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This study contributes to an improved understanding of the stability of the boundary layer
generated at the bottom of a propagating surface wave of small but finite amplitude such
that both a second harmonic component and a steady streaming component, which are
superimposed on the main oscillatory flow, assume significant values. A linear stability
analysis of the laminar flow is made to determine the conditions leading to transition
and turbulence appearance. The Reynolds number of the phenomenon is assumed to be
large and a ‘momentary’ criterion of stability is used. The results show that, at a given
location, the laminar regime becomes unstable when the flow close to the bottom reverses
its direction from the onshore to the offshore direction and the Reynolds number exceeds
a first critical value Rs 1. However, close to the critical condition, the flow is expected
to relaminarize during the other phases of the cycle. Only when the Reynolds number is
increased does turbulence tend to appear also after the passage of the wave trough when
the flow close to the bottom reverses from the offshore to the onshore direction. When the
Reynolds number is further increased and becomes larger than a second ‘threshold’ value,
the growth rate of the perturbations becomes positive over the entire wave period. The
obtained results suggest the existence of four different flow regimes: the laminar regime,
the disturbed laminar regime, the intermittently turbulent regime and the fully developed
turbulent regime.
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1. Introduction

The flow generated by the harmonic oscillations of a fluid which moves parallel to an
infinite fixed wall (Stokes boundary layer) has been deeply investigated because of its
relevance in many applications which range from coastal hydrodynamics to biomedical
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sciences and mechanical engineering. The flow in the laminar regime has been well known
since Stokes (1851) studied the effects of the internal friction of fluids on the motion
of pendulums. More recent studies have investigated (i) the transition process from the
laminar to the turbulent regime and (ii) turbulence dynamics during the oscillation cycle.

The experimental investigations of Hino, Sawamoto & Takasu (1976), Jensen, Sumer
& Fredsge (1989), Akhavan, Kamm & Shapiro (1991), Eckmann & Grotberg (1991)
and Carstensen, Sumer & Fredsge (2010) show that perturbations of the Stokes flow
are observed when the Reynolds number becomes larger than a critical value Rs .1,
which is found to be around 100 (disturbed laminar regime). However, as time passes,
the perturbations damp out and the flow tends to recover a laminar like behaviour
(intermittently turbulent regime). Hereinafter, the Reynolds number R; is defined by the
amplitude U of the velocity oscillations outside the boundary layer and the viscous length
8* = /2v*/w*, where w* is the angular frequency of the velocity oscillations and v* is
the kinematic viscosity of the fluid

R; Ugs* _ V2U§
V¥ N
(sometimes, in the literature, the Reynolds number is defined as Re = UE)“Z J/w*v* and it

can be easily verified that Re = R(% /2). When the Reynolds number R;s is increased beyond
a second critical value Rs .2, turbulence appears and it affects larger parts of the cycle as
R;s is increased. Finally, for values of Rs larger than a third critical value R; 3, turbulence
is present throughout the whole cycle (fully turbulent regime). For example, the laboratory
measurements of Hino et al. (1983) and Jensen et al. (1989) show the existence of a
significant root mean square value of the velocity oscillations during the whole oscillation
cycle for values of Rs equal to approximately 750 and 1000, respectively.

Hence, it can be concluded that four flow regimes can be identified in a Stokes boundary
layer: the laminar regime, the disturbed laminar regime, the intermittently turbulent regime
and the fully turbulent regime.

These experimental findings have found an appropriate theoretical interpretation using
linear stability analyses, even though the quantitative agreement between the theoretical
results and the experimental observations is not entirely satisfactory.

Some linear stability analyses consider the behaviour of disturbances averaged over
the cycle. These analyses predict flow instability for values of the Reynolds number
significantly larger than those observed in an experimental apparatus (Blennerhassett &
Bassom 2002, 2006). Other linear stability analyses are based on a momentary criterion
for instability (e.g. Blondeaux & Seminara 1979). These analyses found that for Rs larger
than 86 the laminar regime turns out to be unstable, even though the instability is restricted
to a small part of the cycle and the perturbations are found to decay over the whole
cycle. Recently, Blondeaux & Vittori (2021) showed that a momentary stability analysis
can predict the value of R; .3 but it can only qualitatively explain the presence of the
intermittently turbulent regime and it provides just a rough estimate of the value of Rs 2.

