Bull. Aust. Math. Soc. 84 (2011), 387–392 doi:10.1017/S0004972711002437

PRODUCTS OF BASE-*k*-PARACOMPACT SPACES AND COMPACT SPACES

LEI MOU

(Received 15 November 2010)

Abstract

Let λ be a regular ordinal with $\lambda \ge \omega_1$. Then we prove that $(\lambda + 1) \times \lambda$ is not base-countably metacompact. This implies that base- κ -paracompactness is not an inverse invariant of perfect mappings, which answers a question asked by Yamazaki.

2010 *Mathematics subject classification*: primary 54B10; secondary 54D20, 54D70. *Keywords and phrases*: base, paracompact, product, ordinal.

1. Introduction

Throughout this paper, all spaces are assumed to be T_1 topological spaces. For a space X, w(X) stands for the weight of X. For a subset A of a space X, $cl_X A$ denotes the closure of A in X. As usual, an ordinal is the set of all smaller ordinals. The symbol ω denotes the first infinite ordinal and ω_1 is the first uncountable ordinal. Ordinals are considered as spaces with the usual order topology. Let κ denote an infinite cardinal.

Porter [8] called a space *X* base-paracompact if there is an open base \mathcal{B} for *X* with $|\mathcal{B}| = w(X)$ such that every open cover of *X* has a locally finite refinement by members of \mathcal{B} . Yamazaki [9] called a space *X* base- κ -paracompact if there is a base \mathcal{B} for *X* with $|\mathcal{B}| = w(X)$ such that every open cover of *X* of cardinality at most κ has a locally finite refinement by members of \mathcal{B} . In particular, a space *X* is said to be base-countably paracompact if *X* is base- ω -paracompact. Note that *X* is base-paracompact if and only if *X* is base- κ -paracompact for every cardinal κ .

Yamazaki proved that the product of a base- κ -paracompact space X and a compact space Y with $w(Y) \le \kappa$ is base- κ -paracompact [9, Proposition 6.4]. Our examples show that the condition ' $w(Y) \le \kappa$ ' above plays an important role. It is known that base-paracompactness is an inverse invariant of perfect mappings [8]. Yamazaki asked if base- κ -paracompactness is an inverse invariant of perfect mappings [9]. Our examples give a negative answer.

Supported by the Foundation for Excellent Scholars, Beijing Organization Ministry (No. 095402800) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (No. 08221010086).

^{© 2011} Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

We call a space *X* base-metacompact (respectively, base- κ metacompact) if there is an open base \mathcal{B} for *X* with $|\mathcal{B}| = w(X)$ such that every open cover (respectively, open cover of cardinality at most κ) of *X* has a point-finite refinement by members of \mathcal{B} . Note that each paracompact subspace of products of two ordinals is baseparacompact [6], and each metacompact subspace of products of two ordinals is basemetacompact [7]. Theorem 2.4 below shows that κ -paracompact subspaces of products of two ordinals need not be base- κ -paracompact.

Yamazaki [9] defined a space X to be *base-normal* if there is an open base \mathcal{B} for X with $|\mathcal{B}| = w(X)$ such that every binary open cover $\{U_1, U_2\}$ of X admits a locally finite cover \mathcal{B}' of X by members of \mathcal{B} such that $\{cl_X B : B \in \mathcal{B}\}$ refines $\{U_1, U_2\}$.

A subset S of a regular uncountable ordinal μ is said to be *stationary* in μ if it intersects all cub (that is, closed and unbounded) sets in μ . For a subset A of an ordinal μ , let $\lim_{\mu} A$ denotes the set of all limit points of A in μ . Clearly, if A is unbounded in a regular uncountable ordinal μ , then $\lim_{\mu} A$ is a cub set in μ .

