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NORM CONVERGENCE OF RIESZ-BOCHNER 
MEANS FOR RADIAL FUNCTIONS 

G. V. WELLAND 

1. Introduction. It is well known now that certain spherical methods in 
k ( ^ 2 ) dimensions are rather poor for reconstructing a function from its 
Fourier transform. Consider a function / i n L^R*), k ^ 2, 

(1.1) f(z) = -~m ff(x)eix-*dx 

and 

(1.2) SRJ(x) = ~ ^ m j ^ < R ( l - \jp)a fe)e~tX'!dz 

where both integrals are integrals in R*, the first over the whole space the 
second over the ball of radius R; x • y is the usual Euclidean inner product of 
x and y in Kk and \z\2 = z • z. 

When a = 0 we have the spherical method alluded to above. Fefferman [3] 
showed (using the extended definition of Fourier transform) that only for 
p = 2 is it true that SR°f converges in LP norm to the function / , as R —> oo. 
On the other hand it is known (see, e.g., [11, p. 172]) that SR

af converges t o / 
in Lp norm (1 ^ p < oo ) as long as a exceeds the "critical index" (k — l ) / 2 . 

For the more difficult range 0 ^ a ^ (k — l ) / 2 there are two types of 
results giving a range of values of p for which convergence holds. In [5] Herz 
pointed out that for radial functions SRf converges in LP to the function / , 
provided 

2k ^ ^ ^ 2k < p < 
k + i ^ k-r 

where / belongs to Lv and appropriate restrictions on / are made so that / 
exists. (Here, a radial function means a n / such that fix) = / ( | # | ) , w he r e / 
also denotes a function defined on (0, oo).) For p ^ 2k/(k + 1), the result 
fails. Stein [8, p. 487] proved a convergence result for general (non-radial) 
functions for p in the range 

2(k - 1) 2{k - 1) 
k - 1 + 2a P k - 1 - 2a ' 
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Here we consider radial functions and get convergence for a wider range of 
values of p. Our result is as follows: 

T H E O R E M 1. Let Lp(Rk, r) denote the class of radial functions in R* which 
are in Lv. The operator SR

a is defined on a dense class in Lp(Rk, r) and we have for 

2k 2k k - 1 
k + l + 2 a < P < k - l - 2 a > ° < <*~^> 

(1.3) | | S * « / | | , £ Aa,p\l/lU 

Aa,p independent off and R, and the definition of SR
a can be extended to all of 

Lp(Kk, r) by continuity. 

T o prove the theorem we use an interpolation theorem due to Stein [10]; 
he used this to interpolate between L2 results for a = 0 and L1 results for 
a > (ife — l ) / 2 . Because of the lack of Lp results for a = 0, p T± 2 [3], this 
technique cannot be extended further for general (non-radial) / . However, for 
radial functions Lp, results do exist for a = 0 and p < 2 [5] and the inter
polation technique gives essentially the best possible results. 

T h e operator SR
a is a convolution operator whose kernel is aR

a(x) = 
cRkJk/2+a(R\x\) (R\x\)~(k/2+a), where c is a constant depending on the parameters 
k and a. For the following s ta tements , fix a, 0 ^ a < (k — l ) / 2 . Results of 
non-radial na ture hold for a ^ (k — l ) / 2 as can be seen in [8] and [9]. Because 
of the asymptot ic expansion on page 199 of [12] one has 

Jm+a(R\x\) = d (cos( i? |x | + c2))(R\x\)~^ + o(R\x\)-*'2), 

where c\ and Ci are constants . One can use this to show tha t if/ is the character
istic function of the uni t ball then (Sff) is not in Lv for p ^ 2k/(k + 1 + 2a). 
This is the same idea used in [5] to get negative results. Hence, one sees t ha t 
the best possible interval of values of p ^ 2 for which a boundedness result is 
possible in 2k/{k + 1 + 2a) < p S 2. 

