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Quarkonium mesons in strongly coupled plasma

As discussed in Section 2.4, heavy quarks and quarkonium mesons, with masses
such that M/T � 1, constitute valuable probes of the QGP. Since dynamical
questions about these probes are very hard to answer from first principles, here we
will study analogous questions in the strongly coupled N = 4 SYM plasma. In this
case the gauge/string duality provides the tool that makes a theoretical treatment
possible. Although for concreteness we will focus on the N = 4 plasma, many
of the results that we will obtain are rather universal in the sense that, at least
qualitatively, they hold for any strongly coupled gauge theory with a string dual.
Such results may give us insights relevant for the QCD quark–gluon plasma at
temperatures at which it is reasonably strongly coupled.

The QGP only exists at temperatures T > Tc, so in QCD the condition M/T � 1
can only be realized by taking M to be large. In contrast, N = 4 SYM is a con-
formal theory with no confining phase, so all temperatures are equivalent. In the
presence of an additional scale, namely the quark or the meson mass, the physics
only depends on the ratio M/T . This means that in the N = 4 theory the condition
M/T � 1 can be realized by fixing T and sending M to infinity, or by fixing M
and sending T → 0; both limits are completely equivalent. In particular, the lead-
ing order approximation to the heavy quark or quarkonium meson physics, in an
expansion in T/M , may be obtained by setting T = 0. For this reason, this is the
limit that we will study first.

We will follow the nomenclature common in the QCD literature and refer to
mesons made of two heavy quarks as “quarkonium mesons” or “quarkonia”, as
opposed to using the term “heavy mesons”, which commonly encompasses mesons
made of one heavy and one light quark.

9.1 Adding quarks to N = 4 SYM

In Section 5.5 we saw that N f flavors of fundamental matter can be added to
N = 4 SYM by introducing N f D7-brane probes into the geometry sourced by
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348 Quarkonium mesons in strongly coupled plasma

the D3-branes, as indicated by the array (5.98), which we reproduce here (with the
time direction included) for convenience:

D3: 0 1 2 3 _ _ _ _ _ _
D7: 0 1 2 3 4 5 6 7 _ _ .

(9.1)

Before we proceed, let us clarify an important point. N = 4 SYM is a con-
formal theory, i.e. its β-function vanishes exactly. Adding matter to it, even if the
matter is massless, makes the quantum mechanical β-function positive, at least
perturbatively. This means that the theory develops a Landau pole in the UV and
is therefore not well defined at arbitrarily high energy scales.1 However, since
the β-function (for the ’t Hooft coupling λ) is proportional to N f /Nc, the Lan-
dau pole occurs at a scale of order eNc/N f . This is exponentially large in the limit
of interest here, N f /Nc � 1, and in fact the Landau pole disappears altogether
in the strict probe limit N f /Nc → 0. On the string side, the potential pathol-
ogy associated with a Landau pole manifests itself in the fact that a completely
smooth solution that incorporates the backreaction of the D7-branes may not exist
[28, 383, 223, 535, 136, 320]. In any case, the possible existence of a Landau pole
at high energies will not be of concern for the applications reviewed here. In the
gauge theory, it will not prevent us from extracting interesting infrared physics, just
as the existence of a Landau pole in QED does not prevent one from calculating the
conductivity of an electromagnetic plasma. In the string description, we will not go
beyond the probe approximation, so the backreaction of the D7-branes will not be
an issue.2 And finally, we note that we will work with the D3/D7 model because
of its simplicity. We could work with a more sophisticated model with better UV
properties, but this would make the calculations more involved while leaving the
physics we are interested in essentially unchanged.

As illustrated in Fig. 9.1, the D3-branes and the D7-branes can be separated a
distance L in the 89-directions. This distance times the string tension, Eq. (4.11),
is the minimum energy of a string stretching between the D3-branes and the D7-
branes. Since the quarks arise as the lightest modes of these 3–7 strings, this energy
is precisely the bare quark mass:

Mq = L

2πα′ . (9.2)

An important remark here is the fact that the branes in Fig. 9.1 are implicitly
assumed to be embedded in flat spacetime. In Section 5.5 this was referred to as the
“first” or “open string” description of the D3/D7 system, which is reliable in the
regime gs Nc � 1, in which the backreaction of the D3-branes on spacetime can be

1 Nonperturbatively, the possibility that a strongly coupled fixed point exists must be ruled out before reaching
this conclusion. See [320] for an argument in this direction based on supersymmetry.

2 For a review of ‘unquenched’ models, i.e. those in which the flavor backreaction is included, see [659].

https://doi.org/10.1017/9781009403504.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403504.009


9.2 Zero temperature 349

123

D3-branes D7-branes

L

89

4567

Figure 9.1 D3/D7 system at weak coupling, with a string (red) stretching between
the D3-branes and D7-branes.

ignored. One of our main tasks in the following Sections will be to understand how
this picture is modified in the opposite regime, gs Nc � 1, when the D3-branes
are replaced by their backreaction on spacetime. In this regime the shape of the
D7-branes may or may not be modified, but Eq. (9.2) will remain true provided the
appropriate definition of L , to be given below, is used.

Although N = 4 SYM is a conformal theory, the addition of quarks with
a nonzero mass introduces a scale and gives rise to a rich spectrum of quark–
antiquark bound states, i.e. mesons. In the following section we will study the
meson spectrum in this theory at zero temperature in the regime of strong ‘t Hooft
coupling, gs Nc � 1. On the gauge theory side this is inaccessible to conventional
methods such as perturbation theory, but on the string side a classical description
in terms of D7-brane probes in a weakly curved AdS5 × S5 applies. Our first task is
thus to understand in more detail the way in which the D7-branes are embedded in
this geometry. Since this is crucial for subsequent sections, we will in fact provide
a fair amount of detail here.

9.2 Zero temperature

9.2.1 D7-brane embeddings

We begin by recalling that the coordinates in the AdS5 × S5 metric (5.1), (5.2)
can be understood as follows. The four directions t, xi correspond to the 0123-
directions in (9.1). The 456789-directions in the space transverse to the D3-branes
give rise to the radial coordinate r in AdS5, defined through
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r2 = x2
4 + · · · + x2

9 , (9.3)

as well as five angles that parametrize the S5. We emphasize that, once the grav-
itational effect of the D3-branes is taken into account, the six-dimensional space
transverse to the D3-branes is not flat, so the x4, . . . , x9 coordinates are not Carte-
sian coordinates. However, they are still useful to label the different directions in
this space.

The D7-branes share the 0123-directions with the D3-branes, so from now on
we will mainly focus on the remaining directions. In the six-dimensional space
transverse to the D3-branes, the D7-branes span only a four-dimensional subspace
parametrized by x4, . . . , x7. Since the D7-branes preserve the SO(4) rotational
symmetry in this space, it is convenient to introduce a radial coordinate u such that

u2 = x2
4 + · · · + x2

7 , (9.4)

as well as three spherical coordinates, denoted collectively by �3, that parametrize
an S3. Similarly, it is useful to introduce a radial coordinate U in the 89-plane
through

U = x2
8 + x2

9 , (9.5)

as well as a polar angle α. In terms of these coordinates one has

dx2
4 + · · · + dx2

9 = du2 + u2d�2
3 + dU 2 + U 2dα2 . (9.6)

Obviously, the overall radial coordinate r satisfies r2 = u2 + U 2.
Since the D7-branes only span the 4567-directions, they only wrap an S3 inside

the S5. The D7-brane worldvolume may thus be parametrized by the coordinates
{t, xi , u, �3}. In order to specify the D7-branes’ embedding one must then spec-
ify the remaining spacetime coordinates, U and α, as functions of, in principle,
all the worldvolume coordinates. However, translational symmetry in the {t, xi }-
directions and rotational symmetry in the {�3}-directions allow U and α to depend
only on u.

In order to understand this dependence, consider first the case in which the
spacetime curvature generated by the D3-branes is ignored. In this case, the D7-
branes lie at a constant position in the 89-plane, see Fig. 9.2. In other words, their
embedding is given by α(u) = α0 and U (u) = L , where α0 and L are constants.
The first equation can be understood as saying that, because of the U (1) rotational
symmetry in the 89-plane, the D7-branes can sit at any constant angular position;
choosing α0 then breaks the symmetry. Since this U (1) symmetry is respected by
the D3-branes’ backreaction (i.e. since the AdS5 × S5 metric is U (1)-invariant),
it is easy to guess (correctly) that α(u) = α0 is still a solution of the D7-branes’
equation of motion in the presence of the D3-branes’ backreaction.
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Figure 9.2 Coordinates in the six-dimensional space transverse to the D3-branes.
Each axis actually represents two directions, i.e. a plane (or, equivalently, the
radial direction in that plane). The asymptotic distance L = U (u = ∞) is pro-
portional to the quark mass, Eq. (9.2). We emphasize that the directions parallel
to the D3-branes (the gauge theory directions t, xi ) are suppressed in this picture,
and they should not be confused with the D7 directions shown in the figure, which
lie entirely in the space transverse to the D3-branes.

The second equation, U (u) = L , says that the D7-branes lie at a constant dis-
tance from the D3-branes. In the absence of the D3-branes’ backreaction this is
easily understood: there is no force on the D7-branes and therefore they span a
perfect 4-plane. In the presence of backreaction, one should generically expect
that the spacetime curvature deforms the D7-branes as in Fig. 9.3, bending them
towards the D3-branes at the origin. The reason that this does not happen for the
D3/D7 system at zero temperature is that the underlying supersymmetry of the
system guarantees an exact cancelation of forces on the D7-branes. In fact, it is
easy to verify directly that U (u) = L is still an exact solution of the D7-branes’
equations of motion in the presence of the D3-branes’ backreaction. The constant
L then determines the quark mass through Eq. (9.2). We will see below that the
introduction of nonzero temperature breaks supersymmetry completely, and that
consequently U (u) becomes a non-constant function that one must solve for, and
that this function contains information about the ground state of the theory in the
presence of quarks. For example, its asymptotic behavior encodes the value of the
bare quark mass Mq and the quark condensate 〈ψ̄ψ〉, whereas its value at u = 0
is related to the quark thermal mass Mth. Since in this section we work at T = 0,
any nonzero quark mass corresponds to Mq/T → ∞. In this sense one must think
of the quarks in question as the analog of heavy quarks in QCD, and of the quark
condensate as the analog of 〈c̄c〉 or 〈b̄b〉. However, when we consider a nonzero
temperature in subsequent Sections, whether the holographic quarks described by
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Figure 9.3 Possible bending of the D7-branes at nonzero temperature. The
asymptotic distance L ≡ U (∞) is proportional to the bare quark mass Mq,
whereas the minimum distance U (0) is related (albeit in a way more complicated
than simple proportionality) to the quark thermal mass.

the D7-branes are the analogs of heavy or light quarks in QCD will depend on how
their mass (or, more precisely, the mass of the corresponding mesons) compares to
the temperature.

We have concluded that, at zero temperature, the D7-branes lie at U = L and are
parametrized by {t, xi , u, �3}. In terms of these coordinates, the metric induced on
the D7-branes by the metric (5.1)–(5.2) for the AdS5 × S5 spacetime takes the form

ds2 = u2 + L2

R2

(−dt2 + dx2
i

) + R2

u2 + L2
du2 + R2u2

u2 + L2
d�2

3 . (9.7)

We see that if L = 0 then this metric is exactly that of AdS5 × S3. The AdS5 factor
suggests that the dual gauge theory should still be conformally invariant. This is
indeed the case in the limit under consideration: If L = 0 the quarks are mass-
less and the theory is classically conformal, and in the probe limit N f /Nc → 0
the quantum mechanical β-function, which is proportional to N f /Nc, vanishes.
If L 
= 0 then the metric above becomes AdS5 × S3 only asymptotically, i.e. for
u � L , reflecting the fact that in the gauge theory conformal invariance is explic-
itly broken by the quark mass Mq ∝ L , but is restored asymptotically at energies
E � Mq. We also note that, if L 
= 0, then the radius of the three-sphere is not
constant, as displayed in Fig. 9.4; in particular, it shrinks to zero at u = 0 (corre-
sponding to r = L), at which point the D7-branes “terminate” from the viewpoint
of the projection on AdS5 [513]. In other words, if L 
= 0 then the D7-branes fill
the AdS5 factor of the metric only down to a minimum value of the radial direction
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Figure 9.4 D7-branes’ embedding in AdS5 × S5. At nonzero temperature this
picture is slightly modified. First, a horizon appears at r = r0 > 0, and second,
the D7-branes terminate at r = U (0) < L . This “termination point” corresponds
to the tip of the branes in Fig. 9.3.

proportional to the quark mass. As we anticipated above, at nonzero temperature
one must distinguish between the bare and the thermal quark masses, related to
U (∞) and U (0) respectively. In this case the position in AdS at which the D7-
branes terminate is r = U (0) < L , and therefore they fill the AdS space down to
a radial position related to the thermal mass. Note also that at finite temperature a
horizon is present at r = r0 > 0.

9.2.2 Meson spectrum

We are now ready to compute the spectrum of low spin mesons in the D3/D7 sys-
tem following Ref. [559]. The spectrum for more general Dp/Dq systems was
computed in [60, 637, 704]. Recall that mesons are described by open strings
attached to the D7-branes. In particular, spin zero and spin one mesons correspond
to the scalar and vector fields on the D7-branes. Large spin mesons can be described
as long, semi-classical strings [559, 561, 666, 673, 301, 674, 116, 159, 668, 44],
but we will not review them here.