Let $cf(\mu)$ denote the cofinality of an ordinal μ . For a limit ordinal μ , a strictly increasing function $M : cf(\mu) \to \mu$ is said to be normal if $M(\gamma) = \sup\{M(\gamma') : \gamma' < \gamma\}$ for each limit ordinal $\gamma < cf(\mu)$ and $\mu = \sup\{M(\gamma) : \gamma < cf(\mu)\}$. Clearly, *M* carries $cf(\mu)$ homeomorphically to the range ran(*M*) of *M* and ran(*M*) is closed and unbounded in μ .

LEMMA 1.1 (The Pressing Down Lemma (PDL)). Let $\mu > \omega$ be regular, S a stationary subset in μ , and $f: S \to \mu$ such that $f(\gamma) < \gamma$ for each $\gamma \in S$. Then for some $\alpha < \mu$, $f^{-1}(\alpha)$ is stationary in μ .

2. Main results

LEMMA 2.1 [9]. For a space X, the following statements are equivalent:

- (1) X is base-normal and base- κ -paracompact;
- (2) X is base-normal and κ -paracompact;
- (3) X is normal and base- κ -paracompact.

LEMMA 2.2 [6]. Each subspace of any ordinal is base-normal.

PROPOSITION 2.3. Let λ be an ordinal with $cf(\lambda) \ge \omega_1$. Then for each cardinal κ with $\kappa < cf(\lambda)$, λ is base- κ -paracompact.

PROOF. By Lemmas 2.1 and 2.2, it is enough to show that λ is κ -paracompact. Let $f : cf(\lambda) \to \lambda$ be a normal function. Let \mathcal{U} be an open cover of λ with $|\mathcal{U}| \leq \kappa$. Assume that $\mathcal{U} = \{U_{\beta} : \beta < \delta\}$, where $\delta \leq \kappa$. Let $S = \{\alpha < cf(\lambda) : \alpha \text{ is a limit ordinal}\}$. Then S is stationary in $cf(\lambda)$. For each $\alpha \in S$, take an ordinal $\xi(\alpha) < \alpha$ and $\eta(\alpha) < \delta$ such that $f(\alpha) \in (f(\xi(\alpha)), f(\alpha)] \subseteq U_{\eta(\alpha)}$. For each $\beta < \delta$, let $S_{\beta} = \{\alpha \in S : \eta(\alpha) = \beta\}$. Then $S = \bigcup \{S_{\beta} : \beta < \delta\}$. Since $\delta \leq \kappa < cf(\lambda)$, there exists $\beta_0 < \delta$ such that S_{β_0} is stationary in $cf(\lambda)$. By the PDL, there exist $\gamma < cf(\lambda)$ and a stationary set $T \subseteq S_{\beta_0}$ such that $\xi(\alpha) = \gamma$ for each $\alpha \in T$. Hence, $(f(\gamma), f(\alpha)] \subseteq U_{\beta_0}$ for each $\alpha \in T$. Thus, $(f(\gamma), \lambda) \subseteq U_{\beta_0}$. Since $[0, f(\gamma)]$ is compact, we can take a finite subcollection \mathcal{U}' of \mathcal{U} such that \mathcal{U}' covers $[0, f(\gamma)]$. Then $\mathcal{U}' \cup \{U_{\beta_0}\}$ is a finite subcover of \mathcal{U} . This implies that λ is κ -paracompact.

It is known that each subspace of $\mu \times \nu$ is hereditarily countably metacompact for any ordinals μ and ν [3]. We will show that such spaces need not be basecountably metacompact. The proof of the following Theorem 2.4 is based on that of [6, Theorem 2.1]. For the reader's convenience, we give its proof in full.

THEOREM 2.4. Let λ be a regular ordinal with $\lambda \ge \omega_1$. Then $(\lambda + 1) \times \lambda$ is not basecountably metacompact.

PROOF. Obviously, $w(X) = \lambda$. Put $X = (\lambda + 1) \times \lambda$. Suppose that \mathcal{B} is a base of X with $|\mathcal{B}| = \lambda$. We will show that \mathcal{B} cannot satisfy base-countable metacompactness of X.