From this point on we suppress the dependence of Aa,P on a and write Ap. 
T h e theorem has as an immediate consequence t h a t SR

af converges in norm 
to / . This is proved by means of the usual arguments using a dense class of 
smooth functions for which pointwise and norm convergence can be proved 
as R —> oo. For example in [1, p . 119, Theorem 4.53], it is shown t h a t con
vergence holds, for a ^ 0, for the case of Fourier series of a function with a t 
least k continuous derivatives. Similar techniques work in the case of Fourier 
integrals. 

Stein 's interpolation lemma is s ta ted in section 2. In sections 3 and 4 the 
family of operators to which interpolation is applied is introduced and shown 
to have the analyt ici ty and boundedness properties required for the appli
cability of the lemma. Theorem 1 follows easily in the case 2k/(k + 1 + 2a) < 
p S 2. The case 2 ^ p < 2k/(k — 1 — 2a) is handled by a dual i ty a rgument 
(see, e.g., [11, Chapter 1, Theorem 3.20]). 

In section 5 we point out an open problem in the theory of Fourier series. 
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2. The interpolation lemma. The technique essential to the proof of 
the theorem is the following interpolation lemma. Stein introduced it in [10] 
and used it effectively in [8] and [9] to prove results similar to the result here. 

First one must introduce the notion of an analytic family of operators {Tz}. 
Let (M, dm) and (N, dn) be two measure spaces. A family of operators {T z\ 
depending on a complex parameter z is called analytic if: 

(i) For each z, Tz is a linear transformation of "simple" functions (i.e., those 
measurable functions which take on only a finite number of nonzero values and 
have support on a set of finite measure; in our case we consider only functions 
of bounded support) on M to measurable functions on N. 

(ii) If ^ is a simple function on M, and 0 is a simple function on iV, then 

*(s) = I TM)4>dn 
d N 

is analytic in 0 < R(z) < 1 and continuous in 0 ^ R(z) ^ 1. 
Since we deal with radial functions, we see that after a change to polar 

coordinates (in our case) M and N may be considered to be (0, oo ) with the 
measures equal to a constant times tk~ldt. However, we will freely switch to 
R* with the usual Lebesgue measure when convenient. There should be no 
confusion. 

An analytic family Tz is of admissible growth if $(z) is of admissible growth; 
that is, if 

sup sup log|($(x + iy))\ ^Aear, 
\y\<r 0 < z < l 

where a < IT and A is a constant. Both A and a may depend on the functions 
<j> a n d \p. 

The interpolation lemma is the following: 

LEMMA. Let {Tz} be an analytic family of linear operators of admissible 
growth defined in the strip 0 ^ R(z) ^ 1. Suppose that 1 ^ pi, p2, gi, #2 ^ °o, 
and that 

è-a-o-r + r. J -a -Ov + i-. 
p p\ p2 a Qi Ç2 

where 0 ^ / ^ 1. Finally suppose that 

II7VIL S A0(y)\\f\\Pl and \\T1+iJ\\H ̂  .4i(y)||/||„ 

for every simple f. We also assume that: 

log |4,(;y)| g At*w, a <Tc;i = 0 , 1 , 

where a, AQ and A\ do not depend on f. 
Then we have 

lir.Cftll, ^ , | | / | | , 
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where 

w(l - t,y)logA0(y)dy + I w(t, y) log Ax(y)dy. 
- c o ^ - o o 

The function w(l — t, y) is the Poisson kernel for the region 0 < Re(s) < 1 
in the complex plane, and is given by 

n , N 1 tan (irt/2)  
w(l - t,y) = L  2 [tan (TT//2) + tanh2 (7r;y/2)] cosh2(7^/2) ' 

3. An analytic family of operators. In this section we describe the 
analytic family {Tz\ which we use. But first, we make a simple observation. 
Using (1.1) and (1.2) it is easy to show by means of changes of variables that 
SRaf(x) = SiafR(Rx) where fR(x) = f(x/R) and the function/is such that all 
integrals involved exist. If one then supposes that 

||Si"/(-)l|, ^,11/11, 
it follows that 

11 SB"f( • ) 11/ = / 1 Si"/* (**) \'dx = R-"j\ Si°fR (*) \'dx 

£A,'sr*f\Mx)\>dx = AS\\f\ I/. 
Hence, it suffices to prove the theorem in the case R — 1. For the remainder 
of the proof we restrict our attention to operators Sia, we will presently extend 
the definition of a to include complex values. 