An important role in the transition process is played by external disturbances. Blondeaux
& Vittori (1994) showed that an aperiodic flow similar to a turbulent flow can be generated
by the interaction among the momentarily unstable modes investigated by Blondeaux &
Seminara (1979) and the forced modes induced by wall imperfections. Thomas et al. (2015)
suggested that a high frequency perturbation of the free stream can significantly affect
the transition process. In particular, Thomas et al. (2015) showed that a small (1 %)
perturbation of the external periodic forcing can reduce the critical Reynolds number by
as much as 60 %.
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On the numerical side, Scandura (2013) showed that a waviness of the wall, even of
quite small amplitude, can induce the appearance of vortex tubes that are the precursors
of the appearance of turbulence. Previously, Verzicco & Vittori (1996) and Vittori
& Verzicco (1998) showed that wall imperfections are of fundamental importance in
triggering transition to turbulence in the Stokes boundary layer. Indeed, using direct
numerical simulations of the Navier—Stokes and continuity equations, these authors
determined the flow induced by an oscillatory pressure gradient close to an average flat
wall characterized by small imperfections and they were able to reproduce the mechanism
of transition from the laminar regime to the ‘disturbed laminar’ regime and from the latter
to the intermittently turbulent regime. Moreover, Vittori & Verzicco (1998) evaluated the
characteristics of the flow field in the different regimes. Later, Costamagna, Vittori &
Blondeaux (2003) determined the dynamics of the vortex structures which appear in a
Stokes boundary layer when the flow departs from the laminar regime.

Ozdemir, Hsu & Balachandar (2014) made further direct numerical simulations of the
Stokes boundary layer for values of the Reynolds number falling between 500 and 1000.
For values of R;s close to the critical value Rs ., Ozdemir et al. (2014) showed that
the nonlinear growth of the flow perturbations, which takes place during the unstable
phases of the cycle, triggers large velocity fluctuations even though it cannot guarantee
a sustainable transition to the turbulent regime and the results are highly dependent on the
characteristics of the initial perturbation. Only when the Reynolds number is equal to 700
or to larger values, is the flow characterized by features of a turbulent flow which repeats
every cycle. More recently, Xiong et al. (2020) made a further numerical investigation of
turbulence appearance and of the dynamics of the coherent vortex structures generated by
the instability of the Stokes boundary layer.

However, in all the analyses previously described, the flow is similar but different from
that generated at the bottom of a propagating surface wave. Indeed, it is well known that a
propagating wave of small amplitude gives rise, close to the bottom, to a Stokes boundary
layer but, if significant wave amplitudes are considered, nonlinear effects induce a second
harmonic velocity component characterized by an angular frequency that is twice that of
the fundamental component. Moreover, more importantly, a steady velocity component is
generated close to the bottom, which persists on moving far from it and might affect the
transition process (Longuet-Higgins 1953).

The objective of this paper is to contribute to an improved understanding of the
instability of the laminar boundary layer generated at the bottom of a propagating surface
wave characterized by a significant amplitude, such that both the second harmonic
velocity component characterized by an angular frequency which is twice that of the
fundamental and the steady velocity component predicted by Longuet-Higgins (1953)
assume significant values.

A linear stability analysis of the laminar flow is made to determine the conditions
leading to the amplification of random perturbations of the flow field and to turbulence
appearance. The Reynolds number of the phenomenon is assumed to be large and a
‘momentary’ criterion of instability is used.

When small (strictly infinitesimal) amplitudes of the propagating wave are considered,
the basic flow becomes equal to a Stokes boundary layer and the results of Blondeaux
& Seminara (1979) are expected to be recovered. When significant amplitudes of the
propagating wave are considered, the critical value of the Reynolds number as well as
the wavenumber of the most unstable harmonic component are expected to depend on the
local water depth and the period of the propagating surface wave.

