# A Complete Surface in $M_{6}$ in Characteristic $>2$ 

C. G. ZAAL<br>Faculty of Mathematics and Computer Science, University of Amsterdam, Amsterdam, The Netherlands.e-mail: zaal@wins.uva.nl

(Received: 7 April 1998; accepted in final form: 25 August 1998)


#### Abstract

We construct in all characteristics $p>2$ a complete surface in the moduli space of smooth genus 6 curves. The surface is contained in the locus of curves with automorphisms.


Mathematics Subject Classification (1991): 14H10.
Key words: moduli of curves.
We consider the following question: 'What is the number of essential parameters on which a complete family of smooth curves of genus $g$ depends?' or equivalently, 'What is the maximal dimension of a complete subvariety of $M_{g}$, the moduli space of smooth curves of genus $g$ ?' In [3] Diaz provided an upper bound for the dimension of such a subvariety: for $g \geqslant 2$ this dimension is at most $g-2$. The moduli space $M_{g}$ itself is irreducible, quasi-projective of dimension $3 g-3(g \geqslant 2)$. Diaz proved his result in characteristic 0 , but his bound also holds in characteristic $>0$ (see [6]).

In order to see how good Diaz's bound is, one has to construct complete subvarieties of $M_{g}$. This turns out to be a difficult problem, in any characteristic. Only in genus 3 Diaz's bound is sharp, since it is known that $M_{g}$ contains complete curves if $g$ is at least 3 (see [4]). In higher genera almost nothing is known. The best result we know is a construction of complete subvarieties of arbitrary dimension $d \geqslant 1$ in $M_{g}$ with $g \geqslant 2^{d+1}$. This construction gives a complete surface in $M_{8}$. For $g=4,5,6$ and 7 the existence of a complete surface in $M_{g}$ is an open question.

Starting from a complete curve in $M_{3}$, we construct a complete surface in $M_{6}$. However, this construction only works in characteristic $\neq 0,2$. Our result is:

THEOREM 1. In any characteristic $p>2$ the moduli space $M_{6}$ of smooth genus 6 curves contains a complete surface.

To construct in characteristic 0 a complete surface in $M_{6}$ seems more difficult. This is more or less similar to the fact that the moduli space $A_{g}$ of principally polarized abelian varieties of dimension $g$ contains in characteristic $p>0$ complete subvarieties of rather high dimension [7]. The corresponding situation in characteristic 0 is completely unknown.

Our construction depends heavily on a theorem of Keel. The starting point is a complete family $C \rightarrow B$ of smooth genus 3 curves. The idea is to construct a
family of double covers ramified in two distinct points over the fibers of $C \rightarrow B$. To parametrize pairs of distinct branch points, we consider $C \times{ }_{B} C$. On $C \times{ }_{B} C$ we want to contract $\Delta$ to a point. To achieve this, we define on $C \times{ }_{B} C$ a nef and big line bundle $L$ with the property that $\left.L\right|_{\Delta}$ is trivial. To show that the global sections of a power of $L$ do not have a base locus we use a theorem of Keel which is only valid in positive characteristic. Keel's theorem relies on a lemma, which roughly states that if $\left.L\right|_{\Delta_{k}}$ is trivial, then $\left.L^{\otimes p}\right|_{\Delta_{k p}}$ is trivial, see [5, Lemma 1.7]. Here $\Delta_{i}$ is the $i$ th order neighborhood of $\Delta$, the subscheme of $C \times_{B} C$ defined by $I^{k+1}$, where $I$ is the ideal sheaf of $\Delta$. This is where the Frobenius map is used.

The line bundle $L$ exists in all characteristics, but we do not know how to prove its eventual freeness in characterictic 0 . Instead of using Keel's theorem, we tried to prove by direct methods that $L$ is free on $C \times_{B} C$. To prove this, we need that $L$ is trivial on $\Delta_{i}$ for every $i>0$. Unfortunately, we don't know how to establish this.