L e t / be a radial function on R* and l e t / also denote the associated function 
on (0,oo) such t h a t / ( x ) = f(\x\). For simple functions one has (see for 
example [7, Formula 6, p. 52]) that 

(3.1) 5i7(*) = c f f(t)(\x - t\T{m+a)Jm+a(\x - t\)dt, 

where c = 2aT(a + 1)(2TT)-* / 2 . Let 2a0 = k - 1 and let a{z) = a0(l - 2) + 
e, e > 0 and 0 < Re (2) < 1. With this notation we consider the family of 
operators {Sia(z)} on the family of simple functions of bounded support which 
is dense in Lp(Rk, r). 

We need the following facts about Bessel functions: 

W J^ ' r(i/2)(r(f+ 1/2) I! (1 ~u^~mcosutdu- Re «-)>"! 
(3.3) \Ji+tM ^ A?'" • fm, ^ 1 , ^ 0 

(3.4) IJ i+U(t)\ ^ A?™ t\ t>0,^^ 0. 
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Formula (3.2) follows from that on page 38 of [12]. Inequality (3.3) is 
obtained from the asymptotic expansion on page 199 of [12]. Inequality (3.4) 
can be obtained from (3.2) by using Hankel's formula for l/T(z) which can 
be found in [2, p. 227]. Here we will use f = a(z) + k/2 with 0 < Re(z) < 1. 

By (3.2) we have Jç is analytic in the strip 0 < Re(s) < 1. In fact, for z 
in a compact subset of 0 < Re(s) < 1 

J o 
B(z, t) = I (1 — u ) cos utdu 

J o 

is a bounded function for all t with bound independent of t. By holding z in 
an open ball which has compact closure in the strip 0 < Re(z) < 1 the integral 

/ . f(t)(\x-t\r?B(z,t)dt 

can be considered as the limit of a uniformly convergent sequence of analytic 
functions in this open ball when / is a simple function. Again using Hankel's 
formula for l/T(z) we see that Sia{z)f(x) is a product of analytic functions in 
this ball and by analytic continuation throughout all of the strip 0 < Re(js) S 
1. A similar argument proves continuity throughout 0 ^ Re (2) ^ 1. 

To see that the admissible growth condition of the lemma is satisfied it 
suffices to estimate Sia{z)f(x) in the Lm norm. For this, we break the integral 
in (3.1) into two parts corresponding to \x — t\ ^ 1 and \x — t\ ^ 1. Using 
(3.3) for the first of these we have 

[I . 
I J \x-t\>l 

f(t)\x - tpM\x - t\)dt ^ cA&' jUI 

X f \f(t)\\x-t\-*-l,2dt 
J \x-l\>\ 

where f = £ + irj = a(z) + k/2. Using (3.4) for the second of these gives 

\c I f(t)\x- t\-*Jt(\x -t\)dt \^cAke
U] j | / ( 0 | * . 

Since/ is a bounded simple function, both of the above integrals converge and 
hence |5i°/(x)| ^ cA$e?^\ where c is a constant which depends on the simple 
function/. From this it follows that {5ia(2)} satisfies the admissible growth 
condition. 