In the next section the hydrodynamic problem is formulated and the flow field within
the laminar bottom boundary layer is briefly described. The third section is devoted to
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investigating the transition from the laminar regime to the turbulent regime by means of a
linear stability analysis that assumes that transition takes place for values of the Reynolds
number much larger than one and uses a ‘momentary’ criterion of instability. The forth
section describes the results. Finally, the last section is devoted to the conclusions.

2. Formulation of the problem and basic flow

It is well known that the flow field generated by a propagating surface wave can be
described dividing the fluid domain into two regions: a core region where the fluid behaves
like an inviscid fluid and a bottom boundary layer where viscous effects turn out to
be important. In the core region, the flow can be assumed irrotational and the velocity
potential ¢* can be expanded using the small parameter a = a*k* = 2na*/L*)(a < 1),
where a* is the amplitude and k* = 27t/L* is the wavenumber of the surface wave (L*
being its wavelength):

¢ =5 +apf +---. 2.1)

By introducing a coordinate system (x*, y*, z*) with the x*-axis pointing in the direction
of wave propagation and the z*-axis pointing upwards and having its origin at the bottom,
the functions ¢; and ¢ turn out to be

N a @* COSh(K*Z*) (e gyt
_ ) c. 2.2
%0 =i sinh(k*hf) © tece 2.2
3a*a)* cosh(2k*z*) Q2ilwtr—

6k sinh* (k* )

¢t = o 4 e, (2.3)

where the angular frequency w* and the wavenumber k* are related by the dispersion

relationship
" = /g*k* tanh(k*hy), (2.4)

h, being the local water depth and g* the acceleration of gravity.

From the knowledge of the velocity potential, the velocity at the bottom can be easily
determined. Of course the vertical velocity component vanishes whereas the horizontal
component turns out to be

RLo% GloN

+ 0(d®
ox* |, ¢ oxr =0 9
* 1 i(@*r* —k*x*) 3 12(@w*r* —k*x*) 2
= UO 5 c +c.c. + CIT** (& +c.c.| + O(a ), (25)
8 sinh” (k*hyy)
where
a*w*
Upy = ———. 2.6
O sinhk*h; (20

In other words, the fluid velocity close to the bottom oscillates with an amplitude of order
Us.

0

To satisty the no-slip condition at the bottom, it is necessary to introduce a viscous
bottom boundary layer. A simple analysis of the order of magnitude of the different terms
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of the momentum equation shows that the thickness of this viscous boundary layer should
be of order §*. Considering the continuity equation within the boundary layer

u*  Iw*

e e
it can be verified that the vertical velocity component is of order k*§* Uy, i.e. it is much
smaller than the horizontal component, because the actual values of §* are much smaller
than the length L* of the surface wave. Indeed, the mass balance equation can be satisfied
only when the two terms of (2.7) have the same order of magnitude. Since the order of
magnitude of u* is Uy and its derivative with respect to x* is of order Ugk™, it follows
that dw*/9z* should be of order Ugk*, too. Then, because the variations of w* along the
vertical direction take place within the bottom boundary layer, the order of magnitude of
ow*/az" is O(w*)/8*. It follows that the order of magnitude of w* should be k*6* Uy,
which is much smaller than Uj because the wavelength of the sea waves is much larger
than the thickness of the viscous bottom boundary layer.

Taking into account that the amplitude a* of the propagating wave can be assumed much
larger than §*, since field values of a* are of order 1 m and §* is of order 1 mm, the velocity
field, close to the bottom in a region of size §*, can be approximated by a unidirectional
flow that can be easily evaluated and depends only on the phase of the wave cycle and on
the distance from the bottom

0, 2.7)

1 1) /8% z* Tk ¥
MS(Z: 1 = US {5(1 — e_((l'ﬂ)/!S )z )elw t + e

+a [@(1 — e HIVAE/ED) 2" | oo SGUF + c.c.)i| } RCX)
where § = sinh(k*h)). The steady velocity component, which is generated by nonlinear

effects and is described by the function F, was determined by Longuet-Higgins (1953):
F) = LT3 aieyey _ L mamaerysn LT s
2 2 4

l—l Z* _ Nk ok 3 .
_ 5 (5_*) e~ (UHD(E/8%) _ Z(l +1i). (2.9)

See figure 1.