Claim 1. Let $B \in \mathcal{B}$. If $\{\delta < \lambda : \langle \gamma, \delta \rangle \in B\}$ is stationary in κ , then there exist a cub set C(B) in κ , a function $f(B, \cdot) : C(B) \to \kappa$ and an ordinal $g(B) < \min(C(B))$ such that $(f(B, \gamma), \kappa] \times (g(B), \gamma] \subseteq B$ for each $\gamma \in C(B)$.

PROOF OF CLAIM 1. For each $\delta \in \lambda$ with $\langle \lambda, \delta \rangle \in B$, fix $p(B, \delta) < \lambda$ and $q(B, \delta) < \delta$ such that $(p(B, \delta), \lambda] \times (q(B, \delta), \delta] \subseteq B$. Applying the PDL, we can find an ordinal $g(B) < \lambda$ and a stationary set *S* in λ such that $S \subseteq \{\delta < \lambda : \langle \lambda, \delta \rangle \in B\}$ and $q(B, \delta) = g(B)$ for each $\delta \in S$. Let $C(B) = \{\gamma \in \lambda : \gamma > \min(S)\}$. For each $\gamma \in C(B)$, let $\psi(\gamma) = \min\{\delta \in S : \gamma \leq \delta\}$, and $f(B, \gamma) = p(B, \psi(\gamma))$. Then

$$(f(B, \gamma), \lambda] \times (g(B), \gamma] \subseteq (p(B, \psi(\gamma)), \lambda] \times (g(B), \psi(\gamma)] \subseteq B.$$

The proof of Claim 1 is complete.

Let $\mathcal{B}' = \{B \in \mathcal{B} : \{\delta < \lambda : \langle \lambda, \delta \rangle \in B\}$ is stationary in $\lambda\}$. Rewrite $\mathcal{B}' = \{B_{\alpha} : \alpha < \xi\}$, where ξ is a cardinal. By Claim 1, for each $\alpha < \xi$, there exist a cub set C_{α} in λ , a function $f(B_{\alpha}, \cdot) : C_{\alpha} \to \lambda$ and an ordinal $g(B_{\alpha}) < \min(C_{\alpha})$ such that $(f(B_{\alpha}, \gamma), \lambda] \times$ $(g(B_{\alpha}), \gamma] \subseteq B_{\alpha}$ for each $\gamma \in C_{\alpha}$. If $\xi < \lambda$, let $C' = \bigcap_{\alpha < \xi} C_{\alpha}$. If $\xi = \lambda$, let $C' = \{\gamma \in$ λ : for all $\alpha < \gamma(\gamma \in C_{\alpha})\}$. In any case, C' is a cub set in λ [4, Ch. II, Lemmas 6.8 and 6.14]. Let $C = \operatorname{Lim}_{\lambda}(C')$. Then C is a cub set in λ and $C \subseteq C'$. For each $\gamma \in C$, take a limit ordinal $f(\gamma) < \lambda$ such that $f(\gamma) > \sup\{f(B_{\alpha}, \gamma) : \alpha < \gamma\}$. We may assume that $f(\gamma') < f(\gamma)$ if $\gamma' < \gamma$. Let $U_1 = \bigcup\{(f(\gamma), \lambda] \times [0, \gamma] : \gamma \in C\}$. Then $\{\lambda\} \times \lambda \subseteq U_1$. Let $U_2 = \lambda \times \lambda$. Then $\{U_1, U_2\}$ is an open cover of X. We will show that $\{U_1, U_2\}$ admits no point-finite refinement by members of \mathcal{B} . Suppose \mathcal{B}^* is a refinement of $\{U_1, U_2\}$ by members of \mathcal{B} . To complete the proof, it suffices to show that \mathcal{B}^* is not point-finite in X.

Claim 2. For each $\alpha < \xi$, $B_{\alpha} \setminus U_1 \neq \emptyset$.