For simplicity, we will focus on scalar mesons. Following Section 5.1.5, we
know that in order to determine the spectrum of scalar mesons, we need to deter-
mine the spectrum of normalizable modes of small fluctuations of the scalar fields
on the D7-branes. At this point we restrict ourselves to a single D7-brane, i.e. we
set N f = 1, in which case the dynamics is described by the DBI action (4.18). At
leading order in the large-Nc expansion, the spectrum for N f > 1 consists of N 2

f

identical copies of the single-flavor spectrum [560].
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We use the coordinates in Eq. (9.7) as worldvolume coordinates for the D7-
brane, which we collectively denote by σμ. The physical scalar fields on the D7-
brane are then x8(σμ), x9(σμ). By a rotation in the 89-plane we can assume that,
in the absence of fluctuations, the D7-brane lies at x8 = 0, x9 = L . Then the
fluctuations can be parametrized as

x8 = 0 + ϕ(σμ) , x9 = L + ϕ̃(σμ) , (9.8)

with ϕ and ϕ̃ the scalar fluctuations around the fiducial embedding. In order
to determine the normalisable modes, it suffices to work to quadratic order in
ϕ, ϕ̃. Substituting (9.8) in the DBI action (4.18) and expanding in ϕ, ϕ̃ leads to
a quadratic Lagrangian whose corresponding equation of motion is

R4

(u2 + L2)2
�ϕ + 1

u3
∂u(u

3∂uϕ) + 1

u2
∇2ϕ = 0 , (9.9)

where � is the four-dimensional d’Alembertian associated with the Cartesian coor-
dinates t, xi , and ∇2 is the Laplacian on the three-sphere. The equation for ϕ̃ takes
exactly the same form. Modes that transform non-trivially under rotations on the
sphere correspond to mesons that carry nonzero R-charge. Since QCD does not
possess an R-symmetry, we will restrict ourselves to R-neutral mesons, meaning
that we will assume that ϕ does not depend on the coordinates of the sphere. We
can use separation of variables to write these modes as

ϕ = φ(u)eiq·x , (9.10)

where x = (t, xi ). Each of these modes then corresponds to a physical meson
state in the gauge theory with a well defined four-dimensional mass given by its
eigenvalue under �, that is, M2 = −q2. For each of these modes, Eq. (9.9) results
in an equation for φ(u) that, after introducing dimensionless variables through

ū = u

L
, M̄2 = −k2 R4

L2
, (9.11)

becomes

∂2
ūφ + 3

ū
∂ūφ + M̄2

(1 + ū2)2
φ = 0 . (9.12)

This equation can be solved in terms of hypergeometric functions. The details can
be found in Ref. [559], but we will not give them here because most of the relevant
physics can be extracted as follows.

Equation (9.12) is a second order, ordinary differential equation with two inde-
pendent solutions. The combination we seek must satisfy two conditions: It must
be normalizable as ū → ∞, and it must be regular as ū → 0. For arbitrary values
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of M̄ , both conditions cannot be simultaneously satisfied. In other words, the val-
ues of M̄ for which physically acceptable solutions exist are quantised. Since Eq.
(9.12) contains no dimensionful parameters, the values of M̄ must be pure num-
bers. These can be explicitly determined from the solutions of (9.12) and they take
the form [559]

M̄2 = 4(n + 1)(n + 2) , n = 0, 1, 2, . . .. (9.13)

Using this, and M2 = −q2 = M̄2L2/R4, we derive the result that the
four-dimensional mass spectrum of scalar mesons is

M(n) = 2L

R2

√
(n + 1)(n + 2) = 4πMq√

λ

√
(n + 1)(n + 2) , (9.14)

where in the last equality we have used the expressions R2/α′ = √
λ and (9.2)

to write R and L in terms of gauge theory parameters. We thus conclude that the
spectrum consists of a discrete set of mesons with a mass gap given by the mass of
the lightest meson:3

Mmes = 4π
√

2
Mq√
λ
. (9.15)

Since this result is valid at large ‘t Hooft coupling, λ � 1, the mass of these
mesons is much smaller than the mass of two constituent quarks. In other words,
the mesons in this theory are very deeply bound. In fact, the binding energy

EB ≡ 2Mq − Mmes � 2Mq ∼ √
λMmes (9.16)

is so large that it almost cancels the rest energy of the quarks. This is clear from the
gravity picture of “meson formation” (see Fig. 9.5), in which two strings of oppo-
site orientation stretching from the D7-brane to r = 0 (the quark–antiquark pair)
join together to form an open string with both ends on the D7-brane (the meson).
This resulting string is much shorter than the initial ones, and hence corresponds
to a configuration with much lower energy. This feature is an important difference
with quarkonium mesons in QCD, such as charmonium or bottomonium, which
are not deeply bound. Although this certainly means that caution must be exer-
cised when trying to compare the physics of quarkonium mesons in holographic
theories with the physics of quarkonium mesons in QCD, the success or failure
of these comparisons cannot be assessed at this point. We will discuss this assess-
ment in detail below, once we have learned more about the physics of holographic
mesons. Suffice it to say here that some of this physics, such as the temperature or
the velocity dependence of certain meson properties, turns out to be quite general

3 In order to compare this and subsequent formulas with Ref. [559] and others, note that our definition (4.17) of
g2 differs from the definition in some of those references by a factor of 2, for example g2[here] = 2g2[559].
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T = L

r = ∞

r = 0

D7-branes

Figure 9.5 String description of a quark, an antiquark and a meson. The string
that describes the meson can be much shorter than those describing the quark and
the antiquark.

and may yield insights into some of the challenges related to understanding the
physics of quarkonia within the QCD quark–gluon plasma.

We close this section with a consistency check. The behavior of the fluctuation
modes at infinity is related to the high energy properties of the theory. At high
energy, we can ignore the effect of the mass of the quarks and the theory becomes
conformal. The u → ∞ behavior is then related to the UV operator of the lowest
conformal dimension, �, that has the same quantum numbers as the meson [392,
803]. Analysis of this behavior for the solutions of Eqs. (9.9) and (9.12) shows that
� = 3 [559], as expected for a quark-bilinear operator.

9.3 Nonzero temperature

9.3.1 D7-brane embeddings

We now turn to the case of nonzero temperature, T 
= 0. This means that we must
study the physics of a D7-brane in the black brane metric (cf. Eq. (5.33))

ds2 = r2

R2

(− f dt2 + dx2
1 + dx2

2 + dx2
3

) + R2

r2 f
dr2 + R2d�2

5 , (9.17)

where

f (r) = 1 − r4
0

r4
, r0 = π R2T . (9.18)

The study we must perform is conceptually analogous to that of the past few
sections, but the equations are more involved and most of them must be solved
numerically. These technical details are not very illuminating, and for this reason
we will not dwell into them. Instead, we will focus on describing in detail the main
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conceptual points and results, as well as the physics behind them, which in fact can
be understood in very simple and intuitive terms.

As mentioned above, at T 
= 0 all supersymmetry is broken. We therefore expect
that the D7-branes will be deformed by the non-trivial geometry. In particular, the
introduction of nonzero temperature corresponds, in the string description, to the
introduction of a black brane in the background. Intuitively, we expect that the extra
gravitational attraction will bend the D7-branes towards the black hole. This simple
conclusion, which was anticipated in previous sections, has far-reaching conse-
quences. At a qualitative level, most of the holographic physics of mesons in a
strongly coupled plasma follows from this conclusion. An example of the D7-
branes’ embedding for a small value of T/Mq is depicted in two slightly different
ways in Fig. 9.6.

The qualitative physics of the D3/D7 system as a function of the dimensionless
ratio T/Mq is now easy to guess, and is captured by Fig. 9.7. At zero temperature
the horizon has zero size and the D7-branes span an exact hyperplane. At nonzero
but sufficiently small T/Mq, the gravitational attraction from the black hole pulls
the branes down but the branes’ tension can still compensate for this. The embed-
ding of the branes is thus deformed, but the branes remain entirely outside the
horizon. Since in this case the induced metric on the D7-branes has no horizon, we
will call this type of configuration a “Minkowski embedding”. In contrast, above
a critical temperature Tdiss,4 the gravitational force overcomes the tension of the
branes and these are pulled into the horzion. In this case the induced metric on
the branes possesses an event horizon, inherited from that of the spacetime metric.
For this reason we will refer to such configurations as “black hole embeddings”.
Between these two types of embeddings there exists a so-called critical embedding
in which the branes just “touch the horizon at a point”. The existence of such an
interpolating solution might lead one to suspect that the phase transition between
Minkowski and black hole embeddings is continuous, i.e. of second or higher order.
However, as we will see in the next section, thermodynamic considerations reveal
that a first order phase transition occurs between a Minkowski and a black hole
embedding. In other words, the critical embedding is skipped over by the phase
transition, and near-critical embeddings turn out to be metastable or unstable.

As illustrated by the figures above, the fact that the branes bend towards the
horizon implies that the asymptotic distance between the two differs from their
minimal distance. As we will see in Section 9.3.2, the asymptotic distance is pro-
portional to the microscopic or “bare” quark mass, since it is determined by the
non-normalizable mode of the field that describes the branes’ bending. In contrast,
the minimal distance between the branes and the horizon includes thermal (and

4 The reason for the subscript will become clear shortly.
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Figure 9.6 D7-branes’ embedding for small T/Mq. The branes bend towards the
horizon, shown in dark grey. The radius of the horizon is proportional to its Hawk-
ing temperature, which is identified with the gauge theory temperature T – see
Eq. (9.18). The asymptotic position of the D7-branes is proportional to the bare
quark mass, Mq. The minimum distance between the branes and the horizon is
related to the thermal quark mass, because this is the minimum length of a string
(shown as a red wiggly line) stretching between the branes and the horizon. The
top figure shows the two relevant radial directions in the space transverse to the
D3-branes, U and u (introduced in Eqs. (9.4) and (9.5)), together with the gauge
theory directions xi (time is suppressed). The horizon has topology R

3 × S5,
where the first factor corresponds to the gauge-theory directions. This “cylinder-
like” topology is manifest in the top figure. Instead, in the bottom figure the gauge
theory directions are suppressed and the S3 wrapped by the D7-branes in the space
transverse to the D3-branes is shown, as in Figs. 9.2 and 9.3. In this figure only
the S5 factor of the horizon is shown. Figure adapted from Ref. [256].

quantum) effects, and for this reason we will refer to the mass of a string stretching
between the bottom of the branes and the horizon (shown as a wiggly red curve in
the figures) as the “thermal” quark mass. Note that this vanishes in the black hole
phase.

Although we will come back to this important point below, we wish to emphasize
right from the start that the phase transition under discussion is not a confinement–
deconfinement phase transition, since the presence of a black hole implies that both
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Minkowski embedding Critical embedding Black hole embedding

Figure 9.7 Various D7-brane configurations in a black D3-brane background
with increasing temperature from left to right. At low temperatures, the probe
branes close off smoothly above the horizon. At high temperatures, the branes
fall through the event horizon. In between, a critical solution exists in which
the branes just “touch” the horizon at a point. The critical configuration is never
realized: a first order phase transition occurs from a Minkowski to a black hole
embedding (or vice versa) before the critical solution is reached. Figure adapted
from Ref. [256].

phases are deconfined. Instead, we will see that the branes’ phase transition corre-
sponds to the dissociation of heavy quarkonium mesons. In order to illustrate the
difference most clearly, consider first a holographic model of a confining theory, as
described in Section 5.2.2; below we will come back to the case of N = 4 SYM.
For all such confining models, the difference between the deconfinement and the
dissociation phase transitions is illustrated in Fig. 9.8. Below Tc, the theory is in
a confining phase and therefore no black hole is present. At some Tc, a decon-
finement transition takes place, which in the string description corresponds to the
appearance of a black hole whose size is proportional to Tc. If the quark mass is
sufficiently large compared to Tc then the branes remain outside the horizon (top
part of the figure); otherwise they fall through the horizon (bottom part of the fig-
ure). The first case corresponds to heavy quarkonium mesons that remain bound in
the deconfined phase, and that eventually dissociate at some higher Tdiss > Tc. The
second case describes light mesons that dissociate as soon as the deconfinement
transition takes place.

Figure 9.8 also applies to N = 4 SYM theory with Tc = 0 in the sense
that, although the vacuum of the theory is not confining, there is no black hole
at T = 0. Note also that mesons only exist provided Mq > 0, since other-
wise the theory is conformal and there is no particle spectrum. This means that
in N = 4 SYM theory any meson is a heavy quarkonium meson that remains
bound for some range of temperatures above Tc = 0, as described by the top part
of Fig. 9.8. In the case Mq = 0 we cannot properly speak of mesons, but we see
that the situation is still described by the bottom part of the figure in the sense
that in this case the branes fall through the horizon as soon as T is raised above
Tc = 0.
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Tc

Tc = Tdiss

Tdiss

T

Mq

Mq

Figure 9.8 Top: sufficiently heavy quarkonium mesons remain bound in the
deconfined phase (above Tc) and dissociate at Tdiss > Tc. Bottom: in contrast,
light mesons dissociate as soon as the deconfinement phase transition at T = Tc
takes place. This picture also applies to N = 4 SYM theory with Tc = 0, as
described in the main text. In N = 4 SYM theory, the top (bottom) panel applies
when Mq > 0 (Mq = 0).