3. The stability analysis

As already pointed out in the introduction, the present analysis is aimed at analysing the
stability of the velocity field that is described by (2.8) and (2.9).

First, dimensionless variables are introduced. Since attention is focussed in the region
close to the bottom, the spatial coordinates are scaled with the viscous length §* (the
order of magnitude of the boundary layer thickness) and time is scaled using the angular
frequency of the propagating wave

x*, *, k
(x,y,2) = % = ot (3.1a,b)
Moreover, let us denote with («, v, w) and p the dimensionless velocity components and
the pressure field, respectively, defined by
*’ v*, k *
vy = V) P (3.2a.b)
U, p*Uyé*w
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Figure 1. Function iF + c.c. plotted vs the variable z*/8*.

where p* is the density of the sea water and Uj, w* are the amplitude and angular
frequency of the velocity oscillations induced by the propagating surface wave close to
the bottom, respectively.

Let us consider a two-dimensional perturbation of the flow field described by (2.8), such
that

(u, v, w,p) = (up, 0,0, po) + €(ur, 0, wi, p1), (3.3)

where the dimensionless velocity ug = ug/ U can be easily obtained from (2.8) and € is
assumed to be much smaller than one.

Since the amplitude of the perturbation is assumed to be much smaller than one, a
linear analysis of its time development can be performed. Neglecting terms of order €,
the continuity and momentum equations read

ouy  owj
— 4+ — =0, 3.4
ox + az (34)
duy  Rs [ duy dug ap1 1[0%u  8%u
— 4+ =2 | up— — == | =+ —], 3.5
ar T2 [”Oa T ] x 22 a2 9)
ow;  Rs owy ap1 1 82W1 82W1
P uy— = 4= —, 3.6
a2 [”0 8x] 2z 2o Tz (5.6)

where the Reynolds number R; is defined by (1.1). Continuity equation can be satisfied by
introducing a streamfunction ¥ such that
oy Y

(up, wi) = (8_z’ _§>' (3.7

Then, eliminating the pressure field from (3.5) and (3.6), the linearized vorticity equation
is obtained:

atax2 | 9tazz | 2 a3 | 9720x ax

972 ox
1 (a“w Aty a‘Hp)

AT ax29z2 3

Py By Rg[ (831/f 331/f) 82u081/f:|
+ —|u —

(3.8)
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Because of the linearity of (3.8), a normal mode analysis can be made and the generic
spatial component along the x-axis can be considered. Moreover, since transition from
the laminar regime to turbulence takes place when the Reynolds number is large, the
amplitude of the perturbation can be supposed to grow on a time scale much faster than
that characterizing the time development of the basic flow and a ‘momentary’ criterion for
instability of the kind introduced by Shen (1961) and discussed by Blondeaux & Seminara
(1979) can be used. Indeed, the Reynolds number R; is equal to twice the ratio between the
characteristic temporal scale 1/w* of the surface wave and the convective temporal scale
8* /Uj; characteristic of the time development of the perturbation.
It follows that the function ¥ can be written in the form

¥ (x, z, 1) = Real {f(z, t) exp |:1a (x - R? / (1) dr):” + h.o.t., 3.9)

where o denotes the streamwise wavenumber of the generic Fourier component of the
perturbation; the real part ¢, of c¢ is its wave speed and the imaginary part ¢; controls its
growth/decay. Moreover, h.o.t. indicates higher-order terms.

Substitution of (3.9) into (3.8) leads to the following homogeneous differential equation:

o(Z,

1
[uo(z, 1) — c()IN?*f(z, 1) — ———f (2, s — Nz, 1), (3.10)

where the operator N? is defined by N? = 82/ 37> — ? and the dimensionless basic
velocity ug can be easily obtained from (2.8) and (3.1a,b) and (3.2a,b).

The boundary conditions force the vanishing of the velocity at the wall and far from the
bottom.

