 2 A�g. Our next aim is to compare the
bi-invariant components of G
A G, sG^2, and uG^2 with the invariant subspaces
�X 
 X�0; �X ^ X�0, and mÿ1�X�0, respectively.

LEMMA 5. LetA be one of the Hopf algebrasO�Oq�N�� orO�Spq�N��, NX 3, G one
of the N2-dimensional bicovariant FODC G� over A and let X be the corresponding
quantum Lie algebra. Then we have

(i) dim G
2I � 3; dim�X
X�0 � 3;
(ii) dim s G^2I � 0; dim�X^X�0 � 0; dim�kerA2�I � 3;
(iii) dim u G^2I � 1 mÿ1�X�0 � hTi; dim�s�R�I � � 2;

where T � Xij 
 Xmn Bi
yR̂

jy
mzC

n
z :
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Proof. (i) It is well known that dim Mor�u
 u� � 3, and I , R̂, and K form a linear
basis of Mor�u
u�. Using (5) it is easy to see that the mapping T 7! �Bs

zC
r
yT

ab
yz �

de¢nes a linear isomorphism Mor�u
u� !Mor�1; u
uc
u
uc�. Since

r � aijmnyij
ymn 2 G
AG
is bi-invariant if and only if �aijmn� 2Mor�1; u
uc
u
uc�, (i) is proved.

(ii) The elements

y
y; Z � Dk
j yik
yji and x � Ci

xR̂
ym
xn B

y
j yij
ymn

form a basis of G
2I . Using the graphical calculus it is not dif¢cult to check that s acts
as the identity on G
2I , see Figure 2.

Consequently, G
2I � kerA2 and sG^2I � f0g. By Corollary 4 we obtain
�X^X�0 � 0.

(iii) By [3, (2.3)], R̂jy
vj�`ÿc�my `�jz � `�wj �`ÿc�vmR̂jy

mz. Further by [3, Remark 21],
`�C>`�> � C>1. Let

T0 � `ij`mn Bi
yR̂

jy
mzC

n
z � �`ÿc�wi `�wj �`ÿc�vm`�vn Bi

yR̂
jy
mzC

n
z :

Using the above identities, (6) twice, and ¢nally (8) one gets

T0 � S`ÿiw �`ÿc�my `�jz R̂wm
vj `
�v
n Bi

yC
n
z

� S`ÿiw S`ÿym R̂wm
vj Cv

j B
i
y

� rÿ1S�`ÿym `
ÿi
w Cw

m�Bi
y

� rÿ1Ci
yB

i
y1 � rÿ1x:

Using X�ij � e�`ij ÿ dij, the above calculation, and again (6) and (8) it follows that

m�T � � �e�`ij ÿ dij��e�`mn ÿ dmn �Bi
yR̂

jy
mzC

n
z

� rÿ1xÿ e�Bi
yR̂

iy
mzC

n
z `

m
n ÿ e�Bi

yR̂
jy
mzC

m
z `

i
j � Bi

yR̂
iy
mzC

m
z

� rÿ1�xÿ e�Bm
z C

n
z `

m
n ÿ e�Bi

yC
j
y`

i
j � x�

� ÿ2rÿ1X�0 :
Consequently, T 2 mÿ1�X� and dim mÿ1�X�0 X 1. By Corollary 4 applied to the
projection P 2Mor�DRHuG

^2
L � onto the space uG^2I , the pairing

uG^2I �mÿ1�X�0 ! C is nondegenerate. Since uG^2I � G
2I =s�R�I , dimG
2I � 3 by (i),

Figure 2. s acts as the identity on y
 y; Z; and x.
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and dims�R�I X 2 by the result of Section 5 we get dim mÿ1�X�0 � dim u G^2I � 1.
This completes the proof.

4.2 BICOVARIANT SUBBIMODULES

We shall describe a method to construct a class of bicovariant subbimodules of
G
AG. This method is also applicable to higher tensor products G
k, cf. [4, p. 1356].
In this subsectionA is one of the Hopf algebrasO�Oq�N�� orO�Spq�N�� and G always
denotes one of the N2-dimensional bicovariant bimodules G� over A with
left-invariant basis fyij j i; j � 1; . . . ;Ng. The canonical basis of CN is fe1; . . . ; eNg.