The universal character of the meson dissociation transition was emphasized in
Refs. [605, 608], which we will follow in our presentation. Specific examples were
originally seen in [92, 560, 534], and aspects of these transitions in the D3/D7
system were studied independently in [37, 38, 351, 514]. Similar holographic tran-
sitions appeared in a slightly different framework in [30, 669, 367, 58]. The D3/D7
system at nonzero temperature has been studied upon including the backreaction
of the D7-branes in Ref. [161].

9.3.2 Thermodynamics of D7-branes

In this section we shall show that the phase transition between Minkowski and
black hole embeddings is a discontinuous, first order phase transition. The reader
willing to accept this without proof can safely skip to Section 9.3.3. Since we are
working in the canonical ensemble (i.e. at fixed temperature) we must compute
the free energy density of the system per unit gauge theory three-volume, F , and
determine the configuration that minimizes it. In the gauge theory we know that
this takes the form
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F = FN=4 + Fflavor , (9.19)

where the first term is the O(N 2
c ) free energy of the N = 4 SYM theory in the

absence of quarks, and the second term is the O(Nc N f ) contribution due to the
presence of quarks in the fundamental representation. Since the SYM theory with-
out quarks is conformal, dimensional analysis completely fixes the first factor to be
of the form FN=4 = C(λ)T 4, where C is a possibly coupling-dependent coefficient
of order N 2

c . In contrast, in the presence of quarks of mass Mq there is a dimen-
sionless ratio T/Mq on which the flavor contribution can depend non-trivially. Our
purpose is to determine this contribution to leading order in the large-Nc, strong
coupling limit.

Our tool is of course the dual description of the N = 4 SYM theory with flavor
as a system of N f D7-brane probes in the gravitational background of Nc black
D3-branes. As usual in finite-temperature physics, the free energy of the system
may be computed through the identification

βF = SE , (9.20)

where β = 1/T and SE is the Euclidean action of the system. In our case this takes
the form

SE = Ssugra + SD7 . (9.21)

The first term is the contribution from the black hole gravitational background
sourced by the D3-branes, and is computed by evaluating the Euclideanized super-
gravity action on this background. The second term is the contribution from the
D7-branes, and is computed by evaluating the Euclidean version of the DBI action
(4.18) on a particular D7-brane configuration. The decomposition (9.21) is the dual
version of that in (9.19). The supergravity action scales as 1/g2

s ∼ N 2
c , and thus

yields the free energy of the N = 4 SYM theory in the absence of quarks, i.e. we
identify

Ssugra = βFN=4 . (9.22)

Similarly, the D7-brane action scales as N f /gs ∼ Nc N f , and represents the flavor
contribution to the free energy:

SD7 = βFD7 = βFflavor . (9.23)

We therefore conclude that we must first find the solutions of the equations of
motion of the D7-branes for any given values of T and Mq, then evaluate their
Euclidean actions, and finally use the identification above to compare their free
energies and determine the thermodynamically preferred configuration.

As explained above, in our case solving the D7-brane equations of motion just
means finding the function U (u), which is determined by the condition that the
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D7-brane action be extremized. This leads to an ordinary, second order, nonlinear
differential equation for U (u). Its precise form can be found in e.g. Ref. [608], but
is not very illuminating. However, it is easy to see that it implies the asymptotic,
large-u behavior

U (u) = m r0√
2

+ c r3
0

2
√

2 u2
+ · · · , (9.24)

where m and c are constants. The factors of r0 have been introduced to make these
constants dimensionless, whereas the numerical factors have been chosen to facili-
tate comparison with the literature. As usual (and, in particular, as in Section 5.1.5),
the leading and subleading terms correspond to the non-normalizable and to the
normalizable modes, respectively. Their coefficients are therefore proportional to
the source and the expectation values of the corresponding dual operator in the
gauge theory. In this case, the position of the brane U (u) is dual to the quark mass
operator Om ∼ ψ̄ψ , so m and c are proportional to the quark mass and the quark
condensate, respectively. The precise form of Om can be found in Ref. [539], where
it is shown that the exact relation between m, c and Mq, 〈Om〉 is

Mq = r0m

23/2π 2
s

= 1

2
√

2

√
λ T m , (9.25)

〈Om〉 = −23/2π3 2
s N f TD7r3

0 c = − 1

8
√

2

√
λ N f Nc T 3 c . (9.26)

In particular, we recover the fact that the asymptotic value

L = lim
u→∞ U (u) = mr0√

2
(9.27)

is related to the quark mass through Eq. (9.2), as anticipated in previous sections.
It is interesting to note that the dimensionless mass m is given by the simple ratio

m = M̄

T
, (9.28)

where

M̄ = 2
√

2Mq√
λ

= Mmes

2π
(9.29)

is (up to a constant) precisely the meson gap at zero temperature, given in
Eq. (9.15). As mentioned in Section 9.2.1, and as we will elaborate upon in Sec-
tion 9.4.3, Om must be thought of as the analogue of a heavy or light quark bilinear
operator in QCD depending on whether the ratio Mmes/T ∼ m is large or small,
respectively.

The constants m and c can be understood as the two integration constants that
completely determine a solution of the second order differential equation obeyed
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Figure 9.9 Quark condensate c versus T/M̄ = 1/m. The blue dashed (red contin-
uous) curves correspond to the Minkowski (black hole) embeddings. The dotted
vertical line indicates the precise temperature of the phase transition. The point
where the two branches meet corresponds to the critical embedding. Figures taken
from Refs. [605, 608].

by U (u). Mathematically, these two constants are independent, but the physical
requirement that the solution be regular in the interior relates them to one another.
The equation for U (u) can be solved numerically (see, e.g. Ref. [608]), and the
resulting possible values of c for each value of m are plotted in Fig. 9.9. We see
from the “large scale” plot above that c is a single-valued function of m for most
values of the latter. However, the zoom-in plot below shows that, in a small region
around 1/m = T/M̄ � 0.766, three values of c are possible for a given value of m;
a pictorial representation of a situation of this type is shown in Fig. 9.10. This multi-
valuedness is related to the existence of the phase transition which, as we will see,
proceeds between points A and B through a discontinuous jump in the quark con-
densate and other physical quantities. The point in Fig. 9.9 where the Minkowski
and the black hole branches meet corresponds to the critical embedding.
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u

U

Figure 9.10 Some representative D7-brane embeddings from the region in which
c is multi-valued. The three profiles correspond to the same value of m but dif-
fer in their value of c. Two of them, represented by blue, dashed curves, are of
Minkowski type. The third one, represented by a red, continuous curve, is a black
hole embedding.

Having determined the regular D7-brane configurations, one must now com-
pute their free energies and compare them in order to determine which one is
preferred in the multivalued region. The result is shown in Fig. 9.11(top), where
the normalization constant is given by [605, 608]

N = 2π2 N f TD7r4
0

4T
= λN f Nc

64
T 3 . (9.30)

The plot on the right shows the classic “swallow tail” form, typically associated
with a first order phase transition. As anticipated, Minkowski embeddings have the
lowest free energy for temperatures T < Tdiss, whereas the free energy is mini-
mized by black hole embeddings for T > Tdiss, with Tdiss � 0.77M̄ (i.e. m � 1.3).
At T = Tdiss the Minkowski and the black hole branches meet and the thermody-
namically preferred embedding changes from one type to the other. The first order
nature of the phase transition follows from the fact that several physical quantities
jump discontinuously across the transition. An example is provided by the quark
condensate which, as illustrated in Fig. 9.9, makes a finite jump between the points
labelled A and B. Similar discontinuities also appear in other physical quantities,
like the entropy and energy density. These are easily obtained from the free energy
through the usual thermodynamic relations

S = −∂F

∂T
, E = F + T S , (9.31)

and the results are shown in Fig. 9.11. From the plots of the energy density one can
immediately read off the qualitative behavior of the specific heat cV = ∂E/∂T .
In particular, note that this slope must become negative as the curves approach the
critical solution, indicating that the corresponding embeddings are thermodynam-
ically unstable. Examining the fluctuation spectrum of the branes, we will show
that a corresponding dynamical instability, manifested by a meson state becoming
tachyonic, is present exactly for the same embeddings for which cV < 0. One may
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Figure 9.11 Free energy, entropy and energy densities for a D7-brane in a black
D3-brane background; note that N ∝ T 3. The blue dashed (red continuous)
curves correspond to the Minkowski (black hole) embeddings. The dotted ver-
tical line indicates the precise temperature of the phase transition. Figures taken
from Refs. [605, 608].

have thought that the phases near the critical point were metastable and thus acces-
sible by “super-cooling” the system, but instead it turns out that over much of the
relevant regime such phases are unstable.

We see from (9.30) that N ∼ λNc N f T 3, which means that the leading contri-
bution of the D7-branes to all the various thermodynamic quantities will be order
λNc N f , in comparison to N 2

c for the usual bulk gravitational contributions. The
Nc N f dependence, anticipated below Eq. (9.19), follows from large-Nc counting.
In contrast, as noted in Refs. [605, 607], the factor of λ represents a strong coupling
enhancement over the contribution of a simple free-field estimate for the Nc N f

fundamental degrees of freedom. From the viewpoint of the string description,
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this enhancement is easy to understand by reexamining the relative normalization
of the two terms in Eq. (9.21) more carefully than we did above. Ignoring only
order-one, purely numerical factors, the supergravity action scales as 1/G, with
G ∼ g2

s  
8
s the ten-dimensional Newton’s constant, whereas the D7-brane action

scales as N f TD7 ∼ N f /gs 
8
s . The ratio between the two normalizations is therefore

G N f TD7 ∼ gs N f ∼ g2 N f ∼ λN f

Nc
. (9.32)

Thus the flavor contribution is suppressed with respect to the leading O(N 2
c ) con-

tribution by λN f /Nc, i.e. it is of order λNc N f . We will come back to this point in
the next section.

As the calculations above were all performed in the limit Nc, λ → ∞ (with N f

fixed), it is natural to ask how the detailed results depend on this approximation.
Since the phase transition is first order, we expect that its qualitative features will
remain unchanged within a finite radius of the 1/Nc, 1/λ expansions. Of course,
finite-Nc and finite-λ corrections may eventually modify the behavior described
above. For example, at large but finite Nc the black hole will emit Hawking radia-
tion and each bit of the probe branes will experience a thermal bath at a temperature
determined by the local acceleration. Similarly, finite ’t Hooft coupling corrections,
which correspond to higher derivative corrections both to the supergravity action
and the D-brane action, will become important if the spacetime or the brane curva-
tures become large. It is certainly clear that both types of corrections will become
more and more important as the lower part of a Minkowski brane approaches
the horizon, since as this happens the local temperature and the branes (intrin-
sic) curvature at their tip increase. However, at the phase transition the minimum
separation between the branes and the horizon is not parametrically small, and
therefore the corrections above can be made arbitrarily small by taking Nc and λ

sufficiently large but still finite. This confirms our expectation on general grounds
that the qualitative aspects of the phase transition should be robust within a finite
radius around the 1/Nc = 0, 1/λ = 0 point. Of course, these considerations do not
tell us whether the dissociation transition is first order or a crossover at Nc = 3.

9.3.3 Quarkonium thermodynamics

We have seen above that, in a large class of strongly coupled gauge theories with
fundamental matter, this matter undergoes a first order phase transition described
on the gravity side by a change in the geometry of the probe D-branes. In this
section we will elaborate on thermodynamical aspects of this transition from the
gauge theory viewpoint. Once we have learned more about the dynamics of holo-
graphic mesons in subsequent sections, in Section 9.4.3 we will return to the gauge
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theory viewpoint and discuss possible implications for the dynamics of quarkonium
mesons in the QCD plasma.

The temperature scale at which the phase transition takes place is set by the
meson gap at zero temperature, Tdiss ∼ Mmes. As well as giving the mass gap in
the meson spectrum, 1/Mmes is roughly the characteristic size of these bound states
[460, 637]. The gluons and other adjoint fields are already in a deconfined phase at
Tdiss, so this new transition is not a confinement/deconfinement transition. Rather,
the most striking feature of the new phase transition is the change in the meson
spectrum, and so we refer to it as a “dissociation” or “melting” transition.

In the low temperature phase, below the transition, stable mesons exist and their
spectrum is discrete and gapped. This follows from the same general principles as
in the zero-temperature case. The meson spectrum corresponds to the spectrum of
normalizable fluctuations of the D7-branes around their fiducial embedding. For
Minkowski embeddings the branes close off smoothly outside the black hole hori-
zon and the admissible modes must also satisfy a regularity condition at the tip of
the branes. On general grounds, we expect that the regular solution at the tip of the
branes evolves precisely into the normalizable solution at the boundary only for a
certain set of discrete values of the meson mass. We will study the meson spectrum
in detail in Section 9.4.1, and in Section 9.4.2 we will see that mesons acquire finite
decay widths at finite Nc or finite coupling. Since the phase under consideration is
not a confining phase, we can also introduce deconfined quarks into the system,
represented by fundamental strings stretching between the D7-branes and the hori-
zon. At a figurative level, in this phase we might describe quarks in the adjoint
plasma as a “suspension”. That is, when quarks are added to this phase, they retain
their individual identities. More technically, we may just say that quarks are well
defined quasiparticles in the Minkowski phase.