As also pointed out by Blondeaux & Vittori (2021), the viscous term is retained in
(3.10), even if it is of order 1/R;, because it turns out to be significant, at the leading order
of approximation, within a viscous layer close to the wall and within critical layers. In a
similar context, Blondeaux & Vittori (1994) showed that the solution of (3.10) coincides,
to the required order of approximation, with the solution obtained by solving, first, the
inviscid version of (3.10) and then matching the inviscid solution with the solutions which
hold in the viscous and critical layers.

Let us also point out that the time variable * and the spatial variable x* appear only
in the combination ¢ = k*x* — w*r*, which is the phase of the surface wave and can be
considered a parameter of the problem. Hence, (3.10) can be solved for different values of
¢, which correspond to different locations and/or to different phases within the wave cycle.
In the following, we consider the location characterized by x* = 0, such that a vanishing
value of ¢ corresponds to the passage of the wave crest at the considered location.

In order to find a non-trivial solution of the homogeneous differential equation (3.10)
and its homogenous boundary conditions, it is necessary to force an eigenrelation which
provides the value of ¢ as function of « and the other parameters of the problem,
namely Rs, a, S. To find the largest eigenvalue ¢ and the corresponding eigenfunction f,
a numerical approach is used. As in Blondeaux, Pralits & Vittori (2012), (3.10) and its
boundary conditions are discretized by a fourth-order compact finite difference approach
along the z-direction. The outer boundary is set at z = 50, where the standard asymptotic
conditions of the inviscid outer behaviour are forced. The least stable eigenvalue is
obtained by inverse iterations. To check the numerical solution, (3.10) is solved also
by a spectral collocation procedure. Any desirable precision can be obtained choosing
a sufficient number of grid nodes in the finite difference approach and Chebyshev
collocation points in the spectral one.
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Figure 2. Real part ¢, (a) and imaginary part ¢; (b) of the growth rate ¢ plotted vs the phase ¢ of the oscillation

cycle for « = 0.5, a = 0.0 and Rs = 90. Values predicted by the present approach (thin continuous lines) and
values obtained by means of Blondeaux & Vittori’s (2021) analysis (thick dotted-dashed lines).

4. The results

In order to check the reliability and the accuracy of the results provided by the numerical
code that is used to determine the eigenvalues c, a few results were obtained for vanishing
values of @ and compared with those described in Blondeaux & Vittori (2021). First, since
(Blondeaux & Vittori 2021) studied the stability of the Stokes boundary layer generated
in a fluid at rest by the horizontal harmonic oscillation of a plate, it is worth pointing out
that the value of U provided by (2.6) is equal to the amplitude of the velocity oscillations
of the plate considered by Blondeaux & Vittori (2021). Then, it is necessary to determine
the relationships between the eigenvalues of the present problem for ¢ = 0 and those of
the problem solved by Blondeaux & Vittori (2021). It is not difficult to verify that

cr =cos(t) —2¢, ¢ =2¢, (4.1a,b)

where ¢ denotes the eigenvalue of the Stokes problem computed by Blondeaux & Vittori
(2021) and the subscripts ‘r’ and ‘i’ indicate the real and imaginary parts of a complex
quantity, respectively. The thin continuous lines in the two panels of figure 2 show the
real (a) and imaginary (b) parts of ¢ provided by the present numerical approach for
a = 0.5 and Rs = 90 while the dotted-dashed lines in the same panels show the values
of ¢ evaluated by means of (4.1a,b) and the results of Blondeaux & Vittori (2021). The
agreement is good and supports the reliability and accuracy of the present results. Indeed
the two approaches provide practically coincident results.

As pointed out in § 1, nonlinear effects induce a steady streaming and a second harmonic
component in the boundary layer at the bottom of a propagating surface wave and these
additional flows, which are superimposed to the Stokes velocity field, affect the transition
process from the laminar regime to the turbulent one. In the Stokes problem, for any
eigenvalue c(t) = c,(t) + icj(¢) there is another eigenvalue at t 4+ 7 that has the same
growth rate (¢;) and an opposite propagation speed (c,), because the flow at t 4+ 7 is the
mirror image of that at time . However, these relationships hold no longer in the present
problem and herein it can be only stated that c(¢) = c(t + 2m).

