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PRODUCTS OF BASE-k-PARACOMPACT SPACES AND
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Abstract

Let A be a regular ordinal with A > w;. Then we prove that (4 + 1) X A is not base-countably metacompact.
This implies that base-k-paracompactness is not an inverse invariant of perfect mappings, which answers
a question asked by Yamazaki.
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1. Introduction

Throughout this paper, all spaces are assumed to be T topological spaces. For a space
X, w(X) stands for the weight of X. For a subset A of a space X, clxA denotes the
closure of A in X. As usual, an ordinal is the set of all smaller ordinals. The symbol
w denotes the first infinite ordinal and w; is the first uncountable ordinal. Ordinals are
considered as spaces with the usual order topology. Let k denote an infinite cardinal.

Porter [8] called a space X base-paracompact if there is an open base B for X with
|B| = w(X) such that every open cover of X has a locally finite refinement by members
of B. Yamazaki [9] called a space X base-k-paracompact if there is a base B for X
with |B| = w(X) such that every open cover of X of cardinality at most « has a locally
finite refinement by members of 8. In particular, a space X is said to be base-countably
paracompact if X is base-w-paracompact. Note that X is base-paracompact if and only
if X is base-«x-paracompact for every cardinal .

Yamazaki proved that the product of a base-«-paracompact space X and a compact
space Y with w(Y) < k is base-k-paracompact [9, Proposition 6.4]. Our examples show
that the condition ‘w(Y) <« above plays an important role. It is known that base-
paracompactness is an inverse invariant of perfect mappings [8]. Yamazaki asked if
base-k-paracompactness is an inverse invariant of perfect mappings [9]. Our examples
give a negative answer.
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We call a space X base-metacompact (respectively, base-k metacompact) if there
is an open base 8B for X with |B| = w(X) such that every open cover (respectively,
open cover of cardinality at most ) of X has a point-finite refinement by members
of 8. Note that each paracompact subspace of products of two ordinals is base-
paracompact [6], and each metacompact subspace of products of two ordinals is base-
metacompact [7]. Theorem 2.4 below shows that k-paracompact subspaces of products
of two ordinals need not be base-«x-paracompact.

Yamazaki [9] defined a space X to be base-normal if there is an open base B for X
with |8] = w(X) such that every binary open cover {U}, U,} of X admits a locally finite
cover 8’ of X by members of B such that {clyB : B € 8B} refines {U, U,}.

A subset S of a regular uncountable ordinal u is said to be stationary in u if it
intersects all cub (that is, closed and unbounded) sets in u. For a subset A of an ordinal
1, let Lim,, A denotes the set of all limit points of A in u. Clearly, if A is unbounded in
a regular uncountable ordinal u, then Lim, A is a cub set in .

Let cf(w) denote the cofinality of an ordinal u. For a limit ordinal y, a strictly
increasing function M : cf(u) — w is said to be normal if M(y) = sup{M (') :y’ <v}
for each limit ordinal y < cf(w) and p = sup{M(y) : vy < cf(u)}. Clearly, M carries cf(u)
homeomorphically to the range ran(M) of M and ran(M) is closed and unbounded in u.

Lemma 1.1 (The Pressing Down Lemma (PDL)). Let u > w be regular, S a stationary
subset in u, and f:S — u such that f(y) <7y for each y € S. Then for some a <y,
f~Y(a) is stationary in p.

2. Main results
Lemma 2.1 [9]. For a space X, the following statements are equivalent:

(1) X is base-normal and base-k-paracompact;
(2) X is base-normal and k-paracompact;
(3) X is normal and base-k-paracompact.

Lemma 2.2 [6]. Each subspace of any ordinal is base-normal.

ProposiTiON 2.3. Let A be an ordinal with cf(1) > w;. Then for each cardinal k with
k < cf(), A is base-k-paracompact.

Proor. By Lemmas 2.1 and 2.2, it is enough to show that A is k-paracompact. Let
f : cf(1) = A be anormal function. Let U be an open cover of A with |U| < k. Assume
that U ={Up : B < 6}, where § <. Let § ={a <cf(d) : @ is a limit ordinal}. Then §
is stationary in cf(1). For each @ € S, take an ordinal é(@) < @ and n(a) < § such
that f(a) € (f(&(a)), f(@)] € Uyw. For each <6, let Sg={a €S :n(a) =p}. Then
S =U{Sp : B <6}. Since 6 < k < cf(A), there exists Sy < ¢ such that S g, is stationary in
cf(4). By the PDL, there existy < cf(1) and a stationary set T C S g, such that {(a) =y
for each € T. Hence, (f(y), f(®)] € Ug, for each e € T. Thus, (f(y), 4) C Up,.
Since [0, f(y)] is compact, we can take a finite subcollection U’ of U such that U’
covers [0, f(y)]. Then U’ U {Ug,} is a finite subcover of Y. This implies that A is
Kk-paracompact. |
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It is known that each subspace of u X v is hereditarily countably metacompact
for any ordinals p and v [3]. We will show that such spaces need not be base-
countably metacompact. The proof of the following Theorem 2.4 is based on that
of [6, Theorem 2.1]. For the reader’s convenience, we give its proof in full.