In the high temperature phase, at T > Tdiss, no stable mesons exist. Instead,
as we will discuss in more detail in Section 9.5, the excitations of the fundamen-
tal fields in this phase are characterised by a discrete spectrum of quasinormal
modes on the black hole embeddings [469, 638]. The spectral function of some
two-point meson correlators in the holographic theory, of which we will see an
example in Section 9.5.2, still exhibits some broad peaks in a regime just above
Tdiss, which suggests that a few broad bound states persist just above the dissoci-
ation phase transition [638, 604]. This is analogous to the lattice approach, where
similar spectral functions are examined to verify the presence or absence of bound
states. Hence, identifying Tdiss with the dissociation temperature should be seen as
a (small) underestimate of the temperature at which mesons completely cease to
exist. An appropriate figurative characterization of the quarks in this high temper-
ature phase would be as a “solution”. If one attempts to inject a localized quark
charge into the system, it quickly falls through the horizon, i.e. it spreads out
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across the entire plasma and its presence is reduced to diffuse disturbances of the
supergravity and worldvolume fields, which are soon damped out [469, 638]. Tech-
nically speaking, we may just state that quarks are not well-defined quasiparticles
in the black hole phase.

The physics above is potentially interesting in connection with QCD since, as
we reviewed in Sections 2.4 and 3.3, evidence from several sources indicates that
heavy quarkonium mesons remain bound in a range of temperatures above Tc.
We will analyze this connection in more detail in Section 9.4.3, once we have
learned more about the properties of holographic mesons in subsequent sections.
Here we would just like to point out one simple physical parallel. The question of
quarkonium bound states surviving in the quark–gluon plasma was first addressed
by comparing the size of the bound states to the screening length in the plasma
[609]. In the D3/D7 system, the size of the mesons can be inferred, for exam-
ple, from the structure functions, and the relevant length scale that emerges is
dmes ∼ √

λ/Mq [460]. This can also be heuristically motivated as follows. As
discussed in Section 5.4 (see Eq. (5.86)) at zero temperature the potential between
a quark–antiquark pair separated by a distance  is given by

V ∼ −
√
λ

 
. (9.33)

We can then estimate the size dmes of a meson by requiring EB ∼ |V (dmes)|, where
EB is the binding energy (9.16).5 This gives

dmes ∼
√
λ

EB
∼

√
λ

Mq
∼ 1

Mmes
∼ R2

L
. (9.34)

The last equality follows from Eq. (9.14) and is consistent with expectations based
on the UV/IR correspondence [637], since on the gravity side mesons are excita-
tions near r = L . Just for comparison, we remind the reader that the weak coupling
formula for the size of quarkonium is dweak ∼ 1/(g2 Mq).

One intuitive way to understand why a meson has a very large size compared
to its inverse binding energy or to the inverse quark mass is that, owing to strong
coupling effects, the quarks themselves have an effective size of order dmes. The
effective size of a quark is defined as the largest of the following two scales: (i)
its Compton wavelength, or (ii) the distance between a quark–antiquark pair at
which their potential energy is large enough to pair-produce additional quarks
and antiquarks. In a weakly coupled theory (i) is larger, whereas in a strongly
coupled theory (ii) is larger. From Eq. (9.33) we see that this criterion gives an
effective quark size of order

√
λ/Mq instead of 1/Mq. This heuristic estimate is

5 Equation (9.16) was derived at zero temperature, but as we will see in Section 9.4.1 it is also parametrically
correct at nonzero temperature.
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supported by an explicit calculation of the size of the gluon cloud that dresses a
quark [465]. These authors computed the expectation value 〈TrF2(x)〉 sourced by
a quark of mass Mq and found that the characteristic size of the region in which
this expectation value is nonzero is precisely

√
λ/Mq.

As reviewed in Section 5.4.2, holographic studies of Wilson lines at nonzero
temperature [712, 190] reveal that the relevant screening length of the SYM plasma
is of order Ls ∼ 1/T – see Eq. (8.182). The argument that the mesons should
dissociate when the screening length is shorter than the size of these bound states
then yields Tdiss ∼ Mq/

√
λ ∼ Mmes, in agreement with the results of the detailed

calculations explained in previous sections. We thus see that the same physical
reasoning which, as we saw in Sections 2.4 and 3.3, has been used in QCD to
estimate the dissociation temperature of, e.g., the J/ψ meson can also be used to
understand the dissociation of mesons in the N = 4 SYM theory. This may still
seem counterintuitive in view of the fact that the binding energy of these mesons is
much larger that Tdiss. In other words, one might have expected that the temperature
required to break apart a meson would be of the order of the binding energy, EB ∼
Mq, instead of being parametrically smaller,

Tdiss ∼ Mmes ∼ EB/
√
λ . (9.35)

However, this intuition relies on the expectation that the result of dissociating a
meson is a quark–antiquark pair of mass 2Mq. The gravity description makes it
clear that this is not the case at strong coupling, since above Tdiss the branes fall
through the horizon. Heuristically, one may say that this means that the “con-
stituent” or “thermal” mass of the quarks becomes effectively zero. However, a
more precise statement is simply that in the black hole phase quark-like quasipar-
ticles simply do not exist, and therefore for the purpose of the present discussion it
becomes meaningless to attribute a mass to them.

One point worth emphasizing is that there are two distinct processes that are
occurring at T ∼ Mmes. If we consider, for example, the entropy density in
Fig. 9.11, we see that the phase transition occurs in the midst of a crossover sig-
naled by a rise in S/T 3. We may write the contribution of the fundamental matter
to the entropy density as

Sflavor = 1

8
λ N f Nc T 3 H(x) , (9.36)

where x = λT 2/Mq and H(x) is the function shown in the plot of the free energy
density in the top panels of Fig. 9.11. H rises from 0 at x = 0 to 2 as x → ∞,
but the most dramatic part of this rise occurs in the vicinity of x = 1. Hence
it seems that new degrees of freedom, i.e. the fundamental quarks, are becoming
“thermally activated” at T ∼ Mmes. We note that the phase transition produces

https://doi.org/10.1017/9781009403504.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403504.009


370 Quarkonium mesons in strongly coupled plasma

a discontinuous jump in which H only increases by about 0.07, i.e. the jump at
the phase transition only accounts for about 3.5% of the total entropy increase.
Thus the phase transition seems to play a small role in this crossover and produces
relatively small changes in the thermal properties of the fundamental matter, such
as the energy and entropy densities.

As Mmes sets the scale of the mass gap in the meson spectrum, it is tempting
to associate the crossover above with the thermal excitation of mesonic degrees of
freedom. However, the pre-factor λ N f Nc in (9.36) indicates that this reasoning
is incorrect: if mesons provided the relevant degrees of freedom, we should have
Sflavor ∝ N 2

f . Such a contribution can be obtained either by a one-loop calcula-
tion of the fluctuation determinant around the classical D7-brane configuration, or
by taking into consideration the D7-branes’ backreaction to second order in the
N f /Nc expansion as in [278, 382, 339, 161]. One can make an analogy here with
the entropy of a confining theory (cf. Section 5.2.2). In the low temperature, con-
fining phase the absence of a black hole horizon implies that the classical-gravity
saddle point yields zero entropy, which means that the entropy is zero at order N 2

c .
One must look at the fluctuation determinant to see the entropy contributed by the
supergravity modes, i.e. by the gauge singlet glueballs, which is of order N 0

c .
We thus see that the factor of N f Nc in Sflavor is naturally interpreted as counting

the number of degrees of freedom associated with deconfined quarks, with the
factor of λ demonstrating that the contribution of the quarks is enhanced at strong
coupling. A complementary interpretation of (9.36) comes from reorganizing the
pre-factor as

λ N f Nc = (g2 N f ) N 2
c . (9.37)

The latter expression suggests that the result corresponds to the first order cor-
rection of the adjoint entropy due to quark loops. As explained at the end of
Section 5.5.1, we are working in a “not quite” quenched approximation, in that
contributions of the D7-branes represent the leading order contribution in an expan-
sion in N f /Nc, and so quark loops are suppressed but not completely. In view of
the discussion below Eq. (9.32), it is clear that the expansion for the classical gra-
vitational backreaction of the D7-branes is controlled by λN f /Nc = g2 N f . Hence
this expansion corresponds to precisely the expansion in quark loops on the gauge
theory side.

We conclude that the strongly coupled theory brings together these two oth-
erwise distinct processes. That is, because the N = 4 SYM theory is strongly
coupled at all energy scales, the dissociation of the quarkonium bound states and
the thermal activation of the quarks happen at essentially the same temperature.
Note that this implies that the phase transition should not be thought of as exclu-
sively associated with a discontinuous change in the properties of mesons – despite
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T

Mq

λ

Figure 9.12 A qualitative representation of the simplest possibility interpolating
between the weak and the strong coupling regimes in N = 4 SYM theory. The
solid and the dotted black curves correspond to T = Tdiss. At strong coupling
this corresponds to a first order phase transition (solid black curve), whereas at
weak coupling it corresponds to a crossover (dotted black curve). The solid and
the dashed red curves correspond to T = Tactivate. At strong coupling this takes
place immediately after the phase transition, whereas at weak coupling it is widely
separated from Tdiss.

the fact that this is the aspect that is more commonly emphasized. The phase
transition is also associated with a discontinuous change in the properties of
quarks since, as explained above, these exist as well-defined quasiparticles in
the Minkowski phase but not in the black hole phase. In fact, as the discussion
around Eq. (9.37) makes clear, in the O(N f Nc) - approximation considered here
the observed discontinuous jump in the thermodynamic functions comes entirely
from the discontinuous change in the properties of quarks. In this approximation,
the discontinuous jump in the thermodynamic functions associated with the dis-
continuous change in the properties of mesons simply cannot be detected, since it
is of order N 2

f and its determination would require a one-loop calculation. Fortu-
nately, however, the change in the mesons’ properties can be inferred, e.g. from the
comparison of their spectra above and below Tdiss.

It is instructive to contrast this behavior with that which is expected to occur at
weak coupling. In this regime, one expects that the dissociation of the quarkonium
mesons may well be just a crossover rather than a (first order) transition. More-
over, since the weakly bound mesons are much larger than 1/Mmes ∼ 1/(2Mq),
their dissociation transition will occur at a Tdiss that is much lower than Mq. On
the other hand, the quarks would not be thermally activated until the temperature
Tactivate ∼ Mq, above which the number densities of unbound quarks and antiquarks
are no longer Boltzmann-suppressed. Presumably, the thermal activation would
again correspond to a crossover rather than a phase transition. The key point is that
these two temperatures are widely separated at weak coupling. Figure 9.12 is an
“artistic” representation of the simplest behavior that would interpolate between
strong and weak coupling. One might expect that the dissociation point and the
thermal activation are very close for λ � 1. The line of first order phase transitions
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must end somewhere and so one might expect that it terminates at a critical point
around λ ∼ 1. Below this point, both processes would only represent crossovers
and their respective temperatures would diverge from one another, approaching the
weak coupling behavior described above.

We close with a comment about a possible comparison to QCD. Although it
would be interesting to look for signs of a crossover or a phase transition associated
with quarkonium dissociation, for example in lattice QCD, the above discussion
makes it clear that much caution must be exercised in trying to compare with the
holographic results described here. The differences can be traced back to the fact
that, unlike the holographic theory considered here, QCD is not strongly coupled
at the scale set by the mass of the heavy quark or of the corresponding heavy
quarkonium meson. For this reason, in QCD the binding energy of a quarkonium
meson is EB � Mmes � 2Mq and, since one expects that Tdiss ∼ EB , this
implies that at the dissociation temperature the quarkonium contribution to (say)
the total entropy density would be Boltzmann suppressed, i.e. it would be of order
Sflavor ∼ N 2

f exp(−Mmes/Tdiss) � 1. In contrast, in the holographic set-up there
is no exponential suppression because Tdiss ∼ Mmes. Note also that the quarko-
nium contribution should scale as N 2

f , and therefore the exponential suppression is
a further suppression on top of the already small one-loop contribution discussed
in the paragraph above Eq. (9.37). That is, there are two sources of suppression
relative to the leading O(N f Nc) - contribution in the holographic theory. Although
N f /Nc is not small in QCD, the Boltzmann suppression is substantial and will
likely make the thermodynamic effects of any quarkonium dissociation transition
quite a challenge to identify.

9.4 Quarkonium mesons in motion and in decay

In previous sections, we examined the thermodynamics of the phase transition
between Minkowski and black hole embeddings, and we argued that from the
gauge theory viewpoint it corresponds to a meson-dissociation transition. In par-
ticular, we argued that quarkonium bound states exist on Minkowski embeddings,
i.e. at T < Tdiss, that they are absolutely stable in the large-Nc, strong coupling
limit, and that their spectrum is discrete and gapped. We will begin Section 9.4.1
by studying this spectrum quantitatively, which will allow us to understand how
the meson spectrum is modified with respect to that at zero temperature, described
in Section 9.2.2. The spectrum on black hole embeddings will be considered in
Section 9.5.

After describing the spectrum of quarkonium mesons at rest, we will determine
their dispersion relations. This will allow us to study mesons in motion with respect
to the plasma and, in particular, to determine how the dissociation temperature
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depends on the meson velocity. As discussed in Section 2.4, one of the hallmarks
of a quark–gluon plasma is the screening of colored objects. Heavy quarkonia
provide an important probe of this effect since the existence (or absence) of quark–
antiquark bound states and their properties are sensitive to the screening properties
of the medium in which they are embedded. In Section 8.7 we studied this issue
via computing the potential between an external quark–antiquark pair, at rest in
the plasma or moving through it with velocity v. In particular, we found that the
dissociation temperature scales with v as

Tdiss(v) � Tdiss(v = 0)(1 − v2)1/4 , (9.38)

which could have important implications for the phenomenon of quarkonium sup-
pression in heavy ion collisions. By studying dynamical mesons in a thermal
medium, we will be able to reexamine this issue in a more “realistic” context.