The two panels of figure 3 show the growth rate of the perturbations of the Stokes
boundary layer and the growth rate of the perturbations of the boundary layer under a
propagating surface wave characterized by the same value of the Reynolds number (Rs =
86) and a = 0.0785, § = 0.6727. The value of Rs was chosen close to the critical value for
a Stokes boundary layer so that it is easy to appreciate the stabilizing/destabilizing effects
that the terms of order a have on the transition process. The results show that the terms of
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Figure 3. Growth rate ¢; plotted vs the phase of the wave cycle for Rs = 86 and & = 0.5. (a) Stokes
boundary layer. (b) Present theory for a = 0.07850 and S = 0.6727.
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—0.04
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Figure 4. Growth rate ¢; plotted vs ¢ around the most unstable phases of the cycle for S = 0.6727, Ry = 71,
a = 0.0648 and o = 0.52.

order a of the basic flow tend to destabilize the laminar regime. Indeed, because the flow
deceleration around ¢t = 7/2 is larger than that around ¢ = 37 /2, the growth rate around
t = 7/2 is larger than that around ¢ = 31 /2. Moreover, the growth rate around ¢ = 7w/2 is
positive whereas it is negative around ¢t = 37 /2. In other words, the flow within the bottom
boundary layer under a propagating surface wave becomes unstable and the perturbations
tend to become significant after the passage of a wave crest but no perturbation is expected
to be observed after the passage of a wave trough.

Further runs (made for the same value of S (S = 0.6727) and different values of o and
Rs) have shown that the critical value of Rs, such that the largest value of ¢; during the
cycle vanishes, is 71, which implies a = 0.0648, and the critical value of « is 0.52, i.e. it
is slightly larger than the critical value computed for a Stokes boundary layer which is 0.5.
Figure 4 shows an enlargement of the curve ¢;(¢) around the most unstable phases for the
critical conditions.

To give the reader an idea of the significance of the results for practical applications,
let us point out that the dimensionless parameters of figure 3 correspond to a surface
wave propagating in a laboratory wave tank where the water depth is 0.15 m and the
surface wave is characterized by a period of approximately 1.31 s and an amplitude
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Figure 5. Real part ¢, (@) and imaginary part ¢; (b) of ¢ plotted vs the phase of the wave cycle for « = 0.3
and Rs = 648.8, a = 0.06041, S = 0.6732.
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Figure 6. Real part ¢, (@) and imaginary part c¢;(b) of ¢ plotted vs the phase of the wave cycle for « = 0.3
and Rs = 1038.0, a = 0.09669, S = 0.6732.

of approximately 1.87 cm (the water viscosity is assumed to be 10~ m? s~!) while
the critical value of Rs is obtained when the amplitude of the propagating wave is
approximately 1.54 cm.

Even though there are phases during which the laminar regime turns out to be unstable,
because of the relatively small values of the Reynolds number, the results of Blondeaux &
Vittori (2021) suggest that only the disturbed laminar regime can be observed. To observe
the intermittently turbulent regime and the fully turbulent regime, it is necessary to have
much larger values of the Reynolds number which cannot be obtained in a small laboratory
wave tank. Figures 5 and 6 show results similar to those of figure 3 but for Ry = 648.8,a =
0.061, S = 0.67 and Rs = 1038.0, a = 0.097, S = 0.67, respectively.

Once more, to give to the reader an idea of the relevance of the results for practical
applications, the values of the parameters of figures 5 and 6 correspond to surface waves
of period equal to 6 s propagating in a shallow water region of depth equal to 3.15 m and
characterized by an amplitude of approximately 0.30 m and 0.48 m, respectively

The obtained results show the destabilizing effects that the second-order terms in the
dynamics of propagating surface waves have on transition to turbulence within the bottom
boundary layer. As in the previous case, transition to turbulence is expected to take
place when the irrotational velocity close to the bottom reverses its direction after the
passage of the wave crest. Because of the relatively large values of the Reynolds number,
the growth rate of the perturbations is positive during a large part of the oscillating cycle

928 A26-10


https://doi.org/10.1017/jfm.2021.807

https://doi.org/10.1017/jfm.2021.807 Published online by Cambridge University Press