THEOREM 2.4. Let A be a regular ordinal with A > wy. Then (1 + 1) X A is not base-
countably metacompact.

Proor. Obviously, w(X) = 4. Put X = (1 + 1) X A. Suppose that B is a base of X with
|B| = 1. We will show that B cannot satisfy base-countable metacompactness of X.

Claim 1. Let Be B. If {6 < A: (y, §) € B} is stationary in «, then there exist a cub set
C(B) in «, a function f(B,-):C(B) — k and an ordinal g(B) < min(C(B)) such that
(f(B,7y), k] X (g(B),y] € B for each y € C(B).

Proor or Cramv 1. For each 6 € A with (4, §) € B, fix p(B, §) < A and ¢(B, d) < d such
that (p(B, 9), 4] X (¢(B, 9), 6] € B. Applying the PDL, we can find an ordinal g(B) < 1
and a stationary set S in A such that § C {6 <1:(4,9) € B} and ¢(B, 6) = g(B) for
eachoeS. Let C(B)={ye€A:y>min(S)}. Foreachy € C(B), let y(y) =min{d6 € S :
y <6}, and f(B,y) = p(B, ¢(y)). Then

(f(B,7), A] X (g(B), y] < (p(B, (), A X (g(B), ¥(y)] < B.
The proof of Claim 1 is complete. O

Let 8" ={BeB:{0 <A:{(4,06) € B}is stationary in A}. Rewrite B’ = {B, : a < ¢},
where ¢ is a cardinal. By Claim 1, for each a <&, there exist a cub set C, in A,
a function f(B,, ‘) : C, — A and an ordinal g(B,) < min(C,) such that (f(Bg, y), 4] X
(g(Ba), Y1 € B, for each y € Cy. If £ <A, let €' =g Co. I E=4, let C'={y€
A:forall @ <y(y € Cyp)}. In any case, C’ is a cub set in A [4, Ch. II, Lemmas 6.8
and 6.14]. Let C =Lim,(C’). Then C is a cub set in A and C C C’. For each y € C,
take a limit ordinal f(y) < A such that f(y) > sup{f(B,,y) : @ <7y}. We may assume
that f(y') < f(y) if v/ <y. Let U; = U{(f(y), 4] X [0, ] : ¥y € C}. Then {1} x A C U.
Let U, =A% A. Then {U}, U,} is an open cover of X. We will show that {U,, U,}
admits no point-finite refinement by members of B. Suppose B* is a refinement of
{U1, Uy} by members of 8. To complete the proof, it suffices to show that 8* is not
point-finite in X.

Claim 2. Foreach a <&, B, \ Uy # 0.

Proor or Cram 2. Fix @ <¢. Take y; € C such that y; >a@. Let y, =min{yeC:
v > v1}. By the definition of C, we have y; € C, and y, € C,. Since f(y2) > f(Bg,Y2)
and f(y,) is a limit ordinal, there exists an ordinal @’ € A such that f(B,, v;) <a’ <
f(y2). Since vy, >y and vy, is a limit ordinal, there exists an ordinal 8’ € A such that
v1 <’ <vy,. Since g(B,) < min(C,) and y, € C,, we have y; > g(B,). Hence,

(@, B) € (f(Bas y2), A1 X (¥1, 721 € (f(Bas 2), ] X (8(Ba), 721 € Bo.
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Since {f(y) : y € C} is strictly increasing and 7y, is the successor of y; in C, it follows
from the definition of U, that (@', 8’) ¢ U;. The proof of Claim 2 is complete. O

Let 8’ = B\ B'. For each a < A, there exist s(a) < 4, (@) < A and V,, € B such that
(A, a)yeV, C(s(a), A] X (t(a), @] CU;. By Claim 1, we have V, € 8”. Obviously,
Vo # Vg whenever a # 8. Hence, |B”| = A. Rewrite 8" = {BP : 8 < A}. For each 8 < A,
since {6 < A : (A, 6) € BA} is not stationary in A, there exists a cub set Dg in A such
thatDﬁﬁ{6</l:(/l,6>€Bﬁ}=(D. Let D={o € A:forall < o(o € Dg)}. Then D is
a cub set in A. Since B is a refinement of {U;, U}, we can take oo € D and W, € B*
such that (1, o9y € Wy C U;. By Claim 2, we have W, € 8”. Hence, Wy = B© for
some S(0) € A. Since D is unbounded in A, we can chose o} € D such that o} > o
and o > B(0). Take W, € 87 such that (1, o-y) € W; € U;. By Claim 2, W; € B”. Take
BP € B” such that BAD = W,. By the definition of D, we have o € Dy for each
B < o. Hence, (1, o) ¢ BP for each 8 < 0. Since (1, o71) € BAD, we have 8(1) > 0.
Thus, B(1) > B(0) since o} > B(0). Proceeding by induction, we can choose a strictly
increasing sequence {07, : @ € A} in D and a strictly increasing sequence {8(a) : @ € A}
in A such that:

(1) foreacha <A, (A, 0,)€ B e B NGB,
(2) foreacha <A, B(@) < 0e+1;
(3) for each limit ordinal @ < 4, o, = sup{o, : y < a}.

By condition (2), for any a;, @; <A with @) <@, we have S(a;) < 0,,. Clearly,
{oq: @€} is acubsetin A. For each o, take u(o,) < 4 and v(o,) < o, such that
(1(0a), A1 X (V(0y), 04] € BP@ . By the PDL, there exist an ordinal 77 and a stationary
set T C{o, : @ € A} such that v(o,) = n for each o, € T. Then {BA® : a € A} is not
point-finite at the point (1, 7+ 1). Hence, 8* is not point-finite in X. The proof is
complete. m|

The following result solves an open problem mentioned by Yamazaki in [9, p. 139].

THEOREM 2.5. For each infinite cardinal k, base-k-paracompactness is not an inverse
invariant of perfect mappings.

Proor. Take an uncountable regular ordinal A such that A > «. Let f: (1+ 1) X1 — 4
be the projection. Then f is a perfect mapping. By Proposition 2.3, A is base-x-
paracompact. By Theorem 2.4, (1 + 1) X A is not base-k-paracompact. m|

THEOREM 2.6. Let A be a regular ordinal and «k an infinite cardinal with A > k. Then
(A + 1) X A is k-paracompact and not base-k-paracompact.

Proor. By Proposition 2.3, A is «-paracompact. We know that the product of
a k-paracompact space and a compact space is k-paracompact [5, Theorem 2.1].
Hence, (14 1) X 4 is k-paracompact. By Theorem 2.4, (41 + 1) X 4 is not base-«-
paracompact. O

CorOLLARY 2.7. The space (wy + 1) X wy is countably paracompact and not base-
countably paracompact.
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Lemma 2.8 [2]. Let A and B be subspaces of an ordinal. If A X B is normal, then A X B
is countably paracompact.

Lemma 2.9 [6]. Let A and B be subspaces of an ordinal. Then A X B is normal if and
only if it is base-normal.

By Lemmas 2.1, 2.8 and 2.9, we have the following result.

Prorosition 2.10. Let A and B be subspaces of an ordinal. If A X B is normal, then
A X B is base-countably paracompact.

Lemma 2.11 [2]. If A and B are subspaces of wy, then normality and countable
paracompactness of A X B are equivalent.

Prorosition 2.12. If A and B are subspaces of w), then AX B is countably
paracompact if and only if A X B is base-countably paracompact.

Note that (w; + 1) X w; is not normal. In [1], Gruenhage constructed a countably
compact linearly ordered topological space (LOTS) which is not base-normal. By
Lemma 2.1, this example is not base-countably paracompact. It is known that each
LOTS is countably paracompact. By Lemmas 2.1 and 2.2, each subspace of an ordinal
is base-countably paracompact normal. The following result shows that countably
paracompact normal subspaces of products of two ordinals need not be base-countably
paracompact.

THEOREM 2.13. Let
X ={a,B) : B <a<wi,aandf are successor ordinals} U ({w} X w1).

Then X is a countably paracompact normal space which is not base-countably
paracompact.

Proor. We show that X is countably paracompact. Let U = {U; : i € w} be a countable
open cover of X. Similar to the proof of Proposition 2.3, there exists a finite
subcollection U’ C U such that U’ covers {w} X w;. Put Y=X\UJU'. Let
V=U U {{{a,B)}:{a,B) € Y}. Then V is a locally finite open refinement of U.
Hence, X is countably paracompact.

By [7, Theorem 2.1], X is normal and not base-normal. By Lemma 2.1, X is not
base-countably paracompact. O

We conclude this paper with the following questions.
QuesTioN 2.14. Is each subspace of w? base-countably metacompact?

QuesTion 2.15. Is each countably paracompact subspace of a)% base-countably

paracompact?

We know that the class of k-paracompact normal spaces is invariant under closed
mappings [5].
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QuesTion 2.16. Is the class of base-k-paracompact normal spaces invariant under
perfect mappings (respectively, closed mappings)?
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