We will show in Section 9.4.2 that both finite-Nc and finite-coupling corrections
generate nonzero meson decay widths, as one would expect in a thermal medium.
We shall find that the dependence of the widths on the meson momentum yields
further understanding of how (9.38) arises.

We will close in Section 9.4.3 with a discussion of the potential connections
between the properties of quarkonium mesons in motion in a holographic plasma
and those of quarkonium mesons in motion in the QCD plasma.

9.4.1 Spectrum and dispersion relations

In order to determine the meson spectrum on Minkowski embeddings, we proceed
as in Section 9.2.2. For simplicity we will focus on fluctuations of the position of
the branes U (u) with no angular momentum on the S3, i.e. we write

δU = U(u) e−iωt eiq·x . (9.39)

The main difference between this equation and its zero-temperature counterpart
(9.10) is that in the latter case Lorentz invariance implies the usual relation
ω2 − q2 = M2 between the energy ω, the spatial three-momentum q, and the mass
M of the meson. At nonzero temperature, boost invariance is broken because the
plasma defines a preferred frame in which it is at rest and the mesons develop
a non-trivial dispersion relation ω(q). In the string description this is determined
by requiring normalizability and regularity of U(u): For each value of q, these two
requirements are mutually compatible only for a discrete set of values ωn(q), where
different values of n label different excitation levels of the meson. We define the
“rest mass” of a meson as its energy ω(0) at vanishing three-momentum, q = 0, in
the rest frame of the plasma.
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Figure 9.13 Meson mass spectrum M2 = ω2|q=0 versus T in units of M̄ for
Minkowski embeddings in the D3/D7 system. Continuous curves correspond to
radially excited mesons with radial quantum number n = 0, 1, 2 from bottom to
top, respectively. Dashed lines correspond to mesons with angular momentum on
the S3. The dashed vertical line indicates the temperature of the phase transition.
Note that modes become tachyonic slightly beyond this temperature. Figure taken
from Ref. [608].

Figure 9.13 shows the rest mass of the mesons as a function of temperature and
quark mass. Note that in the zero-temperature limit, the spectrum coincides with
the zero-temperature spectrum (9.14). In particular, the lightest meson has a mass
squared matching Eq. (9.29): M2

mes = 4π2 M̄2 � 39.5 M̄2.
The meson masses decrease as the temperature increases. Heuristically, this can

be understood in geometrical terms from Fig. 9.6, which shows that the thermal
quark mass Mth decreases as the temperature increases and the tip of the D7-
branes gets closer to the black hole horizon. The thermal shift in the meson masses
becomes more significant at the phase transition, and slightly beyond this point
some modes actually become tachyonic. This happens precisely in the same region
in which Minkowski embeddings become thermodynamically unstable because
cV < 0. In other words, Minkowski embeddings develop thermodynamic and
dynamic instabilities at exactly the same T/M̄ , just beyond that at which the first
order dissociation transition occurs.

We now turn to quarkonium mesons moving through the plasma, that is to modes
with q 
= 0. The dispersion relation for scalar mesons was first computed in
Ref. [608] and then revisited in Ref. [336]. The dispersion relation for (transverse)
vector mesons appeared in Ref. [255]. An exhaustive discussion of the dispersion
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Figure 9.14 Left: dispersion relation for the transverse (black, continuous curve)
and longitudinal (red, dashed curve) n = 0 modes of a heavy vector meson with
vlim = 0.35 in the N = 4 SYM plasma. The dual D7-brane has m = 1.3,
corresponding to a temperature just below Tdiss. Right: analogous curves for a
scalar (black, continuous curve) and pseudoscalar (red, dashed curve) meson. In
both plots the blue, continuous straight lines correspond to ω = vq for some
v such that vlim < v ≤ 1. The black, dotted, vertical lines mark the crossing
points between the meson dispersion relations and the blue lines. Figure taken
from Ref. [256].

relations for all these cases can be found in Ref. [256]. The result for the lowest-
lying (n = 0) vector, scalar and pseudoscalar quarkonia is shown in Fig. 9.14.
Figure 9.15 shows the group velocity vg = dω/dq for the n = 0 scalar mesons at
three different temperatures.

An important feature of these plots is their behavior at large momentum. In this
regime we find that ω grows linearly with q. Naively, one might expect that the
constant of proportionality should be one. However, one finds instead that

ω = vlim q , (9.40)

where vlim < 1 and where vlim depends on m = M̄/T but at a given temperature is
the same for all quarkonium modes. In the particular case of m = 1.3, illustrated
in Fig. 9.14, one has vlim � 0.35. In other words, there is a subluminal limiting
velocity for quarkonium mesons moving through the plasma. And, as illustrated in
Fig. 9.15, one finds that the limiting velocity decreases with increasing tempera-
ture. Figure 9.15 also illustrates another generic feature of the dispersion relations,
namely that the maximal group velocity is attained at some qm < ∞ and as q is
increased further the group velocity approaches vlim from above. Since vg at qm

is not much greater than vlim, we will not always distinguish between these two
velocities. We will come back to the physical interpretation of qm at the end of this
section.

The existence of a subluminal limiting velocity, which was discovered in [608]
and subsequently elaborated upon in [336], is easily understood from the perspec-
tive of the dual gravity description [608, 336]. Recall that mesonic states have wave
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Figure 9.15 Group velocities vg for n = 0 scalar meson modes with T/Tdiss ≈
0.65, 0.92 and 1 from top to bottom. We see that the group velocities approach
a limiting value vlim at large q with vlim < 1 and with vlim decreasing with
increasing temperature. (vlim would approach zero if we included the unstable
Minkowski embeddings with T > Tdiss.) The group velocity approaches its large-
q value vlim from above, i.e. vg reaches a maximum before settling into the
limiting velocity vlim. The maximum exists also for the top curve even though
it is less clearly visible. We will refer to the momentum at which vg reaches
the maximum as qm . Clearly qm decreases with temperature. Figure taken from
Ref. [336].

functions supported on the D7-branes. Since highly energetic mesons are strongly
attracted by the gravitational pull of the black hole, their wave function is very
concentrated at the bottom of the branes (see Fig. 9.6). Consequently, their veloc-
ity is limited by the local speed of light at that point. As seen by an observer at the
boundary, this limiting velocity is

vlim = √−gtt/gxx

∣∣∣
tip

, (9.41)

where g is the induced metric on the D7-branes. Because of the black hole redshift,
vlim is lower than the speed of light at infinity (i.e. at the boundary), which is nor-
malized to unity. Note that, as the temperature increases, the bottom of the brane
gets closer to the horizon and the redshift becomes larger, thus further reducing
vlim; this explains the temperature dependence in Fig. 9.15. In the gauge the-
ory, the above translates into the statement that vlim is lower than the speed of
light in the vacuum. The reason for this interpretation is that the absence of a
medium in the gauge theory corresponds to the absence of a black hole on the
gravity side, in which case vlim = 1 everywhere. Eq. (9.41) yields vlim � 0.35 at
m = 1.3, in agreement with the numerical results displayed in Fig. 9.14.

It is also instructive to plot vlim as a function of T/Tdiss, as done in Fig. 9.16.
Although this curve was derived as a limiting meson velocity at a given tempera-
ture, it can also be read (by asking where it cuts horizontal lines rather than vertical
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Figure 9.16 Top panel: the solid blue curve is the limiting velocity vlim as a func-
tion of T/Tdiss, where Tdiss is the temperature of the dissociation transition at
zero velocity. The dissociation transition occurs at the dot, where vlim = 0.27.
The dashed black curve is the approximation obtained by setting f (v) = 1 in
Eq. (9.42). Bottom panel: f (v), the ratio of the solid and dashed curves in the left
panel at a given v. We see that f (v) is within a few percent of 1 at all velocities.
Figure taken from Ref. [336].

ones) as giving Tdiss(v), the temperature below which mesons with a given velocity
v are found and above which no mesons with that velocity exist. In order to com-
pare this result for Tdiss at all velocities to (9.38), one can parametrize the curve in
Fig. 9.16 as

Tdiss(v) = f (v)(1 − v2)1/4 Tdiss(0) . (9.42)

In the upper panel of Fig. 9.16, the dashed line is obtained by setting f (v) = 1,
which is of course just (9.38). In the lower panel, f (v) is shown to be close to 1 for
all velocities, varying between 1.021 at its maximum and 0.924 at v = 1. Recall
that the scaling (9.38) was first obtained via the analysis of the potential between
a moving test quark and antiquark, as described in Section 8.7. The weakness of
the dependence of f (v) on v is a measure of the robustness with which that sim-
ple scaling describes the velocity dependence of the dissociation temperature for
quarkonium mesons in a fully dynamical calculation. In other words, to a good
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approximation vlim(T ) can be determined by setting v = vlim on the right-hand
side of (9.38), yielding

vlim(T ) �
√

1 −
(

T

Tdiss(v = 0)

)4

. (9.43)

Thus we reach a rather satisfactory picture that the subluminal limiting veloc-
ity (9.40) is in fact a manifestation in the physics of dynamical mesons of the
velocity-enhanced screening of Section 8.7. However, in the case of the low-spin
mesons whose dynamics we are considering in this section, there is an important
addition to our earlier picture. Although the quarkonium mesons have a limit-
ing velocity, they can nevertheless manage to remain bound at arbitrarily large
momenta thanks to their modified dispersion relations. The latter allow the group
velocity to remain less than vlim, and consequently Tdiss(v) as given in (9.38) to
remain higher than T , all the way out to arbitrarily large momenta. In other words,
there exist meson bound states of arbitrarily large spatial momentum, but no mat-
ter how large the momentum the group velocity never exceeds vlim. In this sense,
low-spin mesons realize the first of two simple possibilities by which mesons may
avoid exceeding vlim. A second possibility, more closely related to the analysis
of Section 8.7, is that meson states with momentum larger than a certain value
simply cease to exist. This possibility is realized in the case of high-spin mesons.
Provided J � 1, these mesons can be reliably described as long, semi-classical
strings whose ends are attached to the bottom of the D7-branes. The fact that the
endpoints do not fall on top of one another is of course due to the fact that they are
rotating around one another in such a way that the total angular momentum of the
string is J . These type of mesons were first studied [559] at zero temperature, and
subsequently considered at nonzero temperature in Ref. [674]. These authors also
studied the possibility that, at the same time that the endpoints of the string rotate
around one another in a given plane, they also move with a certain velocity in the
direction orthogonal to that plane. The result of the analysis was that, for a fixed
spin J , string solutions exist only up to a maximum velocity vlim < 1.

As we saw in Fig. 9.15, the group velocity of quarkonium mesons reaches a
maximum at some value of the momentum q = qm before approaching the limiting
value vlim. There is a simple intuitive explanation for the location of qm : it can
be checked numerically that qm is always close to the “limiting momentum” qlim

that would follow from (9.38) if one assumes the standard dispersion relation for
the meson. Thus, qm can be thought of as a characteristic momentum scale where
the velocity-enhanced screening effect starts to be important. For the curves in
Fig. 9.15, to the left of the maximum one finds approximately standard dispersion
relations with a thermally corrected meson mass. To the right of the maximum,
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the dispersion relations approach the limiting behavior (9.40), with vg approaching
vlim, as a consequence of the enhanced screening.

9.4.2 Decay widths

We saw above that at T < Tdiss (Minkowski embeddings) there is a discrete and
gapped spectrum of absolutely stable quarkonium mesons, i.e. the mesons have
zero width. The reason is that in this phase the D-branes do not touch the black
hole horizon. Since the mesons’ wave functions are supported on the branes, this
means that the mesons cannot fall into the black hole. In the gauge theory this
translates into the statement that the mesons cannot disappear into the plasma,
which implies that the meson widths are strictly zero in the limit Nc, λ → ∞. This
conclusion only depends on the topology of the Minkowski embedding. In partic-
ular, it applies even when higher order perturbative corrections in α′ are included,
which implies that the widths of mesons should remain zero to all orders in the
perturbative 1/

√
λ expansion. In contrast, in the black hole phase the D-branes fall

into the black hole and a meson has a nonzero probability of disappearing through
the horizon, that is, into the plasma. As a consequence, we expect the mesons to
develop thermal widths in the black hole phase, even in the limit Nc, λ → ∞.
In fact, as we will see in Section 9.5, the widths are generically comparable to
the energies of the mesons, and hence the mesons can no longer be interpreted as
quasiparticles.

We thus encounter a somewhat unusual situation: the quarkonium mesons are
absolutely stable for T < Tdiss, but completely disappear for T > Tdiss. The former
is counterintuitive because, on general grounds, we expect that any bound states
should always have a nonzero width when immersed in a medium with T > 0.
In the case of these mesons, we expect that they can decay and acquire a width
through the following channels:

(1) decay to gauge singlets such as glueballs, lighter mesons, etc;
(2) break up by high energy gluons (right-hand diagram in Fig. 9.17);
(3) break up by thermal medium quarks (left-hand diagram in Fig. 9.17).

Process (1) is suppressed by 1/N 2
c (glueballs) or 1/Nc (mesons), while (2) and (3)

are unsuppressed in the large-Nc limit. Since (1) is also present in the vacuum, we
will focus on (2) and (3), which are medium effects. They are shown schematically
in Fig. 9.17.