PROOF OF CLAIM 2. Fix $\alpha < \xi$. Take $\gamma_1 \in C$ such that $\gamma_1 > \alpha$. Let $\gamma_2 = \min\{\gamma \in C : \gamma > \gamma_1\}$. By the definition of *C*, we have $\gamma_1 \in C_\alpha$ and $\gamma_2 \in C_\alpha$. Since $f(\gamma_2) > f(B_\alpha, \gamma_2)$ and $f(\gamma_2)$ is a limit ordinal, there exists an ordinal $\alpha' \in \lambda$ such that $f(B_\alpha, \gamma_2) < \alpha' < f(\gamma_2)$. Since $\gamma_2 > \gamma_1$ and γ_2 is a limit ordinal, there exists an ordinal $\beta' \in \lambda$ such that $\gamma_1 < \beta' < \gamma_2$. Since $g(B_\alpha) < \min(C_\alpha)$ and $\gamma_1 \in C_\alpha$, we have $\gamma_1 > g(B_\alpha)$. Hence,

$$\langle \alpha', \beta' \rangle \in (f(B_{\alpha}, \gamma_2), \lambda] \times (\gamma_1, \gamma_2] \subseteq (f(B_{\alpha}, \gamma_2), \lambda] \times (g(B_{\alpha}), \gamma_2] \subseteq B_{\alpha}.$$

Since $\{f(\gamma) : \gamma \in C\}$ is strictly increasing and γ_2 is the successor of γ_1 in *C*, it follows from the definition of U_1 that $\langle \alpha', \beta' \rangle \notin U_1$. The proof of Claim 2 is complete.

Let $\mathcal{B}'' = \mathcal{B} \setminus \mathcal{B}'$. For each $\alpha < \lambda$, there exist $s(\alpha) < \lambda$, $t(\alpha) < \lambda$ and $V_{\alpha} \in \mathcal{B}$ such that $\langle \lambda, \alpha \rangle \in V_{\alpha} \subseteq (s(\alpha), \lambda] \times (t(\alpha), \alpha] \subseteq U_1$. By Claim 1, we have $V_{\alpha} \in \mathcal{B}''$. Obviously, $V_{\alpha} \neq V_{\beta}$ whenever $\alpha \neq \beta$. Hence, $|\mathcal{B}''| = \lambda$. Rewrite $\mathcal{B}'' = \{B^{\beta} : \beta < \lambda\}$. For each $\beta < \lambda$, since $\{\delta < \lambda : \langle \lambda, \delta \rangle \in B^{\beta}\}$ is not stationary in λ , there exists a cub set D_{β} in λ such that $D_{\beta} \cap \{\delta < \lambda : \langle \lambda, \delta \rangle \in B^{\beta}\} = \emptyset$. Let $D = \{\sigma \in \lambda : \text{for all } \beta < \sigma(\sigma \in D_{\beta})\}$. Then D is a cub set in λ . Since \mathcal{B}^* is a refinement of $\{U_1, U_2\}$, we can take $\sigma_0 \in D$ and $W_0 \in \mathcal{B}^*$ such that $\langle \lambda, \sigma_0 \rangle \in W_0 \subseteq U_1$. By Claim 2, we have $W_0 \in \mathcal{B}''$. Hence, $W_0 = B^{\beta(0)}$ for some $\beta(0) \in \lambda$. Since D is unbounded in λ , we can chose $\sigma_1 \in D$ such that $\sigma_1 > \sigma_0$ and $\sigma_1 > \beta(0)$. Take $W_1 \in \mathcal{B}^*$ such that $\langle \lambda, \sigma_1 \rangle \in W_1 \subseteq U_1$. By Claim 2, $W_1 \in \mathcal{B}''$. Take $B^{\beta(1)} \in \mathcal{B}''$ such that $B^{\beta(1)} = W_1$. By the definition of D, we have $\sigma_1 \in D_{\beta}$ for each $\beta < \sigma_1$. Hence, $\langle \lambda, \sigma_1 \rangle \notin B^{\beta}$ for each $\beta < \sigma_1$. Since $\langle \lambda, \sigma_1 \rangle \in B^{\beta}$ for each $\beta < \sigma_1$. Since $\langle \lambda, \sigma_1 \rangle \in \mathcal{B}^{\beta}$ for each $\beta < \sigma_1$. Since $\langle \alpha, \alpha_1 \rangle \in \mathcal{A}$ in D and a strictly increasing sequence $\{\mathcal{B}(\alpha) : \alpha \in \lambda\}$ in λ such that:

- (1) for each $\alpha < \lambda$, $\langle \lambda, \sigma_{\alpha} \rangle \in B^{\beta(\alpha)} \in \mathcal{B}^* \cap \mathcal{B}''$;
- (2) for each $\alpha < \lambda$, $\beta(\alpha) < \sigma_{\alpha+1}$;
- (3) for each limit ordinal $\alpha < \lambda$, $\sigma_{\alpha} = \sup\{\sigma_{\gamma} : \gamma < \alpha\}$.

By condition (2), for any $\alpha_1, \alpha_2 < \lambda$ with $\alpha_1 < \alpha_2$, we have $\beta(\alpha_1) < \sigma_{\alpha_2}$. Clearly, $\{\sigma_{\alpha} : \alpha \in \lambda\}$ is a cub set in λ . For each σ_{α} , take $\mu(\sigma_{\alpha}) < \lambda$ and $\nu(\sigma_{\alpha}) < \sigma_{\alpha}$ such that $(\mu(\sigma_{\alpha}), \lambda] \times (\nu(\sigma_{\alpha}), \sigma_{\alpha}] \subseteq B^{\beta(\alpha)}$. By the PDL, there exist an ordinal η and a stationary set $T \subseteq \{\sigma_{\alpha} : \alpha \in \lambda\}$ such that $\nu(\sigma_{\alpha}) = \eta$ for each $\sigma_{\alpha} \in T$. Then $\{B^{\beta(\alpha)} : \alpha \in \lambda\}$ is not point-finite at the point $\langle \lambda, \eta + 1 \rangle$. Hence, \mathcal{B}^* is not point-finite in X. The proof is complete.

The following result solves an open problem mentioned by Yamazaki in [9, p. 139].

THEOREM 2.5. For each infinite cardinal κ , base- κ -paracompactness is not an inverse invariant of perfect mappings.

PROOF. Take an uncountable regular ordinal λ such that $\lambda > \kappa$. Let $f : (\lambda + 1) \times \lambda \rightarrow \lambda$ be the projection. Then f is a perfect mapping. By Proposition 2.3, λ is base- κ -paracompact. By Theorem 2.4, $(\lambda + 1) \times \lambda$ is not base- κ -paracompact.

THEOREM 2.6. Let λ be a regular ordinal and κ an infinite cardinal with $\lambda > \kappa$. Then $(\lambda + 1) \times \lambda$ is κ -paracompact and not base- κ -paracompact.

PROOF. By Proposition 2.3, λ is κ -paracompact. We know that the product of a κ -paracompact space and a compact space is κ -paracompact [5, Theorem 2.1]. Hence, $(\lambda + 1) \times \lambda$ is κ -paracompact. By Theorem 2.4, $(\lambda + 1) \times \lambda$ is not base- κ -paracompact.

COROLLARY 2.7. The space $(\omega_1 + 1) \times \omega_1$ is countably paracompact and not basecountably paracompact. **LEMMA** 2.8 [2]. Let A and B be subspaces of an ordinal. If $A \times B$ is normal, then $A \times B$ is countably paracompact.

LEMMA 2.9 [6]. Let A and B be subspaces of an ordinal. Then $A \times B$ is normal if and only if it is base-normal.

By Lemmas 2.1, 2.8 and 2.9, we have the following result.