LEMMA 6. (i) Let P̂ and �Q be idempotents in Mor�u
u� and Mor�uc
uc�,
respectively. We identify the underlying spaces of the right coaction on GL 
 GL

and the equivalent matrix corepresentation u
uc
u
uc via yij
ykl !
ei
ej
ek
el . Then the subspace

�Rÿ23P̂12 �Q34 �R23�GL 
 GL� �13�

of GL 
 GL is the left-invariant basis of a bicovariant subbimodule of G
AG of
dimension rk�P̂� rk� �Q�.

(ii) G
AG is the direct sum of 9 bicovariant subbimodules Ltn, t; n 2 f�;ÿ; 0g, gen-
erated by the left-invariant elements

�Rÿ23P̂
t
12

�Pn
34

�R23�GL 
 GL�:
Moreover we have the following identity of bicovariant bimodules

kerA2 � L�� � Lÿÿ � L00:

Proof. (i) Since all four in (13) appearing mappings are morphisms of cor-
epresentations one easily checks that T :� �Rÿ23P̂12 �Q34 �R23 2Mor�u
uc
u
uc�. Hence
the space is closed under the right coaction. Now we compute the right adjoint
action. Set yPQmnkl � T �ymn
ykl�. By (10)

yPQmnkl / u
i
j � Tvwcd

mnkl R̂
ia
vyR̂

wy
eb R̂

es
czR̂

dz
jt yab 
 yst

� �R̂12 �R23R̂34 �R45T1234�iabstmnkljyab 
 yst

� �T1234R̂12 �R23R̂34 �R45�iabstmnkljyab 
 yst

� yPQvwst�R̂12 �R23R̂34 �R45�ivwstmnklj:

The second last equation becomes evident taking a look at the graphical presentation
of these equations, see Figure 3.

Consequently, T �GL
GL� is closed under the right adjoint action. Hence
AT �GL
GL� is a bicovariant subbimodule.

(ii) The ¢rst part follows from (i) and the fact that �P̂� � P̂ÿ � P̂0�12
� �P� � �Pÿ � �P0�34 is the identity of �CN �
4. In addition P̂t and P̂n as well as �Pt
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and �Pn are pairwise orthogonal idempotents, respectively. Hence the sum is direct.
To the second part. Let lt denote the eigenvalue of R̂ with respect to the idempotent
P̂t; R̂P̂t � ltP̂t, namely l� � q, lÿ � ÿqÿ1, and l0 � rÿ1. Note that �R �Pt � lt �Pt as
well. Put r � �Rÿ23P̂

t
12

�Pn
34

�R23�yijkl�. Then by (11)

s�r� � �Rÿ23R̂12 �Rÿ134
�R23 � �Rÿ23P̂

t
12

�Pn
34

�R23�yijkl�
� ltl

ÿ1
n

�Rÿ23P̂
t
12

�Pn
34

�R23�yijkl�
� ltl

ÿ1
n r:

Since q is not a root of unity, lt 6� ln for t 6� n. Hence r 2 �kerA2�L if and only if
t � n. We thus get �kerA2�L � L��L � LÿÿL � L00

L as linear spaces. By (i) each space
on the right hand side generates a bicovariant subbimodule. This completes the
proof.

To simplify notations we choose a new basis of �G
A G�L

yvwst � �Rÿyzws yvy
yzt; yvwst � �Ryz
wsyvyzt: �14�

The right coaction now reads u
 u
 uc 
 uc and the braiding in the new basis is
s � R̂12 �Rÿ134 . We simply write Lt instead of Ltt; t 2 f�;ÿ; 0g. Since the correspond-
ing P̂t subcorepresentation of u
u is irreducible, by Schur's lemma Lt has a unique
up to scalars bi-invariant element Zt, see Figure 4.

The relations with the old basis of L
2I are Z � r�Z0 � Z� � Zÿ�, x � xZ0, and

y
y � qZ� ÿ qÿ1Zÿ � rÿ1Z0: �15�

The next lemma is the key step in our proof.

P̂ �Q

?

6�

R

	

	

	

6

?

I

�

�

? 	

�

P̂ �Q

?

6�

R

	

I

?

?

? q

�ab
�st =

6
i a b s t

i a b s t

m n k l j m n k l j

�ab
�st.

