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Smooth Approximation of Lipschitz
Projections

Hanfeng Li

Abstract. We show that any Lipschitz projection-valued function p on a connected closed Riemannian

manifold can be approximated uniformly by smooth projection-valued functions q with Lipschitz con-

stant close to that of p. This answers a question of Rieffel.

1 Introduction

The question of approximating continuous functions on Riemannian manifolds by

smooth functions preserving geometric properties has a long history. In [1–3] Greene

and Wu studied such questions for real-valued functions and geometric properties

such as having Lipschitz constant bounded above by a fixed number, and used such

results to obtain geometric applications [2].

In a previous version of [5] Rieffel asked the question whether, for any Lipschitz

function p on a compact Riemannian manifold M with values in the projection set

of a matrix algebra Mn(C) and any ε > 0 there is a smooth function q on M also with

values in the projection set of Mn(C) with ‖p − q‖∞ < ε and L(q) < L(p) + ε. Here

‖ f ‖∞ denotes the supremum norm of f and

(1.1) L( f ) = sup
x,y∈M,

x 6=y

‖ f (x) − f (y)‖

ρ(x, y)

denotes the Lipschitz constant of f , for ρ denoting the geodesic distance on M. An

affirmative answer to this question has direct application to obtaining lower bounds

of the Lipschitz constants for projection-valued functions on M representing a fixed

vector bundle on M.

In this note we answer Rieffel’s question affirmatively. In fact, we shall deal more

generally with functions with values in the projection set of any C∗-algebra. Follow-

ing [5], by a real C∗-subring we mean a norm-closed ∗-subring of a C∗-algebra that is

closed under multiplication by scalars in R. For example, Mn(R) is a real C∗-subring

contained in Mn(C). For a compact manifold M and a real C∗-subring A, denote by

C(M,A) the real C∗-subring of all continuous A-valued functions on M, and denote

by C∞(M,A) the subalgebra of all smooth A-valued functions on M.
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Theorem 1.1 Let M be a connected closed Riemannian manifold. Let A be a real

C∗-subring. For any projection p ∈ C(M,A) and any ε > 0, there exists a projection

q ∈ C∞(M,A) with ‖p − q‖∞ < ε and L(q) < L(p) + ε.

As an example, Rieffel [5, Proposition 12.1] obtained lower bounds of the Lip-

schitz constants for projections representing certain complex line bundles on the

two-torus T
2 by obtaining such bounds for smooth projections first and then ex-

tending the bounds to nonsmooth projections using Theorem 1.1.

The proof of Theorem 1.1 has two ingredients. The first is that part of Greene and

Wu’s results hold generally for functions valued in any Banach space. We recall these

results in Section 2. The second is a fine estimate of the Lipschitz seminorm of the

projection in a C∗-algebra obtained in the usual way from an “almost-projection”.

We give this estimate and prove Theorem 1.1 in Section 3.

2 Smooth Approximation of Continuous Functions

In [1] Greene and Wu introduced the Riemannian convolution smoothing process

for approximating continuous real-valued functions on a Riemannian manifold by

smoothing functions preserving geometric properties. They used this technique to

obtain certain geometric application [2]. In fact, much of Greene and Wu’s results

work for functions valued in a Banach space. Let us recall their construction on

[1, pp. 646–647].

Fix a positive integer n. Let κ : R → R be a non-negative smooth function which

has support contained in the interval [−1, 1], is constant in a neighborhood of 0, and

satisfies
∫

v∈Rn κ(‖v‖) = 1, where R
n is equipped with the standard Lebesgue mea-

sure. Let V be a real Banach space. Let M be a Riemannian manifold of dimension n

without boundary, and let K be a compact subset of M. Then there is an εK > 0 such

that, for every x in some neighborhood of K and every v in the tangent space TMx of

M at x with ‖v‖ < εK , the exponential expx v is defined. For any continuous function

f : M → V and any 0 < ε < εK define a V -valued function fε on a neighborhood of

K by

fε(x) =
1

εn

∫

v∈TMx

κ
( ‖v‖

ε

)

f (expx v),

where TMx is equipped with the standard Lebesgue measure via a linear isometry

between TMx and the Euclidean space R
n.