The width due to (2) is proportional to a Boltzmann factor e−βEB for creat-
ing a gluon that is energetic enough to break up the bound state, while that due
to (3) is proportional to a Boltzmann factor e−βMth for creating a thermal quark,
where Mth is the thermal mass of the quark – see Fig. 9.6. Given Eq. (9.35) and
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Figure 9.17 Sketches taken from Ref. [347] showing the relevant thermal pro-
cesses contributing to the meson width. q (q̄) denotes a quark (antiquark). The
left-hand diagram corresponds to the breakup of a meson by a quark from the ther-
mal medium, while the right-hand diagram corresponds to break up of a meson
by an energetic gluon. For large λ the first process is dominant, coming from the
single instanton sector.

the fact that in the Minkowski phase T < Tdiss, both Boltzmann factors are sup-
pressed by e−√

λ ∼ e−R2/α′
, so we recover the result that these mesons are stable

in the infinite-λ limit. In particular, there is no width at any perturbative order in
the 1/

√
λ expansion, consistent with the conclusion from the string theory side.

Furthermore, since the binding energy is EB ≈ 2Mth, in the regime where λ is
large (but not infinite), the width from process (3) will dominate over that from
process (2).

We now describe the result from the string theory calculation of the meson
widths in Ref. [347]. As discussed above, the width is nonperturbative in 1/

√
λ ∼

α′/R2, and thus should correspond to some instanton effect on the string world-
sheet. The basic idea is very simple: even though in a Minkowski embedding the
brane is separated from the black hole horizon and classically a meson living on the
brane cannot fall into the black hole, quantum mechanically (from the viewpoint of
the string worldsheet) it has a nonzero probability of tunneling into the black hole
and the meson therefore develops a width. At leading order, the instanton describ-
ing this tunneling process is given by a (Euclidean) string worldsheet stretching
between the tip of the D7-brane to the black hole horizon (see Fig. 9.6) and wind-
ing around the Euclidean time direction. Heuristically, such a worldsheet creates
a small tunnel between the brane and the black hole through which mesons can
fall into the black hole. The instanton action is βMth, as can be read off immedi-
ately from the geometric picture just described, and its exponential gives rise to the
Boltzmann factor expected from process (3). From the gauge theory perspective,
such an instanton can be interpreted as creating a thermal quark from the medium,
and a meson can disappear into the medium via interaction with it as shown in the
left diagram of Fig. 9.17.

The explicit expression for the meson width due to such instantons is some-
what complicated, so we refer the reader to the original literature [347]. Although
the width appears to be highly model dependent and is exponentially small in
the regime of a large but finite λ under consideration, remarkably its momentum
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Figure 9.18 The behavior of the width as a function of q for T/Tdiss =
0.99, 0.71, 0.3, 0.13 from left to right. The solid black curves are the full results
(9.44); the red dashed curves are the analytic results (9.45) for large momenta.
Figure taken from Ref. [347].

dependence has some universal features at large momentum [347]. Specifically,
one finds that

�(q)

�(0)
= |ψ(tip; �q)|2

|ψ(tip; �q = 0)|2 , (9.44)

where �(q) denotes the width of a meson with spatial momentum q and ψ(tip; q)
its wave function evaluated at the tip of the D7-branes (i.e. where it is closest to
the black hole). This result is intuitively obvious because a meson tunnels into
the black hole from the tip of the branes. In particular, as discussed in detail in
Ref. [336], at large momentum q the wave function becomes localized around the
tip of the brane and can be approximated by that of a spherical harmonic oscillator
with a potential proportional to q2z2, where z is the proper distance from the tip
of the branes.6 It then immediately follows that for large q the width (9.44) scales
as q2. Furthermore for temperatures T � Mmes and q � M3

mes/T 2, one finds the
closed form expression

�n(q)

�n(0)
≈ 2(4π)4

(n + 2)(n + 3/2)

T 4q2

M6
mes

, (9.45)

where n labels different mesonic excitations (see (9.13)).
It is also instructive to plot the full q-dependence of (9.44) obtained numeri-

cally, as done in Figure 9.18 for n = 0 mesons at various temperatures. Figure 9.18
has the interesting feature that the width is roughly constant for small q, but turns

6 Note that there are four transverse directions along the D7-brane as we move away from the tip (not including
the other (3 + 1) dimensions parallel to the boundary). Thus this is a four-dimensional harmonic oscillator.
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up quadratically around q/Mmes ≈ 0.52(Tdiss/T )2. This is roughly the momen-
tum qm ∼ qlim at which the group velocity of a meson achieves its maximum in
Fig. 9.15 which, as discussed in Section 9.4.1, can be considered as the characteris-
tic momentum scale where velocity-enhanced screening becomes significant. This
dramatic increase of meson widths beyond qm can also be understood intuitively:
when velocity-enhanced screening becomes significant, interaction between the
quark and antiquark in a meson becomes further weakened, which makes it easier
for a thermal medium quark or gluon to break it apart.

We now briefly comment on the gravity description of process (2) mentioned
earlier, i.e. the right-hand diagram in Fig. 9.17. For such a process to happen the
gluon should have an energy above the binding energy of the meson. The density
of such gluons is thus suppressed by e−2βMth and should be described by an instan-
ton and anti-instanton. We expect that contributions from such processes are also
controlled by the the value of the meson wave function at the tip of the branes, and
thus likely have similar growth with momentum.

Finally, we note that, as T increases, Mth decreases and thus the meson width
increases quickly with temperature, but remains exponentially suppressed until
Tdiss is reached, after which we are in the black hole phase. As will be discussed in
Section 9.5, in this phase quarkonium quasiparticles no longer exist.

9.4.3 Connection with the quark–gluon plasma

Let us now recapitulate the main qualitative features regarding heavy quarkonium
mesons in a strongly coupled plasma.

(1) They survive deconfinement.
(2) Their dispersion relations have a subluminal limiting velocity at large momen-

tum. The limiting velocity decreases with increasing temperature and as a
result the motion of a meson with large momentum dramatically slows down
near Tdiss.

(3) At large momenta, meson widths increase dramatically with momentum.
(4) The limiting velocity is reached and the increase in widths applies when

q � qlim, where qlim is the “limiting” momentum following from (9.38) if
one assumes the standard dispersion relation.

Properties (1)–(3) are universal in the sense that they apply to the deconfined
phase of any gauge theory with a string dual in the large-Nc, strong-coupling limit.
The reason for this is that they are simple consequences of general geometric fea-
tures following from two universal aspects of the gauge/string duality: (i) the fact
that the deconfined phase of the gauge theory is described on the gravity side by a
black hole geometry [804], and (ii) the fact that a finite number N f of quark flavors
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is described by N f D-brane probes [517, 513]. Property (4) was established by
explicit numerical calculations in specific models. However, given that qlim can be
motivated in a model-independent way from (9.38), it is likely to also be universal
even though this was not manifest in our discussion above.

We have seen that properties (2) and (3) can be considered direct conse-
quences of velocity-enhanced screening, which as discussed in Section 8.7 can
have important implications for quarkonium suppression in heavy ion collisions.

It is interesting that properties (1) and to some degree (2) can be independently
motivated in QCD whether or not a string dual of QCD exists. The original argu-
ment [609] for (1) is simply that the heavier the quarkonium meson, the smaller its
size. And, it is reasonable to expect a meson to remain bound until the screening
length in the plasma becomes comparable to the meson size, and for sufficiently
heavy quarkonia this happens at Tdiss > Tc. As we have discussed in Sections 2.4
and 3.3, this conclusion is supported by calculations of both the static quark–
antiquark potential and of Minkowski space spectral functions in lattice-regularized
QCD. The ballpark estimate for the dissociation temperature of heavy mesons sug-
gested by the above studies roughly agrees with that from the D3/D7 system. For
example, for the J/ψ meson the former estimate is Tc � Tdiss � 2Tc. Allowing for
a certain range in the precise value of 150 MeV � Tc � 190 MeV, this translates
into 300 MeV � Tdiss � 380 MeV. In the D3/D7 model, we see from Fig. 9.11
that meson states melt at Tdiss � 0.766M̄ . The scale M̄ is related to the mass Mmes

of the lightest meson in the theory at zero temperature through Eq. (9.29). There-
fore we have Tdiss(Mmes) � 0.122Mmes. For the J/ψ , taking Mmes � 3 GeV gives
Tdiss(J/ψ) � 366 MeV. Although it is gratifying that this comparison leads to
qualitative agreement, it must be taken with some caution because meson bound
states in the D3/D7 system are deeply bound, i.e. Mmes � 2Mq, whereas the bind-
ing energy of charmonium states in QCD is a small fraction of the charm mass,
i.e. Mcc̄ � 2Mc. An additional difference comes from the fact that in QCD the
dissociation of charmonium states is expected to happen sequentially, with excited
states (that are larger) dissociating first, whereas in the D3/D7 system all meson
states are comparable in size and dissociate at the same temperature. Presumably,
in the D3/D7 system this is an artifact of the large-Nc, strong coupling approxima-
tion under consideration, and thus corrections away from this limit should make
holographic mesons dissociate sequentially too.

There is a simple (but incomplete) argument for property (2) that applies to QCD
just as well as to N = 4 SYM theory [583, 674, 281, 336]: a meson moving
through the plasma with velocity v experiences a higher energy density, boosted
by a factor of γ 2. Since energy density is proportional to T 4, this can be thought
of as if the meson sees an effective temperature that is boosted by a factor of

√
γ ,

meaning Teff(v) = (1 − v2)−1/4T . A velocity-dependent dissociation temperature
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scaling like (9.38) follows immediately and from this a subluminal limiting veloc-
ity (9.43) can be inferred. Although this argument is seductive, it can be seen in
several ways that it is incomplete. For example, we would have reached a differ-
ent Teff(v) had we started by observing that the entropy density s is boosted by a
factor of γ and is proportional to T 3. And, furthermore, there really is no single
effective temperature seen by the moving quarkonium meson. The earliest analysis
of quarkonia moving through a weakly coupled QCD plasma with some veloc-
ity v showed that the meson sees a blue-shifted temperature in some directions
and a red-shifted temperature in others [296]. Although the simple argument does
not work by itself, it does mean that all we need from the calculations done via
gauge/string duality is the result that Tdiss(v) behaves as if it is controlled by the
boosted energy density – i.e. we need the full calculation only for the purpose of
justifying the use of the particular simple argument that works. This suggests that
property (2), and in particular the scaling in Eqs. (9.38) and (9.43), are general
enough that they may apply to the quark–gluon plasma of QCD whether or not it
has a gravity dual.

As explained towards the end of Section 9.4.1, there are at least two simple
ways in which a limiting velocity for quarkonia may be implemented. It may hap-
pen that meson states with momentum above a certain qlim simply do not exist,
in which case one expects that vlim = v(qlim). The second possibility is that
the dispersion relation of mesons may become dramatically modified beyond a
certain qlim in such a way that, although meson states of arbitrarily high momen-
tum exist, their group velocity never exceeds a certain vlim. It is remarkable that
both possibilities are realized in gauge theories with a string dual, the former by
high-spin mesons and the latter by low-spin mesons. However, note that even in
the case of low-spin mesons, qlim remains the important momentum scale beyond
which we expect more significant quarkonium suppression for two reasons. First,
meson widths increase significantly for q > qlim. Therefore, although it is an over-
statement to say that these mesons also cease to exist above qlim, their existence
becomes more and more transient at higher and higher q. Second, owing to the
modified dispersion relation mesons with q > qlim slow down and they spend
a longer time in the medium, giving the absorptive imaginary part more time to
cause dissociation. It will be very interesting to see whether future measurements
at RHIC or the LHC will show the suppression of J/ψ or ϒ production increas-
ing markedly above some threshold transverse momentum pT , as we described in
Section 8.7.

In practice, our ability to rigorously verify the properties (1)–(4) in QCD is lim-
ited due to the lack of tools that are well suited for this purpose. It is therefore
reassuring that they hold for all strongly coupled, large-Nc plasmas with a gravity
dual, for which the gravity description provides just such a tool.
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9.5 Black hole embeddings

We now consider the phase T > Tdiss, which is described by a D7-brane with
a black hole embedding. We will give a qualitative argument that in this regime
the system generically contains no quarkonium quasiparticles. We have empha-
sized the word “generically” because exceptions arise when certain large ratios of
physical scales are introduced “by hand”, as we will see later. We will illustrate
the absence of quasiparticles in detail by computing a spectral function of two
electromagnetic currents in the next section.