PROPOSITION 2.10. Let A and B be subspaces of an ordinal. If $A \times B$ is normal, then $A \times B$ is base-countably paracompact.

LEMMA 2.11 [2]. If A and B are subspaces of ω_1 , then normality and countable paracompactness of $A \times B$ are equivalent.

PROPOSITION 2.12. If A and B are subspaces of ω_1 , then $A \times B$ is countably paracompact if and only if $A \times B$ is base-countably paracompact.

Note that $(\omega_1 + 1) \times \omega_1$ is not normal. In [1], Gruenhage constructed a countably compact linearly ordered topological space (LOTS) which is not base-normal. By Lemma 2.1, this example is not base-countably paracompact. It is known that each LOTS is countably paracompact. By Lemmas 2.1 and 2.2, each subspace of an ordinal is base-countably paracompact normal. The following result shows that countably paracompact normal subspaces of products of two ordinals need not be base-countably paracompact.

THEOREM 2.13. Let

 $X = \{ \langle \alpha, \beta \rangle : \beta < \alpha < \omega_1, \alpha \text{ and } \beta \text{ are successor ordinals} \} \cup (\{\omega_1\} \times \omega_1).$

Then X is a countably paracompact normal space which is not base-countably paracompact.

PROOF. We show that X is countably paracompact. Let $\mathcal{U} = \{U_i : i \in \omega\}$ be a countable open cover of X. Similar to the proof of Proposition 2.3, there exists a finite subcollection $\mathcal{U}' \subseteq \mathcal{U}$ such that \mathcal{U}' covers $\{\omega_1\} \times \omega_1$. Put $Y = X \setminus \bigcup \mathcal{U}'$. Let $\mathcal{V} = \mathcal{U}' \cup \{\{\langle \alpha, \beta \rangle\} : \langle \alpha, \beta \rangle \in Y\}$. Then \mathcal{V} is a locally finite open refinement of \mathcal{U} . Hence, X is countably paracompact.

By [7, Theorem 2.1], X is normal and not base-normal. By Lemma 2.1, X is not base-countably paracompact. \Box

We conclude this paper with the following questions.

QUESTION 2.14. Is each subspace of ω_1^2 base-countably metacompact?

QUESTION 2.15. Is each countably paracompact subspace of ω_1^2 base-countably paracompact?

We know that the class of κ -paracompact normal spaces is invariant under closed mappings [5].

[5]

L. Mou

QUESTION 2.16. Is the class of base- κ -paracompact normal spaces invariant under perfect mappings (respectively, closed mappings)?

References

- [1] G. Gruenhage, 'Base-paracompactness and base-normality of GO-spaces', *Questions Answers Gen. Topology* **23** (2005), 137–141.
- [2] N. Kemoto, H. Ohta and K. Tamano, 'Products of spaces of ordinal numbers', *Topology Appl.* 45 (1992), 245–260.
- [3] N. Kemoto and K. D. Smith, 'Hereditary countable metacompactness in finite and infinite product spaces of ordinals', *Topology Appl.* **77** (1997), 57–63.
- [4] K. Kunen, Set Theory. An Introduction to Independence Proofs (North-Holland, Amsterdam, 1980).
- [5] K. Morita, 'Paracompactness and product spaces', Fund. Math. 50 (1961/62), 223–236.
- [6] L. Mou, 'Base-normality and total paracompactness of subspaces of products of two ordinals', *Sci. Math. Jpn.* 63 (2006), 89–100.
- [7] L. Mou, R. Wang and S. Wang, 'Base metacompact spaces', Adv. Math. 40 (2011), 111–117.
- [8] J. E. Porter, 'Base-paracompact spaces', Topology Appl. 128 (2003), 145–156.
- [9] K. Yamazaki, 'Base-normality and product spaces', Topology Appl. 148 (2005), 123–142.

LEI MOU, Mathematics Department, Capital Normal University, Beijing 100048, PR China e-mail: moulei@mail.cnu.edu.cn