Figure 3. The linear span hyPQi is closed under the right adjoint action.
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LEMMA 7. Let G be one of the bicovariant FODC G� over A and Lt; t 2 f�;ÿ; 0g,
the above de¢ned bicovariant subbimodule of kerA2. Then Lt is generated by the
single element Zt. More precisely, Zt /A � Lt

L:

Proof. By Lemma 2 the canonical left-invariant basis of Lt is

ytmnkl � �Rÿ23P̂12 �Q34 �R23�ymn
ykl� � �Rÿwsyz �P̂t�vyma� �Pt�ztbl �Rab
nkyvw
yst:

The proof is in two steps. First we compute Zt / uij and obtain elements

Ztij � Bi
x�P̂t�mn

xk � �Pt�vwkyCj
yymnvw;

xtij � �P̂t�mn
yk � �Pt�vwkz �Ryz

ij ymnvw:

The graphical presentation of Ztij and xtij is as in Figure 5.
First we will show that

Zt /euij � q̂�l2t � 1�xtij ÿ rÿ1q̂�1� lÿ2t �Ztij; �16�

Zt / eU � atZt; atq̂�lt � lÿ1t ��ltrÿ lÿ1t rÿ1�: �17�
By (14) and (10) one has

ymnkl / uij � �Rÿabnk �yma / uic��ybl / ucj �
� �Rÿabnk R̂iv

myR̂
ay
cdR̂

cp
bzR̂

lz
jtyvd 
 ypt

� � �R34R̂12 �R23R̂34 �R45 �Rÿ23�ivwstmnkljyvwst:

�18�

The graphical presentation of (18) is Figure 6. Now we explain Figure 7.
In the ¢rst step we replaced the crossing in the dash box using (7). In the second

step we did the same with the R̂-matrix in the ¢rst dash box. This gives the ¢rst
three terms in the next line. Moreover the dash box in the second summand is
multiplied by �Pt and gives ltI (no crossing). Similarly, a second crossing in the same
term gives another lt. With the third summand we are dealing in the same way; in
addition the curl gives the factor rÿ1. Sinceeuij � uij ÿ dij1, (16) follows immediately.

Note that for t � 0

Z0 / uij � dijZ0 �19�
is obvious from the ¢rst line in Figure 7 since P̂0 � xÿ1K and no crossing appears

Figure 4. The bi-invariant elements Z�; Zÿ; and Z0:
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there. Moreover Z0ij � dijZ0 and x0ij � rdijZ0 and (16) and (17) are valid. Since L0 is
one-dimensional there is nothing to prove. Now we ¢x t 2 f�;ÿg. We shall eliminate
Ztij from (16). Multiplying (16) byDj

i and usingD
j
iZ

t
ij � Zt;Dj

ix
t
ij � rZt gives (17). Since

q is not a root of unity, Tt � q̂�l2t � 1�R̂ÿ1 ÿ rÿ1q�1� lÿ2t � is invertible with inverse

Tÿ1� �
1

q̂�2�q
1

1ÿ qÿ1rÿ1
P̂� � 1

ÿq2 ÿ qÿ1rÿ1
P̂ÿ � 1

rqÿ rÿ1qÿ1
P̂0

� �
;

Tÿ1ÿ �
1

q̂�2�q
1

qÿ2 ÿ qrÿ1
P̂� � 1

ÿ1ÿ qrÿ1
P̂ÿ � 1

qÿ1rÿ qrÿ1
P̂0

� �
:

Set �St�ijst � By
i �Tÿ1t �yjztCs

z and multiply (16) by �St�ijst. Then we obtain
�St�ijstZt /euij � Ztst. Consequently, Z

t
st 2 Lt for s; t � 1; . . . ;N and t 2 f�;ÿg.

In the second step we again compute the right adjoint action of uij but on elements
Ztst. We obtain elements

xtsijt � �P̂t�mn
sy � �Pt�vwzt �Ryz

ij ymnvw;

Ztsijt � Bs
yB

i
z�P̂t�mn

yz � �Pt�vwdc Cj
dC

t
cymnvw:

Obviously xtsijt � Ztsyzt �Ryz
ij . Graphically they are represented in Figure 8.