9.5.1 Absence of quasiparticles

In the gravity description of physics at T > Tdiss, the meson widths may be seen
by studying the quasinormal modes of the D7-brane, analogous to the quasinormal
modes of the AdS black brane that we introduced in Section 6.4. The quasinor-
mal modes of the D7-brane are also analogs of the fluctuations we studied in the
case of Minkowski embeddings in that a normalizable fall-off is imposed at the
boundary. However, the regularity condition at the tip of the branes is replaced
by the so-called infalling boundary condition at the horizon. Physically, this is the
requirement that energy can flow into the horizon but cannot come out of it (clas-
sically). Mathematically, it is easy to see that this boundary condition forces the
frequency of the mode to acquire a negative imaginary part, and thus corresponds
to a nonzero meson width. The meson in question may then be considered a quasi-
particle if and only if this width is much smaller than the real part of the frequency.
In the case at hand, the meson widths increase as the area of the induced horizon
on the branes increases, and go to zero only when the horizon shrinks to zero size.
This is of course to be expected, since it is the presence of the induced horizon that
causes the widths to be nonzero in the first place. We are thus led to the suggestion
that meson-like quasiparticles will be present in the black hole phase only when
the size of the induced horizon on the branes can be made parametrically small.
This expectation can be directly verified by explicit calculation of the quasinor-
mal modes on the branes [469, 345, 510, 509], and we will confirm it indirectly
below by examining the spectral function of two electromagnetic currents. For the
moment, let us just note that this condition is not met in the system under consid-
eration because, as soon as the phase transition at T = Tdiss takes place, the area
of the induced horizon on the brane is an order-one fraction of the area of the
background black hole. This can be easily seen from Fig. 9.11 by comparing the
entropy density (which is a measure of the horizon area) at the phase transition to
the entropy density at asymptotically high temperatures:

stransition

shigh T
≈ 0.3

2
≈ 15% . (9.46)
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This indicates that there is no parametric reason to expect quasiparticles with nar-
row widths above the transition. We shall confirm by explicit calculation in the next
section that there are no quasiparticle excitations in the black hole phase.

9.5.2 Meson spectrum from a spectral function

Here we will illustrate some of the general expectations discussed above by exam-
ining the in-medium spectral function of two electromagnetic currents in the black
hole phase. We choose this particular correlator because it is the analogue of the
correlator that we discussed in Section 3.3 and hence is related to thermal photon
production, which we will discuss in the next section. We will see that no narrow
peaks exist for stable black hole embeddings, indicating the absence of long-lived
quasiparticles. These peaks will appear, however, as we artificially push the system
into the unstable region close to the critical embedding (see Fig. 9.7), thus con-
firming our expectation that quasiparticles should appear as the area of the induced
horizon on the branes shrinks to zero size.

N = 4 SYM coupled to N f flavors of equal-mass quarks is an SU (Nc) gauge
theory with a global U (N f ) symmetry. In order to couple this theory to electro-
magnetism we should gauge a U (1)EM subgroup of U (N f ) by adding a dynamical
photon Aμ to the theory; for simplicity we will assume that all quarks have equal
electric charge, in which case U (1)EM is the diagonal subgroup of U (N f ). In
this extended theory we could then compute correlation functions of the con-
served current J EM

μ that couples to the U (1)EM gauge field. The string dual of
this SU (Nc) × U (1)EM gauge theory is unknown, so we cannot perform this cal-
culation holographically. However, as noted in [239], we can perform it to leading
order in the electromagnetic coupling constant e, because at this order correlation
functions of electromagnetic currents in the gauged and in the ungauged theories
are identical. This is very simple to understand diagramatically, as illustrated for
the two-point function in Fig. 9.19. In the ungauged theory only SU (Nc) fields
“run” in the loops, represented by the shaded blob. The gauged theory contains
additional diagrams in which the photon also runs in the loops, but these neces-
sarily involve more photon vertices and therefore contribute at higher orders in e.
Thus one can use the holographic description to compute the “SU (Nc) blob” and
obtain the result for the correlator to leading order in e.

Using this observation, the authors of Ref. [239] first did a holographic compu-
tation of the spectral density of two R-symmetry currents in N = 4 SYM theory, to
which finite-coupling corrections were computed in [428, 429]. The result for the
R-charge spectral density is identical, up to an overall constant, with the spectral
density of two electromagnetic currents in N = 4 SYM theory coupled to massless
quarks. This, and the extension to nonzero quark mass, were obtained in Ref. [604],
which we now follow.
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SU(Nc)
q q

Figure 9.19 Diagrams contributing to the two-point function of electromagnetic
currents. The external line corresponds to a photon of momentum q. As explained
in the text, to leading order in the electromagnetic coupling constant only SU (Nc)
fields “run” in the loops represented by the shaded blob. Figure taken from
Ref. [604].

The relevant spectral function is defined as

χμν(k) = 2 Im G R
μν(k) , (9.47)

where kμ = (ω, q) is the photon null momentum (i.e. ω2 = q2) and

G R
μν(k) = i

∫
dd+1x e−ikμxμ

"(t)〈[J EM
μ (x), J EM

ν (0)]〉 (9.48)

is the retarded correlator of two electromagnetic currents. The key point in this
calculation is to identify the field in the string description that is dual to the operator
of interest here, namely the conserved current J EM

μ . We know from the discussion
in Chapter 5 that conserved currents are dual to gauge fields on the string side.
Moreover, since J EM

μ is constructed out of fields in the fundamental representation,
we expect its dual field to live on the D7-branes. The natural (and correct) candidate
turns out to be the U (1) gauge field associated with the diagonal subgroup of the
U (N f ) gauge group living on the worldvolume of the N f D7-branes. Once this is
established, one must just follow the general prescription explained in Chapter 5.
The technical details of the calculation can be found in Ref. [604], so here we will
describe only the results and their interpretation. In addition, we will concentrate
on the trace of the spectral function, χμ

μ(k) ≡ ημνχμν(k), since this is the quantity
that determines the thermal photon production by the plasma (see next section).

The trace of the spectral function for stable black hole embeddings is shown in
Fig. 9.20 for several values of the quark mass m. Note that this is a function of
only one variable, since for an on-shell photon ω = q. The normalisation constant
that sets the scale on the vertical axis is ÑD7 = N f NcT 2/4. The N f Nc scaling of
the spectral function reflects the number of electrically charged degrees of freedom
in the plasma; in the case of two R-symmetry currents, N f Nc would be replaced
by N 2

c [239]. All curves decay as ω−1/3 for large frequencies. Note that χ ∼ ω

as ω → 0. This is consistent with the fact that the value at the origin of each of
the curves yields the electric conductivity of the plasma at the corresponding quark
mass, namely

σ = e2

4
lim
ω→0

1

ω
ημνχμν(ω = q) . (9.49)
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Figure 9.20 Trace of the spectral function as a function of the dimensionless
frequency ω̄ = ω/2πT for (from top to bottom on the left-hand side) m =
{0, 0.6, 0.85, 0.93, 1.15, 1.25, 1.32}. The last value corresponds to that at which
the phase transition from a black hole to a Minkowski embedding takes place.
Recall that ÑD7 = N f NcT 2/4. Figure taken from Ref. [604].

This formula is equivalent to the perhaps-more-familiar expression in terms of the
zero-frequency limit of the spectral function at vanishing spatial momentum (see
Appendix A):

σ = e2

6
lim
ω→0

1

ω
δi jχi j (ω, q = 0) = e2

6
lim
ω→0

1

ω
ημνχμν(ω, q = 0) , (9.50)

where in the last equality we used the fact that χ00(ω 
= 0, q = 0) = 0, as implied
by the Ward identity kμχμν(k) = 0. To see that the two expressions (9.49) and
(9.50) are equivalent, suppose that q points along the 1-direction. Then the Ward
identity, together with the symmetry of the spectral function under the exchange of
its spacetime indices, imply that ω2χ00 = q2χ11. For null momentum this yields
−χ00 + χ11 = 0, so we see that Eq. (9.49) reduces to

σ = e2

4
lim
ω→0

1

ω

[
χ22(ω = q) + χ33(ω = q)

]
. (9.51)

The diffusive nature of the hydrodynamic pole of the correlator implies that at low
frequency and momentum the spatial part of the spectral function behaves as

χi j (ω, q) ∼ ω3

ω2 + D2q4
, (9.52)

where D is the diffusion constant for electric charge. This means that we can
replace q = ω by q = 0 in Eq. (9.51), thus arriving at the expression (9.50).
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Figure 9.21 Trace of the spectral function as a function of the dimensionless
frequency ω̄ = ω/2πT for non-stable black hole embeddings. Curves with
higher, narrower peaks correspond to embeddings that are closer to the critical
embedding. Figure taken from Ref. [604].

Evaluating (9.50) in the case of massless fundamental matter yields the explicit
result [604]

σ = 1

4π
e2 Nc N f T (9.53)

that we quoted previously as (6.51). For the case of fundamental matter with mass,
the result (9.53) is multiplied by a decreasing function of m = M̄/T , defined
in (9.28), that becomes very small near the phase transition from a black hole
embedding to a Minkowski embedding [604].

For the purpose of our discussion, the most remarkable feature of the spectral
functions displayed in Fig. 9.20 is the absence of any kind of high, narrow peaks
that may be associated with a quasiparticle excitation in the plasma. This feature is
shared by thermal spectral functions of other operators on stable black hole embed-
dings. We thus confirm our expectation that no quasiparticles exist in this phase.
In order to make contact with the physics of the Minkowski phase, in which we do
expect the presence of quarkonium quasiparticles, the authors of Ref. [604] com-
puted the spectral function for black hole embeddings beyond the phase transition,
i.e. in the region below Tdiss in which these embeddings are metastable or unstable.
The results for the spectral function are shown in Fig. 9.21. The most important
feature of these plots is the appearance of well defined peaks in the spectral func-
tion, which become higher and narrower, seemingly approaching delta-functions,
as the embedding approaches the critical embedding (see Fig. 9.7). Thus the form
of the spectral function appears to approach the form we expect for Minkowski
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embeddings,7 namely an infinite sum of delta-functions supported at a discrete set
of energies ω2 = q2. (However, a precise map between the peaks in Fig. 9.21 and
the meson spectrum in a Minkowski embedding is not easy to establish [667].)
Each of these delta-functions is associated with a meson mode on the D7-branes
with null four-momentum. The fact that the momentum is null may seem surprising
in view of the fact that, as explained above, the meson spectrum in the Minkowski
phase possesses a mass gap, but in fact it follows from the dispersion relation for
these mesons displayed in Fig. 9.14. To see this, consider the dispersion relation
ω(q) for a given meson in the Minkowski phase. The fact that there is a mass
gap means that ω > 0 at q = 0. On the other hand, in the limit of infinite spa-
tial momentum, q → ∞, the dispersion relation takes the form ω � vlimq with
vlim < 1. Continuity then implies that there must exist a value of q such that
ω(q) = q. This is illustrated in Fig. 9.14 by the fact that the dispersion relations
intersect the blue lines. Since in the Minkowski phase the mesons are absolutely
stable in the large-Nc, strong coupling limit under consideration, we see that each
of them gives rise to a delta-function-like (i.e. zero-width) peak in the spectral
function of electromagnetic currents at null momentum. Below we will see some
potential implications of this result for heavy ion collisions.

9.6 Two universal predictions

We have just seen that the fact that heavy mesons remain bound in the plasma, and
the fact that their limiting velocity is subluminal, imply that the dispersion relation
of a heavy meson must cross the lightcone, defined by ω = q, at some energy
ω = ωpeak indicated by the vertical line in Fig. 9.14. In this section we will see that
this simple observation leads to two universal consequences. Implications for deep
inelastic scattering have been studied in [479] but will not be reviewed here.

9.6.1 A meson peak in the thermal photon spectrum

At the crossing point between the meson dispersion relation and the lightcone, the
meson four-momentum is null, that is ω2

meson = q2
meson. If the meson is flavorless

and has spin one, then at this point its quantum numbers are the same as those
of a photon. Such a meson can then decay into an on-shell photon, as depicted in
Fig. 9.22. Note that, in the vacuum, only the decay into a virtual photon would
be allowed by kinematics. In the medium, the decay can take place because of the
modified dispersion relation of the meson. Also, note that the decay will take place
unless the photon–meson coupling vanishes for some reason (e.g. a symmetry). No
such reason is known in QCD.
7 An analogous result was found in [638] for time-like momenta.

https://doi.org/10.1017/9781009403504.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403504.009


9.6 Two universal predictions 391

meson γγ

Figure 9.22 In-medium vector meson–photon mixing. The imaginary part of
this diagram yields the meson decay width into photons. Figure adapted from
Ref. [602].

The decay process of Fig. 9.22 contributes a resonance peak, at a position ω =
ωpeak, to the in-medium spectral function of two electromagnetic currents (9.48)
evaluated at null-momentum ω = q. This in turn produces a peak in the spectrum
of thermal photons emitted by the plasma,

d Nγ

dω
∼ e−ω/T χμ

μ(ω, T ) . (9.54)

The width of this peak is the width of the meson in the plasma.
The analysis above applies to an infinitely extended plasma at constant temper-

ature. Assuming that these results can be extrapolated to QCD, a crucial question
is whether a peak in the photon spectrum could be observed in a heavy ion colli-
sion experiment. Natural heavy vector mesons to consider are the J/ψ and the ϒ ,
since these are expected to survive deconfinement. We wish to compare the num-
ber of photons coming from these mesons to the number of photons coming from
other sources. Accurately calculating the meson contribution would require a pre-
cise theoretical understanding of the dynamics of these mesons in the quark–gluon
plasma, which at present is not available. Our goal will therefore be to estimate the
order of magnitude of this effect with a simple recombination model. The details
can be found in Ref. [249], so here we will only describe the result for heavy ion
collisions at LHC energies.