On the stability of the boundary layer at the bottom

(@) 015 : : : : : - () 20
0.10+ 1 L3t
1.0+
0.05
¢ ﬁ,\# n*la* 0.5}
0
0 L
~0.05 | ] o5l
—0.10 ‘ ‘ : : : : -1.0
o 1 2 3 4 5 6 o 1 2 3 4 5 6
t t

Figure 7. (a) Imaginary part ¢; of ¢ and () free surface elevation plotted vs the phase of the wave cycle for
a = 0.3 and Rs = 1750, a = 0.1629, S = 0.6732.

and turbulence is expected to be observed, even though there are small parts of the cycle
around nm characterized by a negative value of the growth rate. During these phases,
the perturbations are expected to decay and the flow to recover a laminar behaviour
(intermittent turbulent regime).

As discussed in Blondeaux & Vittori (2021), when larger values of the Reynolds number
are considered, the positive values of ¢; tend to pervade the whole wave cycle. However,
as shown by figure 7(a) where the value of ¢; is plotted vs the phase of the cycle for
Rs = 1750, a = 0.1629 and S = 0.6732, when large values of Rs are considered, three
relative maxima of ¢; appear. Indeed, for such values of the parameters, a perturbation with
a dimensionless wavenumber equal to 0.3 is characterized by a relative maximum of ¢; for
t ~0.96,2.98, 4.75. The apparently unexpected behaviour of ¢; can be understood if the
free surface time development at a fixed location is plotted vs time (see figure 7b). For Rs =
1750, a = 0.1629 and S = 0.6732, the trough of the propagating wave is characterized by
the presence of a small bump the height of which increases as the value of R; is increased.
Therefore, for such values of the parameters, three accelerating and three decelerating
phases are present during the wave cycle, whereas for smaller values of the Reynolds
number only two accelerating and two decelerating phases are present. Similar results are
obtained for Ry = 2000, a = 0.1862, S = 0.6732 (see figure 8). Figures 7(a) and 8 show
that, for large values of Rs, the most unstable mode is characterized by a value of the
growth rate ¢; which is either positive or tends to vanish. Therefore, turbulence is expected
to be present during the whole cycle and the fully developed regime to be observed, even
though turbulence intensity is expected to fluctuate because of the fluctuations of c;.

It can be argued that the four flow regimes observed in a Stokes boundary layer (laminar,
disturbed laminar, intermittently turbulent and fully turbulent) are present also in the
boundary layer under a propagating surface wave.

A further element, which should be considered when looking at the flow under a
propagating surface wave, is the roughness of the bottom. Only when the bottom is flat
(no ripples) and its surface smooth (the sediment size should be much smaller than the
thickness of the viscous sublayer), are the present results significant. For larger values of
the sediment size, the bottom roughness certainly promotes turbulence appearance.

Of course, the linear analysis cannot describe the turbulence dynamics and only direct
numerical simulations of the Navier—Stokes and continuity equations can describe the fate
of the perturbations by taking into account nonlinear effects. However, it is interesting to
look at the eigenfunctions in the region close to the bottom and how they decay moving
far away from it. This information can give an idea of the thickening of the boundary
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Figure 8. (a) Imaginary part ¢; of ¢ plotted vs the phase of the wave cycle for « = 0.3 and
Rs = 2000, a = 0.1862, S = 0.6732.
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Figure 9. Real (continuous line) and imaginary (dashed line) parts of the eigenfunction f(z) for
Rs =300, =0.5,5 =0.6732,a = 0.02793; (a) t = 1.8396, (b) t = 31/2.

layer when the laminar flow becomes unstable and turbulence appears. Panels (a) and (b)
of figure 9 show the eigenfunctions for Rs = 300, « = 0.5, § = 0.6732, a = 0.02793 and
two different phases of the cycle, i.e. t = 37/2 and t = 1.8396. The values of Rs, @ and ¢
are equal to those considered in figure 3 of Blondeaux & Vittori (2021) and the comparison
between the present results and those of figure 3 of Blondeaux & Vittori (2021), shows that
quantitative differences are present but the qualitative behaviour of the solution is similar.