From (18), we obtain Figure 9.
Replacing one crossing R̂ by R̂ÿ1 � q̂I ÿ q̂K similarly to the graphical calculations

in the ¢rst part of the proof one can show that

ztsijt:� Ztuv / u
a
b

�Rau
si R̂

vb
jt ÿ dijZtst � q̂xtsijt ÿ q̂rÿ1Ztsijt:

P̂ � �P �

? ? 6 6

7

��ij = �mnkl, ��ij =

m n k l

?

6
6
?

i j

P̂ � �P �

? ? 6 6

7

�mnkl.

m n k l

i j
-

>

Figure 5. The elements Ztij and xtij.

-

? ?

6 6

�

�mnkl / u
i
j =

i m n k l j

v w s t

�vwst

Figure 6. The right adjoint action of uij on ymnkl :
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Since q is not a root of unity, T � q̂�R̂ÿ1 ÿ rÿ1I� is invertible with inverse
Tÿ1 � q̂ÿ1��qÿ1 ÿ rÿ1�ÿ1P̂� ÿ �q� rÿ1�ÿ1P̂ÿ�. Therefore

By
i �Tÿ1�yjzlCk

z z
t
sijt � Ztsklt

belongs to Lt
L. Finally we have Bm

v B
a
yC

b
zC

l
tZ

t
vyzt

�Rab
nk � ytmnkl which completes the

proof.
Now we are ready to complete the proof of the theorem. By Lemma 5 (iii) both Z�

and Zÿ belong to s�R� (see Section 5) and dimu G^2I � 1. Hence Z0 62s�R�0. Since
y
y � rÿ1Z0 mods�R� by (15) and aZ0 � Z0a, a 2 A, by (19) we get

ay ^ y � y ^ ya; a 2 A: �20�

We prove (12) by induction over the degree n of r 2 u G^n. For n � 0 it is true by the
de¢nition of the FODC. Suppose it is true for nÿ 1. Since there exist ai 2 u G^nÿ1 and

P̂ � �P �

Æ Æ

?
i j

6 6? ?

�� / uij = (P̂ �)mn
lk �mnkl / u

i
j = =

P̂ � �P �

Æ

?
i j

6 6? ?

P̂ � �P �

Æ

?
i j

6 6? ?

P̂ � �P �

Æ

?
i j

6 6? ?

= +q̂ �q̂> � =

P̂ � �P �

i j

6 6? ?

= > 7

j

P̂ � �P �
6 6? ?

>?

6
?

6
�q̂r�1

P̂ � �P �
6 6? ?

> *

j

i ji j

+q̂ +

P̂ � �P �

6 6? ?

> *

j

i j

+�2

� q̂
P̂ � �P �

6 6? ?

>?

6
?

6
�q̂r�1��2�

i j

.

=1

Figure 7. The proof of (16).
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bi 2 A such that r � aidbi, we obtain by induction assumption and by (20)

dr � daidbi � yaidbi ÿ �ÿ1�nÿ1aiy�ybi ÿ biy�
� yrÿ �ÿ1�n�aiybiyÿ aibiy2�
� yrÿ �ÿ1�naidbiy
� yrÿ �ÿ1�nry:

Using d2r � 0 and (12) twice gives y2r � ry2, and y2 is central in uG^2. This com-
pletes the proof of (ii).

By Lemma 5 (iii) and Lemma 7

s�R� �s�R�0 /A � L�L � LÿL :

Since s�R� � kerA2 by universality of uG^ and Z0 2 kerA2, we conclude with
Lemma 6 (ii) that the above inclusion is not strict,

s�R� � L�L � LÿL and �kerA2�L �s�R� � L0
L:

Since both uG^L and sG^L are quadratic algebras,

uG^L=�Z0� � G
L =�s�R� � hZ0i� � G
L =�kerA2�L � s G^L :

Since both uG^L=�Z0� and sG^ are free left A-modules it follows uG^=�Z0� � s G^.
Noting that y2 � rÿ1Z0 in uG^ completes the proof of the theorem.

P̂ � �P �

6 6? ?

? 6

i j

>

~6

s t

��
istj =

6 6? ?

? 6

i j

6

s t

, ��
istj =

P̂ � �P �

?
6

6

? ? ?

.

Figure 8. The elements xtistj and Ztistj :

��
st / u

i
j =

P̂ � �P �

6 6? ?

? 6

s jt

j
6

i

�
.

?