In [1, p. 647] and [2, Lemma 8] Greene and Wu proved the following theorem for

the case V = R. Their proof works for any Banach space V .

Theorem 2.1 (Greene-Wu) Let f : M → V be continuous. Let K be a compact subset

of M. When ε > 0 is small enough (depending only on M and K), fε is a smooth

function on an open neighborhood of K. The function fε converges to f uniformly on

K as ε → 0. If f is smooth on a neighborhood of K, then fε converges to f in the

smooth topology on K as ε → 0. If M is connected and f has Lipschitz constant D on a

neighborhood W of K, i.e.,

sup
x,y∈W,

x 6=y

‖ f (x) − f (y)‖

ρ(x, y)
= D,
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where ρ denotes the geodesic distance on M, then for any δ > 0, when ε is small enough

one has ‖∂v( fε)‖ < D + δ for all x ∈ K and unit vector v ∈ TMx.

One direct consequence of the above approximation theorem is the following.

Corollary 2.2 Let M be a connected closed Riemannian manifold. For any continuous

map f : M → V and any δ > 0, when ε > 0 is small enough, fε is a smooth function

on M with ‖ f − fε‖∞ < δ and L( fε) < L( f ) + δ, where L( fε) and L( f ) are defined

by (1.1).

Using Theorem 2.1 for the case V = R, Greene and Wu [3, Proposition 2.1] ac-

tually showed that for any connected (possibly noncompact) Riemannian manifold

M without boundary, any Lipschitz function f : M → R, any continuous function

g : M → R>0, and any δ > 0, there is some smooth function h : M → R such that

| f − h| < g on M and L(h) < L( f ) + δ. It would be interesting to see whether this

result extends to every Banach space V .

3 Estimate of Lipschitz Constants for Projections

The key in our approach is the following estimate of the Lipschitz seminorm of the

projection obtained from an “almost-projection” in the usual way.

Proposition 3.1 Let A be a unital C∗-algebra, and let a ∈ A be self-adjoint whose

spectrum has empty intersection with the interval (δ, 1 − δ) in R for some 0 < δ <
1/2. Let L be a (possibly +∞-valued) seminorm on A. Suppose that L is lower semi-

continuous, vanishes on 1A, and L(b−1) ≤ ‖b−1‖2L(b) for every invertible b ∈ A. Let

f denote the characteristic function of the interval [1 − δ,+∞) on R. Then

L( f (a)) ≤ L(a)/(1 − 2δ),

where f (a) denotes the continuous-functional calculus of a under f .

Proof Take R > 0 such that the spectrum of a is contained in the union of the

intervals (−∞, δ] and [1 − δ, 1 + R] in R.

Denote by g the characteristic function of {z ∈ C : Re z ≥ (δ+1/2)/2} on C. Note

that g is holomorphic on {z ∈ C : Re z 6= (δ + 1/2)/2}. For each s > R, denote by γs

the rectangle with vertices 1/2+ si, 1/2− si, (1+ s)− si, and (1+ s)+ si, parameterized

as a piecewise smooth simple closed curve in the anti-clockwise direction. Then

L( f (a)) = L(g(a)) = L
( 1

2πi

∫

γs

g(z)(z − a)−1 dz
)

≤
1

2π

∫

γs

L(g(z)(z − a)−1) d|z| =
1

2π

∫

γs

L((z − a)−1) d|z|

≤
1

2π

∫

γs

‖(z − a)−1‖2L(z − a) d|z|

=

L(a)