4. Completion of the proof of the theorem. In this section, we prove 
the bounds on the boundary of the strip 0 < Re(z) < 1 which are necessary 
for the application of the lemma. We will restrict our attention to 1 ^ p S 2. 
The results valid for conjugate values of p are obtained by the use of a duality 
argument, a discussion of which can be found in [11, Chapter 1, Theorem 3.20]. 
We take pi = qi = 1 and p2 = & > 2k/'(k + 1). 
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The norm inequality which corresponds to Re(z) = 0 is 

(4.1) \\Si««»f\\i g ^ ' " l l / l l i -

We note that A $ may vary in meaning from time to time, those A $ which appear 
on two occasions will be related by a constant multiple depending only on the 
dimension ft. For Re (2) = 0, Re (a (2)) > (ft — l ) /2 , in which case (3.1) shows 
that 5ia(2) is a kernel operator with kernel 

Conditions (3.3) and (3.4) together are enough to show that Kz{x) is an L1 

function with ||i£2||i S A^evU^ where £ + ir) = a(z) + ft/2. This implies (4.1). 
For the boundary condition corresponding to Re (z) = 1 we have to consider 

pi = g_i = po > 2k/(k + 1) and p ^ 2. The operator S^z) becomes 5i€+l> 
wrhere e > 0 and 17 = — a0y. We have the following modified Hankel transform 
representation of Sie+ivf(x): 

(4.2) S1«
i'f(x) = c\x\-«-2)l2 £f(t)tm f (1 - r2)e + iV«_2 ) / 2 

«^ 0 «^ 0 

X {\x\r)J{k^2)/i{tr)rdrdt. 

To see this, use the formula 

J^-T(n+l/2)T(l/2) J„e S m *** 

which is valid for Re(n + 1/2) > 0. This formula is found in [13, p. 366]. 
We first write 

5l£+i'/(x) = -&T? fM<1
 (1 ~ \y\y+i\Sf^ya'Vdw\e-iy-xdy. 

Because / is a radial function, its Fourier transform is also radial. Using this 
fact and allowing interchange of order of integrations whenever necessary, a 
procedure which is valid for ''good" functions, we proceed using the following 
notation: \w\ = t, \y\ = r and «^-1 is the (ft — 1)-dimensional volume of the 
(ft — l)-ball. After a change to polar coordinates the inner integral is 

j œ (ft - 1 K _ I / ( 0 [ JV'C0S" (sm*)"*»]**-1* = F(r). 

Similarly the whole integral is 

(k - 1) | g * £ (1 - r2Y+ V ^ ( r ) [ £ e - " " " « * (sin <},)«-> <f * ] dr. 

Using the above representation of the Bessel function in the two integrals 
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involving 6 and <£, and interchanging the order of integration one obtains 
(4.2). 

We use the formula with v = (k - 2)/2 (see [13, p. 381]) 

rJv(\x\r)Jv(tr) = , , / _ / 2 ~ [r*/,(|*lr).7y (fr) - r | * | / / ( | x | r ) / , ( f r ) ] 

and the derivative formula for Jv (see [13, p. 361]) to see that the inner 
integral in (4.2) is l / ( |x |2 — t2) multiplied by the sum of 

(4.3) f (1 - r2Y+iv j r [rtMlx^J^itr^dr 

and 

(4.4) £ (1 - r 2 y + i ' ! [r\x\J^{\x\r)Jv{tr)]dr. 

In (4.4), we integrate by parts to obtain 

(4.5) I r\x\Jv^{\x\r)Jv{tr) • K(r, rj 
J o 0 

where 

)dr 

K(r, rj) = 2r(e + in){I - r2)e"1+IX 

Because of the asymptotic behavior of Jv and J„_i we find that (4.5) is 
dominated by 

2(M + 0 r i r 2 | x ^ 1 ( | x | r ) ( | x | r r 1 / 2 ^ 2 ( ^ ) ( ^ r 1 / 2 ( l - r 2 ) c ~V 
•/ o 

^ 2 ( M + e ) c ( J f 1 ) 1 / , / o
1 ( l - r î r 1 r d r 

= r1(|,| + a)c(f)1/2. 

The functions J5i and i32 are bounded functions and c represents the product 
of their supremums. The integral (4.3), in a similar manner, gives a term 
bounded by e - ^ M + e)(// |x|)1 /2 . 