Figure 9. The right adjoint action of uij on Ztst:
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5. The Bi-invariant 2-form of the Universal Di¡erential Calculus

In this section we will complete the proof of Lemma 5 (iii) and show that both
bi-invariant elements Z� and Zÿ belong to s�R�. We give different proofs for
the cases G� and Gÿ. The ¢rst proof for G� is self-contained and much easier than
the second one. In the later one we take results from [8] and make use of a computer
algebra program to simplify long terms. For q transcendental however the ¢rst proof
works for Gÿ too.

We recall some identities which are easily proved using (3) and the Leibniz rule.
Equations (22), [6, formula (14.3)], and (24), [6, Lemma 14.15], are valid for arbi-
trary left-covariant FODC while (21) and (23) in addition require da � yaÿ ay.
For a; b 2 A and p 2 R we have

o�a� � y / a� e�a�y; y / p � 0; �21�

o�ab� � o�a� / b� e�a�o�b�; �22�

s�a� � �y
y� / aÿ y
 �y / a� ÿ �y / a� 
 y� e�a�y
 y;

s�p� � �y
y� / p; �23�

s�eab� � s�a� / b� o�a� / b�1� 
 o�b�2�� � o�b�1�� 
 �o�a� / b�2��;
s�pb� � s�p� / b: �24�

We abbreviate r̂ � rÿ rÿ1. In what follows we do not sum over signs t and n.
Part 1. G � G�. First we show Q :� eU � eU ÿ q̂r̂eU 2 R. By (10) and (9) we obtain

y /U � tr1q�R̂2�mn ymn � �q̂r̂� x�y: Using (21), (22), and e�U� � x we have o�Q� �
�y / eU� / eU ÿ q̂r̂y / eU � 0. In addition e�Q� � 0; hence Q 2 R. Next we compute
s�Q�. Since Q 2 R, by (23) we have s�Q� � �y
 y� /Q. Using (15) and (17) we get

s�Q� � �y
y� /Q � �qZ� ÿ qÿ1Zÿ� / �eUeU ÿ q̂r̂eU�
� qa2�Z

� ÿ qÿ1a2ÿZ
ÿ ÿ q̂r̂�qa�Z� ÿ qÿ1aÿZÿ�

� qa��a� ÿ q̂r̂�Z� ÿ qÿ1aÿ�aÿ ÿ q̂r̂�Zÿ:
�25�

Since R is a right ideal QeU 2 R. By (24) and (25)

s�QeU� � qa2��a� ÿ q̂r̂�Z� ÿ qÿ1a2ÿ�aÿ ÿ q̂r̂�Zÿ: �26�
Solving this linear system (25) and (26) in Z� and Zÿ we have to consider its
coef¢cient determinant

det � a�aÿ�a� ÿ aÿ��a� ÿ q̂r̂��aÿ ÿ q̂r̂�
� �r� rÿ1�q̂6�2�3q�qrÿ qÿ1rÿ1��qÿ1rÿ qrÿ1��
� �q2rÿ qÿ2rÿ1��qÿ2rÿ q2rÿ1�:

Since q is not a root of unity, det 6� 0. Hence both Z� and Zÿ belong to s�R�.
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Part 2. G � Gÿ. We denote the critical value by c; c � q̂q2r�2x� q̂r̂� �
�q4 � 1�r2 � 2q�q2 ÿ 1�rÿ �q4 � 1�. We recall some of the de¢ning constants for
Gÿ from [8, p. 656].

m� � r̂�ÿq2r� qÿ2rÿ1 ÿ q̂�
q̂r̂� 2x

;

mÿ � r̂�ÿqÿ2r� q2rÿ1 ÿ q̂�
q̂r̂� 2x

;

m : � m� � mÿ ÿ 2x � ÿq̂r̂ÿ 2x;

The idempotents P̂n; n 2 f�;ÿg, and their q-traces are as follows

P̂n � �ln � lÿ1n �ÿ1�lÿ1n I � R̂� q̂�1ÿ rln�ÿ1K�; �27�

tr1q�P̂n� � r̂�l2nrÿ lÿ1n �
q̂�ln � lÿ1n ��lnrÿ 1� I �: tnI : �28�

There are two AdR-invariant quadratic elements in A, namely Vn � Db
aD

j
i�P̂n�aiyzuybuzj .