The result is summarized in Fig. 9.23, which shows the thermal photon spectrum
coming from light quarks, the contribution from J/ψ mesons, and the sum of the
two, for a thermal charm mass Mcharm = 1.7 GeV and a J/ψ dissociation temper-
ature Tdiss = 1.25Tc. Although the value of Mcharm is relatively high, the values of
Mcharm and Tdiss are within the range commonly considered in the literature. For
the charm mass a typical range is 1.3 ≤ Mcharm ≤ 1.7 GeV because of a sub-
stantial thermal contribution – see, for example, Ref. [621] and references therein.
The value of Tdiss is far from settled, but a typical range is Tc ≤ Tdiss ≤ 2Tc

[504, 677, 506, 623, 620, 80, 308, 430, 521, 729, 82]. We have chosen these values
for illustrative purposes, since they lead to an order-one enhancement in the spec-
trum. We emphasize, however, that whether this photon excess manifests itself as
a peak, or only as an enhancement smoothly distributed over a broader range of
frequencies, depends sensitively on these and other parameters. Qualitatively, the
dependence on the main ones is as follows. Decreasing the quark mass decreases
the magnitude of the J/ψ contribution. Perhaps surprisingly, higher values of Tdiss

https://doi.org/10.1017/9781009403504.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403504.009


392 Quarkonium mesons in strongly coupled plasma

3.25

0.2

0.4

0.6

0.8

1

3.5 3.75 4 4.25 4.5 4.75 5

ω [GeV]

dNγ

dω

Figure 9.23 Thermal photon spectrum for LHC energies, Tdiss = 1.25 Tc and
Mcharm = 1.7 GeV. The (arbitrary) normalization is the same for all curves. The
continuous, monotonically decreasing, blue curve is the background from light
quarks. The continuous red curve is the signal from J/ψ mesons. The dashed
black curve is the sum of the two. Figure taken from Ref. [249].

make the peak less sharp. The in-medium width of the J/ψ used in Fig. 9.23 was
100 MeV. Increasing this by a factor of two turns the peak into an enhancement.
Crucially, the J/ψ contribution depends quadratically on the cc̄ cross-section.
Since at RHIC energies this is believed to be ten times smaller than at LHC
energies, the enhancement discussed above is presumably unobservable at RHIC.

These considerations show that a precise determination of the enhancement is
not possible without a very detailed understanding of the in-medium dynamics of
the J/ψ . On the other hand, they also illustrate that there exist reasonable values
of the parameters for which this effect yields an order-one enhancement, or even
a peak, in the spectrum of thermal photons produced by the quark–gluon plasma.
This thermal excess is concentrated at photon energies roughly between 3 and 5
GeV. In this range the number of thermal photons in heavy ion collisions at the
LHC is expected to be comparable to or larger than that of photons produced in
initial partonic collisions that can be described using perturbative QCD [65]. Thus,
we expect the thermal excess above to be observable even in the presence of the
pQCD background.

The authors of Ref. [249] also examined the possibility of an analogous effect
associated with the ϒ meson, in which case ωpeak ∼ 10 GeV. At these energies
the number of thermal photons is very much smaller than that coming from initial
partonic collisions, so an observable effect is not expected.

9.6.2 A new mechanism of quark energy loss: Cherenkov emission of mesons

We now turn to another universal prediction that follows from the existence of a
subluminal limiting velocity for mesons in the plasma. Consider a highly energetic
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Figure 9.24 D-branes and open string in a black brane geometry. Figure taken
from Refs. [255, 256].

quark moving through the plasma. In order to model this we consider a string
whose endpoint moves with an arbitrary velocity v at an arbitrary radial position
rq – see Fig. 9.24. Roughly speaking, the interpretation of rq in the gauge theory is
that of the inverse size of the gluon cloud that dresses the quark. This can be seen,
for example, by holographically computing the profile of 〈TrF2(x)〉 around a static
quark source dual to a string whose endpoint sits at r = rq [465].

Two simple observations now lead to the effect that we are interested in. The
first one is that the string endpoint is charged under the scalar and vector fields
on the branes. In the gauge theory, this corresponds to an effective quark-meson
coupling (see Fig. 9.25) of order e ∼ 1/

√
Nc. Physically, this can be understood

very simply. The fields on the branes describe fluctuations around the equilibrium
configuration. The string endpoint pulls on the branes and therefore excites (i.e. it
is charged under) these fields. The branes’ tension is of order 1/gs ∼ Nc, where
gs is the string coupling constant, whereas the string tension is Nc-independent.
This means that the deformation of the branes caused by the string is of order
e2 ∼ 1/Nc. We thus conclude that the dynamics of the “branes + string endpoint”
system is (a generalization of) that of classical electrodynamics in a medium in the
presence of a fast-moving charge.

The second observation is that the velocity of the quark may exceed the limiting
velocity of the mesons, since the redshift at the position of the string endpoint is
smaller than that at the bottom of the branes. As in ordinary electrodynamics, if
this happens then the string endpoint loses energy by Cherenkov radiating into the
fields on the branes. In the gauge theory, this translates into the quark losing energy
by Cherenkov radiating scalar and vector quarkonium mesons. The rate of energy
loss is set by the square of the coupling, and is therefore of order 1/Nc.

The quantitative details of the energy lost to Cherenkov radiation of quarko-
nium mesons by a quark propagating through the N = 4 plasma can be found in
[256, 255], so here we will describe only the result. For simplicity, we will assume
that the quark moves with constant velocity along a straight line at a constant radial
position. In reality, rq and v will of course decrease with time because of the black
hole gravitational pull and the energy loss. However, we will concentrate on the
initial part of the trajectory (which is long provided the initial quark energy is
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Figure 9.25 Effective quark–meson coupling. Figure taken from Refs. [255, 256].

large), for which rq and v are approximately constant [294] – see Fig. 9.24. Finally,
for illustrative purposes we will focus on the energy radiated into the transverse
modes of vector mesons. The result is depicted in Fig. 9.26, and its main qualitative
features are as follows. (See Refs. [255, 256] for details.)

As expected, we see that the quark only radiates into meson modes with phase
velocity lower than v – those to the right of the dashed, vertical lines in Fig. 9.14.
For fixed rq , the energy loss increases monotonically with v up to the maximum
allowed value of v – the local speed of light at rq . As rq decreases, the character-
istic momentum qchar of the modes into which the energy is deposited increases.
These modes become increasingly peaked near the bottom of the branes, and the
energy loss diverges. However, this mathematical divergence is removed by physi-
cal effects we have not taken into account. For example, for sufficiently large q the
mesons’ wave functions become concentrated on a region whose size is of order
the string length, and hence stringy effects become important [336]. Also, as we
saw in Section 9.4.2, mesons acquire widths � ∝ q2 at large q [347] and can no
longer be treated as well defined quasiparticles. Finally, the approximation of a
constant-v, constant-rq trajectory ceases to be valid whenever the energy loss rate
becomes large.

The Cherenkov radiation of quarkonium mesons by quarks depends only on
the qualitative features of the dispersion relation of Fig. 9.14, which are univer-
sal for all gauge theory plasmas with a dual gravity description. Moreover, as
we explained in Section 9.4.3, it is conceivable that they may also hold for QCD
mesons such as the J/ψ or the ϒ whether or not a string dual of QCD exists. Here
we will examine some qualitative consequences of this assumption for heavy ion
collision experiments. Since the heavier the meson the more perturbative its prop-
erties become, we expect that our conclusions are more likely to be applicable to
the charmonium sector than to the bottomonium sector.

An interesting feature of energy loss by Cherenkov radiation of quarkonia is
that, unlike other energy loss mechanisms, it is largely independent of the details
of the quark excited state, such as the precise features of the gluon cloud around
the quark, etc. In the gravity description these details would be encoded in the
precise profile of the entire string, but the Cherenkov emission only depends on the
trajectory of the string endpoint. This leads to a dramatic simplification which, with
the further approximation of rectilinear uniform motion, reduces the parameters
controlling the energy loss to two simple ones: the string endpoint velocity v and
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Figure 9.26 Cherenkov energy loss into the transverse mode of vector quarko-
nium mesons. The continuous curves correspond to increasing values of rq from
left to right. The dotted curve is defined by the endpoints of the constant-rq curves.
Figure taken from Refs. [255, 256].

its radial position rq . In order to obtain a ballpark estimate of the magnitude of the
energy loss, we will assume that in a typical collision quarks are produced with
order-one values of rq (in units of R2T ). Under these circumstances the energy
loss is of order unity in units of (2πT )2/Nc, which for a temperature range of
T = 200–400 MeV and Nc = 3 leads to d E/dx ≈ 2–8 GeV/fm. This is is of the
same order of magnitude as other mechanisms of energy loss in the plasma; for
example, the BDMPS radiative energy loss d E/dx = αsCFq̂ L/2 yields values of
d E/dx = 7–40 GeV/fm for q̂ = 1–5 GeV 2/fm, αs = 0.3 and L ≈ 6 fm. Since our
gravity calculation is strictly valid only in the infinite-quark-energy limit (because
of the linear trajectory approximation), we expect that our estimate is more likely
to be applicable to highly energetic quarks at the LHC than to those at RHIC.

Even if in the quark–gluon plasma the magnitude of Cherenkov energy loss turns
out to be subdominant with respect to other mechanisms, its velocity dependence
and its geometric features may still make it identifiable. Indeed, this mechanism
would only operate for quarks moving at velocities v > vlim, with vlim the limiting
velocity of the corresponding quarkonium meson in the plasma. The presence of
such a velocity threshold is the defining characteristic of Cherenkov energy loss.
The precise velocity at which the mechanism starts to operate may actually be
higher than vlim in some cases, since the additional requirement that the energy of
the quark be equal or larger than the in-medium mass of the quarkonium meson
must also be met.

As illustrated in Fig. 9.27, Cherenkov mesons would be radiated at a charac-
teristic angle cos θc = vlim/v with respect to the emitting quark, where v is the
velocity of the quark. Taking the gravity result as guidance, vlim could be as low as
vlim = 0.27 at the quarkonium dissociation temperature [608, 336], correspond-
ing to an angle as large as θc ≈ 1.30 rad. This would result in an excess of
heavy quarkonium associated with high energy quarks passing through the plasma.
Our estimate of the energy loss suggests that the number of emitted J/ψs, for
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Figure 9.27 The geometry of Cherenkov emission of heavy quarkonium mesons
from a highly energetic quark. Figure taken from Ref. [603].

example, could range from one to three per fm. This emission pattern is simi-
lar to the emission of sound waves by an energetic parton [245] that we have
described in Section 8.3, in that both effects lead to a non-trivial angular struc-
ture. One important difference, however, is that the radiated quarkonium mesons
would not thermalize and hence would not be part of a hydrodynamic shock wave.
The meson emission pattern could be reflected in azimuthal dihadron correlations
triggered by a high-pT hadron. Owing to surface bias, the energetic parton in the
triggered direction is hardly modified, while the one propagating in the opposite
direction moves through a significant amount of medium, emitting quarkonium
mesons. Thus, under the above assumptions, the dihadron distribution with an asso-
ciated J/ψ would have a ring-like structure peaked at an angle θ ≈ π − θc. Even
if this angular structure were to prove hard to discern, the simpler correlation that
in events with a high-pT hadron there are more J/ψ mesons than in typical events
may suffice as a distinctive signature, although further phenomenological modeling
is required to establish this.

A final observation is that Cherenkov energy loss also has a non-trivial temper-
ature dependence, since it requires that there are meson-like states in the plasma,
and therefore it does not take place at temperatures above the meson dissocia-
tion temperature. Similarly, it is reasonable to assume that it does not occur at
temperatures below Tc, since in this case we do not expect the meson dispersion
relations to become spacelike.8 Under these circumstances, the Cherenkov mecha-
nism is only effective over a limited range of temperatures Tc < T < Tdiss which,
if Tdiss � 1.2Tc as in Ref. [623], is a narrow interval.

As was pointed out in Ref. [577], a mechanism of energy loss which is confined
to a narrow range of temperatures in the vicinity of Tc concentrates the emis-
sion of energetic partons to a narrow layer within the collision geometry, and this
can have observable consequences. Azimuthally asymmetric particle production at
high pT , say ∼ 10 GeV, is parametrized by the same azimuthal Fourier coefficients

8 This assumption is certainly correct for plasmas with a gravity dual, since the corresponding geometry does
not include a black hole horizon if T < Tc .
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v2, v3, . . . that at lower pT are related to hydrodynamic flow. At high pT , though,
these asymmetries originate from jet quenching, and in particular from the fact that
in heavy ion collisions with nonzero impact parameter the mean distance through
which hard partons traveling in a particular direction relative to the reaction plane
must propagate through the medium produced in the collision depends on the angle
between the direction of propagation and the reaction plane. Hard partons travel-
ing perpendicular to the reaction plane will, on average, find themselves travelling
through the medium for a longer distance (and will therefore lose more energy)
than those produced traveling in the reaction plane direction. This effect results in
a nonzero v2 at high pT . The magnitude of the resulting v2 will have some sensi-
tivity to the temperature dependence of energy loss. Some authors [577, 356, 822]
have found that their models are better able to describe the data if the energy loss
occurs only in a narrow range of temperatures near Tc, although others have not
needed such a mechanism [499, 500, 145, 498, 626, 146]. Provided that the meson
dissociation temperature Tdiss is not much larger than Tc, the Cherenkov radiation
of quarkonium mesons is one such mechanism. The temperature dependence of
energy loss is an active area of current research. At the time of writing it remains
to be seen whether it favors the Cherenkov radiation of quarkonium mesons as
an important energy loss mechanism. It will also be very interesting to look for
correlations between J/ψ production and the production and quenching of jets,
correlations that go beyond those present in standard perturbative jet fragmenta-
tion. This is an investigation that will benefit greatly from the higher production
rates for both J/ψ mesons and jets anticipated at the LHC beginning circa 2015.
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