We now place these estimates for (4.3) and (4.4) in (4.2) and obtain 

(4.6) | S i < + i ' ( / , * ) | S cC\\n\ + e ) | * r < ™ f 
J 0 

f(f)t k/2 

.2 ,2 
0 \X\ — t 

We split the right-hand-side (dropping the constant for the moment) into 
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two terms: 

M\*\) = i*r~3)/2 \ f-B-rdt 

and 

/*oo r/.\Ak+l)/2 

/2(W) - M — Jo ̂ r * . 
We are interested in proving \\fi\\p ^ ^p||/||pi i = 1» 2; for this purpose we 
note t h a t / is in Lv(tk~ldt) when considered as a function on (0, oo), and we 
want to prove ft is in LP^-Ht) when considered as a function on (0, oo). 
Making the changes of variable |x|2 = a and t2 = r and letting 

/ / \ d/p)(k/2-l)r / 1/2 \ , / \ 1 (l/p)(fc/2-l) r / l /2 \ i 

^ 0 ) = o- /i(o- ), *(r) = 2 T ^ ' a n d 

7 2\p 2 / 

our problem is to show that there exists Av such that | |^i | |P ^ ^4j,||<£||„, where 

Jo a — T \ a I 

and a\ = — 7 + l / £ — 3/4 and a2 = — y + l / £ — 1/4. We see that ipt can 
be expressed as the difference of 

(4.7) f'-^-dr 
Jo a — r 

and 

<"> jr^('-(f)>- '-^ 
It follows from [4, Theorem 319] using the method indicated in [5, p. 998] that 
the integral (4.8) is in LP and ||^*||p ^ ^ | | 0 | | p provided at < 1/p, i.e. provided 
that p < 2k/{k + 6) and p > 2k/(k + 1) for i = 1 and 2 respectively. The 
integral (4.7) satisfies a similar LP norm inequality (see [4]) for 1 < p < oo 
since it is the Hilbert transform of <f>. 

Thus we have shown that \\Si^^f\\p ^ Apc(\rj\e-1 + l ) | | / | | p , for 2k/(k + 1) 
< P S 2, so we see that Sii+il1 satisfies the second boundary condition of the 
interpolation lemma. 

We are now ready to apply the interpolation lemma. Let 2a0 = k — 1, 
po = 2k/k + l + e, and a(z) = a0(l - z) + e where e > 0, and 0 < R(z) < 
1. With 1/p = (1 — t) + t/po, we apply the lemma to the analytic family 
Si«<*> and find 

(4.9) l^^fWv ^ AP\\f\ 
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where log Ap = \ogAv is given by (2.1). Easy estimates using the growth of 
Ao(y) and A\(y) show that Av is finite. 

For each e > 0, the interpolation theorem gives (4.9) for those values of p 
which satisfy 

1/p = (1 - /) + t/Po, 0 £ t £ l . 

But t is restricted by the conditions which were imposed on a. By using 
a = a0( l — t) + e we have t = 1 — {a — e)/a0. Hence the result holds for 
those values of p which satisfy 

I . r«^i](l_i) + l e g a ^ + «„. 
£ L ao J \ jpo/ po 

Considering that e may be arbitrarily small we see that if 0 < a < a0, then 
(4.9) holds for those values of p which satisfy 1/p < (2a + k + l)/2&. The 
technique fails when e = 0, that is when p = 2k/ (k + 1 + 2a). As was earlier 
remarked, this is sufficient to complete the proof of the theorem. 

5. An open problem. In [11, p. 261-263], a technique for constructing 
multipliers for periodic functions in Lp(Tk) is given where Tk is the torus in 
k dimensions. The method modifies and extends a periodic function to Eucli
dean space. After applying a multiplier on Lp(Kk) and a limiting process a 
multiplier theorem on Lp(Tk) results. In our case, we only have a multiplier 
theorem for functions in LpÇR.k, r). 

A class of "radial" periodic functions could be defined to be those periodic 
functions/ in L^T*) for which f(n) depends only on \n\. This leads to the 
question, whether a multiplier theorem for "radial" periodic functions can be 
obtained from such a theorem on Lp(Rk, r). In particular, does Theorem 1 
imply a similar theorem for radial periodic functions? The technique of [11] 
fails because the modified and extended function is not radial. 
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