## 1. The Construction

Let $C \rightarrow B$ be a family of smooth genus 3 curves over a complete one-dimensional base $B$, having the property that the induced map $B \rightarrow M_{3}$ has finite fibres. We consider the fibre product $C \times{ }_{B} C$. Let $\Delta \subset C \times{ }_{B} C$ be the relative diagonal and $\pi_{1}, \pi_{2}: C \times{ }_{B} C \rightarrow C$ the projections on the first and second coordinate. On $C \times{ }_{B} C$ consider the line bundle $L$ associated to the divisor $\left(\pi_{1}^{*}+\pi_{2}^{*}\right)\left(K_{C / B}\right)+2 \Delta$. In characteristic $p>0$ we can prove that a sufficiently high power of $L$ is free:

THEOREM 2. Let $L$ be the line bundle $L$ associated to the divisor $\left(\pi_{1}^{*}+\pi_{2}^{*}\right)$ $\left(K_{C / B}\right)+2 \Delta$. Then $L$ satisfies on $C \times_{B} C$ :
(i) the restriction of $L$ to $\Delta$ is trivial;
(ii) $L$ is big and nef on $C \times_{B} C$ and big on any subvariety not containing $\Delta$;
(iii) in characteristic $p>0$ a sufficiently high multiple of $L$ is free and defines a birational morphism of $C \times{ }_{B} C$ to a projective threefold. Under this morphism, $\Delta$ is contracted to a point.

Proof. (i) Let $\Delta: C \rightarrow C \times{ }_{B} C$ be the diagonal map $c \mapsto(c, c)$. Then according to the adjunction formula $\Delta^{*}\left(K_{C \times_{B} C}+\Delta\right) \cong K_{C}$. Now $\Delta^{*}\left(K_{C \times_{B} C}\right) \cong K_{C / B}+K_{C}$, so it follows that $\Delta^{*}(\Delta) \cong-K_{C / B}$. Hence $\Delta^{*}(L) \cong \mathcal{O}_{C}$ and the restriction of $L$ to $\Delta$ is trivial.
(ii) Let $X$ be a subvariety of $C \times{ }_{B} C$. If $X$ has dimension 1, then

$$
\left(\pi_{1}^{*}\left(K_{C / B}\right)+\pi_{2}^{*}\left(K_{C / B}\right)\right) \cdot X=K_{C / B} \cdot\left(\pi_{1, *}+\pi_{2, *}\right)(X)>0
$$

since $K_{C / B}$ is ample on $C$ (see [1]) and since $\pi_{1, *}(X)$ and $\pi_{2, *}(X)$ cannot both be zero-dimensional. If $X$ has dimension $s>1$, then using a similar argument one proves that $\left(\pi_{1}^{*}\left(K_{C / B}\right)+\pi_{2}^{*}\left(K_{C / B}\right)\right)^{s} \cdot X>0$. Hence by the Nakai-Moishezon criterion $\pi_{1}^{*}\left(K_{C / B}\right)+\pi_{2}^{*}\left(K_{C / B}\right)$ is ample on $C \times_{B} C$. Since $L=\pi_{1}^{*}\left(K_{C / B}\right)+$
$\pi_{2}^{*}\left(K_{C / B}\right)+2 \Delta, L$ is the sum of an ample and an effective divisor, hence big by one of the equivalent criteria for bigness. By (i) $L$ is nef.

Moreover, if we restrict $L$ to any positive dimensional subvariety $X$ not containing $\Delta$, then $\left.L\right|_{X}$ is the sum of the restriction of an ample divisor plus an effective divisor, hence $\left.L\right|_{X}$ also big.
(iii) To show that $L$ is eventually free, we use a result of Keel which states that in characteristic $p>0$ a nef and big line bundle $L$ is eventually free iff $\left.L\right|_{E(L)}$ is eventually free [5, Theorem 1.2]. Here $E(L)$ is the exceptional locus of $L$; this is the union of all subvarieties along which $L$ is not big. By (i) $L$ restricted to $\Delta$ is free. By (ii) $L$ is nef and big. Together (i) and (ii) imply $E(L)=\Delta$.