One has e�Vn� � xtn. Note that fWn 2 R, where Wn � Vn ÿ mnU , [8, p. 656 eq. (3)].
Suppose a 2 A is AdR-invariant and r 2 LI , whereL is a bicovariant bimodule. Then
one has r / a 2 LI . Namely,

DR�r / a� � �Sa�2� 
 Sa�1���r
 1��a�3� 
 a�4�� � r / a�2� 
 Sa�1�a�3� � r / a
 1:

Applying this fact to Lt and Vn, and noting that , t 2 f�;ÿg, is the only bi-invariant
element of Lt (up to scalars), there exist complex numbers ctn; t; n 2 f�;ÿg, de¢ned
by Zt /fVn � ctnZt: We shall determine these constants. By the de¢nition of Vn

and (16)

Zt / Vn � Zt / uiju
s
t�P̂n�jtabDa

i D
b
s

� ÿdijZt � q̂�l2t � 1�xtij ÿ rÿ1q̂�1� lÿ2t �Ztij
�
/ ust�P̂t�jtabDa

i D
b
s :

We carry out the calculations for the ¢rst term. By (16) and (28) we have

dij Zt/ �ust�P̂t�jtabDa
i D

b
s � � tnZt /U � tn�x� at�Zt:

Using graphical calculations we obtain for the other two terms

xtij / �ust�P̂t�jtabDa
i D

b
s � � �q̂dt;nr2l2t � rl2ntn ÿ q̂lnlÿ1t etn�Zt

Ztij / �ust�P̂t�jtabDa
i D

b
s � � �q̂rlÿ1n ltetn � lÿ2n tn ÿ q̂rÿ1lÿ2n dt;n�Zt;

where

etn � �ln � lÿ1n �ÿ1�lÿ1t � q̂�1ÿ rln�ÿ1�
is obtained from (27) and the picture in Figure 10
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Finally we obtain

c�� � cÿ1�q2 � 1��q2r2 ÿ 1�rÿ2qÿ6ÿ�q12 � q4�r4�
� �2q11 ÿ 2q9 � 2q5 ÿ 2�r3 � �ÿq12 � q8 ÿ 4q6 � q4 ÿ 1�r2�
� �ÿ2q9 � 2q7 ÿ 2q3 � 2q�r� q8 � 1

�
c�ÿ � cÿ1�2�q2�qÿ qÿ1rÿ2��r� q3��rÿ q�ÿ�q2 ÿ 1� qÿ2�r2�

� q̂rÿ q2 � 1ÿ qÿ2
�

cÿ� � cÿ1�2�q�2�qÿ1 ÿ qrÿ2��qr� 1��q3rÿ 1�ÿ�q2 ÿ 1� qÿ2�r2�
� q̂rÿ q2 � 1ÿ qÿ2

�
cÿÿ � cÿ1�q2 � 1��r2 ÿ q2�rÿ2qÿ6ÿ�q8 � 1�r4�

� �2q9 ÿ 2q7 � 2q3 ÿ 2q�r3 � �ÿq12 � q8 ÿ 4q6 � q4 ÿ 1�r2�
� �ÿ2q11 � 2q9 ÿ 2q5 � 2q3�r� q12 � q4

�
Now we are able to compute four bi-invariant elements ofs�R�. Using (15) and (17)
we have

s�Wn� � �y
y� / �fVn ÿ mneU�
� q�c�n ÿ mna��Z� ÿ qÿ1�cÿn ÿ mnaÿ�Zÿ:

�29�

Similarly to Part 1 we get

s�WneU� � qa��c�n ÿ mna��Z� ÿ qÿ1aÿ�cÿn ÿ mnaÿ�Zÿ: �30�

Consider the 4� 2^coef¢cient matrix T � �Tij� for the linear system of Equations
(29) and (30), n 2 f�;ÿg. The two columns are

q
ÿ
c�� ÿ m�a�; c�ÿ ÿ mÿa�; a��c�� ÿ m�a��; a��c�ÿ ÿ mÿa��

�>
;

ÿ qÿ1�cÿ� ÿ m�aÿ; cÿÿ ÿ mÿaÿ; aÿ�cÿ� ÿ m�aÿ�; aÿ�cÿÿ ÿ mÿaÿ�
�>
:

We distinguish three cases: The ¢rst column is zero, the second column is zero, and
no column vanishes, respectively.