The results of the analysis can be summarized by obtaining the unstable regions in
the parameter space. If attention is focused on the propagating waves observed on the sea
surface, the values of g* (the gravitational acceleration) and v* can be considered fixed and
equal t0 9.81 ms~2 and 10~ m? s~!, respectively. Then, taking into account the dispersion
relationship (2.4), the value of the parameter S follows from the knowledge of Aj and w*.
Moreover, if the values of hz’; and o™ are fixed, the parameters a and R;s are linked one to
the other. Therefore, figure 10 shows the marginal stability curves in the plane (¢, R;) for
three different significant values of S, namely 0.6732, 1.622, 3.2342 which correspond to
values of the ratio hj/L* equal to 0.1, 0.2 and 0.3, respectively. Smaller values of S are
not considered since, for values of hé /L* equal to or smaller than 0.05, the shallow water
approach should be used to describe the wave field. On the other hand, for larger values of
hg/L*, in order to have values of the Reynolds number of the bottom boundary layer close
to the critical conditions, it would be necessary to consider amplitudes of the propagating
surface wave which cannot be observed because they induce wave breaking.
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Figure 10. Maximum value of ¢; during the wave cycle plotted vs & and R; for (a) S = 0.6732, i.e. hj/L* =
0.1, (b) S = 1.622, i.e. hjj/L* = 0.2, (c) S = 3.2342, i.e. hj/L* = 0.3. The reader should recall that, in the
field, as explained in the text, the dimensionless parameter a = a*k* is related to the value of the Reynolds
number Rs.

The results shown in figure 10 show that the unstable region in the («, Rs)-plane does
not change significantly as the value of the ratio hj/L* is changed. Therefore, only the
instantaneous growth rate appears to be significantly affected the by second-order effects
related to the wave steepness.
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Looking at the boundaries of the unstable time intervals during the oscillation cycle
plotted vs Rj, Blondeaux & Vittori (2021) identified a value of the Reynolds number
below which the flow regime in a Stokes boundary layer is expected to be disturbed
laminar and above which intermittently turbulent. However, since only a fully nonlinear
approach can describe the time development of the perturbation when the laminar regime
becomes unstable, no attempt to identify a criterion to distinguish the disturbed laminar
and the intermittently turbulent regime is made hereinafter. However, it can be argued
that the four flow regimes (laminar, disturbed laminar, intermittently turbulent and fully
turbulent) observed in a Stokes boundary layer are present also in the boundary layer under
a propagating surface wave.

5. Conclusions

The linear stability analysis of the oscillating laminar flow within the boundary layer at
the bottom of a propagating surface wave shows that the laminar regime is expected to be
unstable and turbulence to appear when the wave amplitude is larger than a first critical
value which depends on the local water depth and the period of the wave. Moreover,
turbulence is predicted to appear at a given location after the passage of the wave crest
when the irrotational velocity close to the bottom reverses its direction from the onshore
to the offshore direction. Close to the critical conditions, the instability is predicted only
during a small portion of the wave cycle. As the amplitude of the wave is increased, further
unstable phases appear also after the passage of the wave trough, when the irrotational
velocity close to the bottom reverses its direction from the offshore to the onshore
direction. Then, the instability pervades the whole wave cycle when the amplitude of
the wave becomes larger than another ‘threshold’ value. Even though this linear analysis
cannot predict the time development of the perturbations when their amplitude becomes
finite and it cannot be used to investigate the turbulence dynamics during the cycle,
the present results along with those of Blondeaux & Vittori (2021) show the possible
presence of different flow regimes at the bottom of a propagating surface gravity wave,
i.e. the laminar regime, the disturbed laminar regime, the intermittently turbulent regime
and the fully developed regime. The coherent vortex structures, which are generated by
the instability of the laminar flow, and/or the small scale turbulent eddies, which are
generated by the nonlinear effects, significantly affect the sediment transport rate when the
sea bottom is made up of cohesionless sediments but their dynamics can be investigated
only by taking into account nonlinear effects (see for example Mazzuoli et al. 2020; Vittori
et al. 2020).
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