2π

∫

γs

‖(z − a)−1‖2 d|z|,
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where the first inequality follows from the lower semi-continuity of L. For z in the

line segment from 1/2 − si ((1 + s) + si, resp.) to (1 + s) − si (1/2 + si, resp.), one

has ‖(z − a)−1‖2 ≤ s−2, since a is self-adjoint. For z = 1/2 + ti with t ∈ R, one

has ‖(z − a)−1‖2 ≤ ((1/2 − δ)2 + t2)−1. For z = (1 + s) + ti with t ∈ R, one has

‖(z − a)−1‖2 ≤ ((s − R)2 + t2)−1. Therefore

L( f (a)) ≤
L(a)

2π

∫

γs

‖(z − a)−1‖2 d|z|

≤
L(a)

2π
(2s−2(1/2 + s) +

∫ +∞

−∞

((1/2 − δ)2 + t2)−1 dt

+

∫ +∞

−∞

((s − R)2 + t2)−1 dt)

=

L(a)

2π
(s−2(1 + 2s) +

1

1/2 − δ

∫ +∞

−∞

(1 + t2)−1 dt

+
1

s − R

∫ +∞

−∞

(1 + t2)−1 dt)

=

L(a)

2π

(

s−2(1 + 2s) +
π

1/2 − δ
+

π

s − R

)

.

Letting s → ∞, we obtain L( f (a)) ≤ L(a)/(1 − 2δ) as desired.

Using Proposition 3.1, Rieffel improved various estimates in a previous version of

Sections 3, 4, 6 and 10 of [5].

In general the estimate in Proposition 3.1 is the best possible, as the following

example shows.

Example 3.2 Let X = {x1, x2} be a 2-point metric space with the metric

ρ(x1, x2) = 1. Define L on C(X) via (1.1). By [5, Proposition 2.2] the seminorm

L satisfies the conditions in Proposition 3.1. For 0 < δ < 1/2 define a ∈ C(X) by

a(x1) = δ and a(x2) = 1 − δ. Then ( f (a))(x1) = 0 and ( f (a))(x2) = 1, where f is as

in Proposition 3.1. Thus, L(a) = 1 − 2δ and L( f (a)) = 1 = L(a)/(1 − 2δ).

We are ready to prove Theorem 1.1.

Proof of Theorem 1.1 Let 0 < δ < 1/2. By Corollary 2.2 applied to V equal to the

self-adjoint part of A and f equal to p, we can find some self-adjoint p1 ∈ C∞(M,A)

with ‖p − p1‖∞ < δ and L(p1) < L(p) + ε/2. Since p is a projection, by [5,

Lemma 3.2] the spectrum of p1 is contained in the union of the intervals [−δ, δ] and

[1−δ, 1+δ] in R. Let f denote the characteristic function of the interval [1−δ,+∞)

on R. Set q = f (p1).

Suppose A is a real C∗-subring contained in a C∗-algebra B. Since C∞(M,B) is

closed under the holomorphic functional calculus, we have q ∈ C∞(M,B). Using

polynomial approximations it is easy to see that the self-adjoint part of C(M,A) is

closed under continuous functional calculus for real-valued continuous functions

https://doi.org/10.4153/CMB-2011-096-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-096-4


766 H. Li

on R vanishing at 0 (see, for example, the proof of [5, Proposition 2.4]). Therefore

q ∈ C∞(M,B) ∩C(M,A) = C∞(M,A).

One has ‖q− p‖∞ ≤ ‖q− p1‖∞ + ‖p1 − p‖∞ < δ + δ = 2δ. It is readily checked

that the Lipschitz seminorm L on the C∗-algebra C(M,B) defined by (1.1) satisfies

the conditions in Proposition 3.1 (see, for example, the proof of [5, Proposition 2.2]).

By Proposition 3.1 one has

L(q) ≤ L(p1)/(1 − 2δ) < (L(p) + ε/2)/(1 − 2δ).

Thus, when δ > 0 is small enough, we have ‖q − p‖∞ < ε and L(q) < L(p) + ε as

desired.
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