Figure 10. The de¢nition of etn:
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Case 1. c�� ÿ m�a� � c�ÿ ÿ mÿa� � 0. We obtain the following two equations

0 � �q2 � 1��qrÿ 1��qr� 1��
� �q12r4 � q4r4 � 2q11r3 ÿ 2q9r3 � 2q5r3 ÿ 2q3r3 ÿ q12r2�
� q8r2 ÿ 4q6r2 � q4r2 ÿ r2 ÿ 2q9r� 2q7rÿ 2q3r� 2qr� q8 � 1�;

0 � 2�qrÿ 1��qr� 1��r� q3��rÿ q��
� �q4r2 ÿ q2r2 � r2 � q3rÿ qrÿ q4 � q2 ÿ 1��q2 � 1�:

Since q is not a root of unity we have

d1 � q12r4 � q4r4 � 2q11r3 ÿ 2q9r3 � 2q5r3 ÿ 2q3r3 ÿ q12r2�
� q8r2 ÿ 4q6r2 � q4r2 ÿ r2 ÿ 2q9r� 2q7rÿ 2q3r� 2qr� q8 � 1 � 0;

d2 � q4r2 ÿ q2r2 � r2 � q3rÿ qrÿ q4 � q2 ÿ 1 � 0:

Using the Euclidean algorithm we eliminate powers of r. We end up with
polynomials

a � �q4 � 1��q6 ÿ q2 � 1��q8 � 1�q4r3 � �q4 ÿ q2 � 1��3q14 ÿ 2q10�
� 2q8 ÿ q6 � 2q2 ÿ 2�q3r2 � �q20 ÿ 2q18 � 2q14 ÿ 4q12 ÿ q10�
� 5q8 ÿ 6q6 � q4 � q2 ÿ 1�r� �q4 ÿ q2 � 1��q16 ÿ 4q14 � 2q12�
� 2q10 ÿ 5q8 � 2q6 � 2q4 ÿ 4q2 � 2�q

and

b � �ÿq4 ÿ 1��q6 ÿ q2 � 1��q4 ÿ q2 � 1�4�qÿ 1�6�q� 1�6qr� �ÿ2q12�
� 3q10 ÿ 3q8 � q6 � q4 ÿ 2q2 � 1��q4 ÿ q2 � 1�3�qÿ 1�6�q� 1�6q2

such that ad2 � bd1 � ÿ�q6 � q3 � 1��q6 ÿ q3 � 1��qÿ 1�6�q� 1�6q (there is no r left).
Since d1 � d2 � 0, q is a root of unity which contradicts our assumption. Hence
Case 1 is impossible.

Case 2. cÿ� ÿ m�aÿ � cÿÿ ÿ mÿaÿ � 0. Similarly to Case 1 we have

d3 � q4r2 ÿ q2r2 � r2 � q3rÿ qrÿ q4 � q2 ÿ 1 � 0;

d4 � q8r4 � r4 � 2q9r3 ÿ 2q7r3 � 2q3r3 ÿ 2qr3 ÿ q12r2 � q8r2 ÿ 4q6r2�
� q4r2 ÿ r2 ÿ 2q11r� 2q9rÿ 2q5r� 2q3r� q12 � q4 � 0:

Again there exist polynomials a and b in q and r such that ad3 � bd4 �
�q6 � q3 � 1��q6 ÿ q3 � 1��q4 ÿ q2 � 1��qÿ 1�12�q� 1�12q2. This contradicts our
assumption that q is not a root of unity. Hence, the only possibility is

Case 3.Wewill show, that T has rank 2. Suppose to the contrary that T has at least
rank 1. Then the 2� 2-matrices built from the ¢rst and third rows, respectively, from
the second and fourth rows, both have zero determinant. Since a� ÿ aÿ 6� 0 this is
equivalent to �c�� ÿ m�a���cÿ� ÿ m�aÿ� � 0 and �c�ÿ ÿ mÿa���cÿÿ ÿ mÿaÿ� � 0.
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Since, moreover, the matrix built from the ¢rst two rows has zero determinant, we
conclude c�� ÿ m�a� � c�ÿ ÿ mÿa� � 0 or cÿÿ ÿ mÿaÿ � 0. But this is impossible
by Cases 1 and 2. Hence, T has rank 2; both Z� and Zÿ belong to s�R�.
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