Proof of Theorem 1. From Theorem 2 we conclude that for some $n$ the global sections of $L^{\otimes n}$ yield a morphism $\phi: C \times{ }_{B} C \rightarrow \mathbf{P}^{N}$ which contracts the diagonal to a point. In $\mathbf{P}^{N}$ choose a hyperplane not meeting the image of $\Delta$. Then $T=$ $\phi^{*}(H) \subset C \times_{B} C \backslash \Delta$ is a surface which parametrizes pairs of distinct points on the fibers of the family $C \rightarrow B$. Now by standard arguments one constructs a complete family $X \rightarrow S$, each fiber being a double cover of a fiber of $C \rightarrow B$ ramified in the two distinct points determined by $t \in T$ [8, Sect. 1]. Locally we take square roots, so we have to exclude the case that the characteristic is 2 . Since $C \rightarrow B$ is a family of smooth genus 3 curves, $X \rightarrow S$ is a family of smooth genus 6 curves. The base $S$ is a finite cover of $T$. It is needed to overcome the monodromy arising from the fact that for one pair of distinct branch points one can choose a finite number of distinct coverings. The base $S$ maps into the locus of curves in $M_{6}$ having non-trivial automorphisms. We claim that this image is twodimensional. To prove this, note that the structural map from $S$ to $M_{6}$ factors as $S \rightarrow \mathcal{R}_{3,2} \rightarrow M_{6}$, where $\mathcal{R}_{3,2}$ parametrizes double coverings of genus 3 curves ramified in two distinct points. The image of $S$ in $\mathcal{R}_{3,2}$ is clearly two-dimensional: $S$ maps to $M_{3}$ with one-dimensional fibers and one-dimensional image. Moreover, the map $\mathcal{R}_{3,2} \rightarrow M_{6}$ is quasi-finite, since the image parametrizes smooth genus 6 curves with an involution with a genus 3 quotient and a genus 6 curve admits only finitely many involutions.

## 2. Remark

Consider the difference map $C \times_{B} C \rightarrow \operatorname{Jac}(C / B),(x, y) \mapsto[x-y]$. This map contracts the diagonal $\Delta \subset C \times_{B} C$ to a curve. Any hypersurface in $\operatorname{Jac}(C / B)$ not meeting this curve pulls back to a complete two-dimensional subvariety $T$ in $C \times{ }_{B} C$ not meeting the diagonal. Starting from such a subvariety one can, as in the proof of Theorem 1, construct a family of smooth genus 6 curves. This would give a different construction of a complete two-dimensional family of smooth genus 6 curves. But such a hypersurface is hard to find, as the following result of E. Colombo and P. Pirola [2] shows: Let $\pi: \mathcal{A} \rightarrow B$ be a family of Abelian
varieties of relative dimension $g$ over a smooth complete curve $B$, with zero section $e: B \rightarrow \mathcal{A}$ and not isogenous to a family $\mathscr{A}_{1} \times{ }_{B} \mathscr{A}_{2}$ with $\mathscr{A}_{1}$ isotrivial. Let $Z$ be an effective relative ample divisor on $\mathcal{A}$ and $C$ a curve on $\mathcal{A}$. Then $C \cap Z \neq \emptyset$.

## 3. Characteristic 0

In characteristic 0 there is one point at which our construction may fail: the line bundle $L$ associated to the divisor $\left(\pi_{1}^{*}+\pi_{2}^{*}\right)\left(K_{C / B}\right)+2 \Delta$ may not be eventually free. However, in the case $B$ is a point, Keel proves that in all characteristics the line bundle $L$ is eventually free [5, Theorem 3.0]. One can try to mimic his proof for the case in which $B$ is a curve. The hard part is to show that for every $k>0$ the restriction of $L$ to the $k$ th order neighborhood of $\Delta$ inside $C \times{ }_{B} C$ is trivial. However, we are unable to prove this.

## References

1. Arakelov, S.: Families of algebraic curves with fixed degeneracies, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1269-1293.
2. Colombo, E. and Pirola, P.: Relative ample divisors on complete families of abelian varieties, $J$. Pure Appl. Algebra, to appear.
3. Diaz, S.: A bound on the dimensions of complete subvarieties of $\mathcal{M}_{g}$, Duke Math. J. $\mathbf{5 1}(2)$ (1984), 405-408.
4. Diaz, S.: Complete subvarieties of the moduli space of smooth curves, In: S. J. Bloch (ed.), Algebraic Geometry (Bowdoin 1985), Proc. Symp. Pure Math. 1, Amer. Math. Soc., Providence, 1987, pp. 77-81.
5. Keel, S.: Base point freeness for nef and big line bundles in positive characteritic, with applications to $M_{g}$ and to 3-fold mmp, alg-geom/9703003, 1997.
6. Looijenga, E.: On the tautological ring of $M_{g}$, Invent. Math. 121 (1995), 411-419.
7. Oort, F.: Subvarieties of moduli spaces, Invent. Math. 24 (1974), 95-117.
8. Zaal, C.: Explicit complete curves in the moduli space of curves of genus three, Geom. Dedicata 56 (1995), 185-196.
