KANTOROVITCH POLYNOMIALS DIMINISH GENERALIZED LENGTH

BY
MARTIN E. PRICE

The Kantorovitch polynomials of a summable function s, defined on $[0,1]$, are

$$
K_{n} s(x)=\sum_{r=0}^{n} I_{n, r} p_{n r}(x)
$$

where

$$
\begin{aligned}
n & =1,2,3, \ldots ; x \in[0,1] \\
I_{n, r} & =(n+1) \int_{r(n+1)}^{(r+1)(n+1)} s(t) d t
\end{aligned}
$$

and

$$
p_{n r}(x)=\binom{n}{r} x^{r}(1-x)^{n-r} .
$$

They are the analogue for summable functions of the Bernstein polynomials $B_{n} f(x)$, and they possess similar properties [1].

In [2], Goffman defined a generalized variation $\varphi(s)$ for $s \in L_{1}[0,1]$ as follows: Consider the space P of polygonal functions on [0,1], with norm given by $\|p\|_{1}$ $=\int_{0}^{1}|p|$, and denote the ordinary total variation of p by $V p$. By the Frechet process, we may extend V to a unique lower-semicontinuous functional φ on the completion of P, the space $L_{1}=L_{1}[0,1]$ of equivalence classes of summable functions, such that for every $s \in L_{1}$ there exists a sequence $p_{n} \in P$ with $\left\|p_{n}-s\right\|_{1} \rightarrow 0$ and $V\left(p_{n}\right) \rightarrow \varphi(s)$. We show that $V K_{n} s \leq \varphi(s)$ for all $s \in L_{1}$ and all n.
In [3], Hughs developed a generalized length L based on Goffman's variation φ. L is defined on the space A of equivalence classes of parametric generalized curves $S(t)=\left(s_{1}(t), s_{2}(t), s_{3}(t)\right), t \in[0,1], s_{i} \in L_{1}$ with $\|S\|_{A}=\sum_{i=1}^{3} \int_{0}^{1}\left|s_{i}\right| . L$ is obtained by completing the space B of polygonal triples (p_{1}, p_{2}, p_{3}) with the above norm and using the Frechet process to extend the elementary length l to a unique lower semicontinuous functional L on the completion of B, the space A. Set $K_{n} S \equiv\left(K_{n} s_{1}\right.$, $K_{n} s_{2}, K_{n} s_{3}$). We show that $l K_{n} S \leq L S$ for all n and all $S \in A$.
We need the following facts:
(A) $\left\|s-K_{n} s\right\|_{1} \rightarrow 0$ if $s \in L_{1}$. [1]
(B) If $s \in L_{1}, \varphi(s)=V_{E}(s)$ where V_{E} is the total variation computed over the set E of points of approximate continuity of s. Thus $\varphi(s) \leq V(s)$ and $\varphi(s)=V(s)$ if s is continuous. [2]

[^0](C) (Cauchy-Steinhaus Formula) See [3]. Let B be the surface of the unit sphere in $E^{3}, z=(a, b, c) \in B, S=\left(s_{1}, s_{2}, s_{3}\right) \in A$, and $L(S)<\infty$, then
$$
L(S)=\frac{1}{2 \pi} \iint_{B} \varphi(z \cdot S) d \sigma
$$
where $\varphi(z \cdot S)$ is the generalized variation of the scalar function $z \cdot S$.
Theorem 1. For $s \in L_{1}$ and all $n, V K_{n} s \leq \varphi(s)$.

Proof.

$$
\begin{aligned}
V K_{n} s=\int_{0}^{1}\left|K_{n}^{\prime} s(x)\right| d x & =n \int_{0}^{1}\left|\sum_{r=0}^{n-1}\left(I_{n, r+1}-I_{n, r}\right) p_{n-1, r}(x)\right| d x \\
& \leq \sum_{r=0}^{n-1}\left|I_{n, r+1}-I_{n, r}\right|
\end{aligned}
$$

using properties of Euler's B function. By rewriting $\left|I_{n, r+1}-I_{n, r}\right|+\left|I_{n, r+2}-I_{n, r+1}\right|$ as $\left|I_{n, r+2}-I_{n, r}\right|$ whenever possible, the last sum becomes

$$
\sum_{j=0}^{n}\left|I_{n, r_{j+1}}-I_{n, r_{j}}\right| ; \quad m \leq n-1, \quad r_{0}=0, \quad r_{m+1}=n
$$

and for each $j, I_{n, r_{j+2}}-I_{n, r_{j+1}}$ is of opposite sign from $I_{n, r_{j+1}}-I_{n, r_{j}}$.
Let $E \subset[0,1]$ be the set of points of approximate continuity of $s(x) . E$ is of measure one since s is summable. Now if $I_{n, r_{1}}>I_{n, r_{0}}$, pick x_{0} in $E \cap(0,1 /(n+1))$ such that $s\left(x_{0}\right) \leq I_{n, 0}$, and x_{1} in $E \cap\left(r_{1} /(n+1),\left(r_{1}+1\right) /(n+1)\right)$ such that $s\left(x_{1}\right)$ $\geq I_{n, r_{1}}$. Thus $\left|s\left(x_{1}\right)-s\left(x_{0}\right)\right| \geq\left|I_{n, r_{1}}-I_{n, r_{0}}\right|$. Continuing, we can pick $x_{2} \in E \cap$ $\left(r_{2} /(n+1),\left(r_{2}+1\right) /(n+1)\right)$ such that $s\left(x_{2}\right) \leq I_{n, r_{2}}$, and since $I_{n, r_{2}}<I_{n, r_{1}}$,

$$
\left|s\left(x_{2}\right)-s\left(x_{1}\right)\right| \geq\left|I_{n, r_{2}}-I_{n, r_{1}}\right|
$$

etc. In case $I_{n, r_{1}}<I_{n, r_{0}}$, we proceed analogously. In either case,

$$
V K_{n} f \leq \sum_{j=0}^{m}\left|I_{n, r_{j+1}}-I_{n, r_{j}}\right| \leq \sum_{j=0}^{m}\left|s\left(x_{j+1}\right)-s\left(x_{j}\right)\right| \leq V_{E} s=\varphi(s) .
$$

By facts (B) and (A) and the lower semi-continuity of φ, we get
Corollary. $V K_{n} s \leq V s$ and $\lim _{n \rightarrow \infty} V K_{n} s=\varphi(s)$ for $s \in L_{1}$.
Theorem 2. If $s \in A, l\left(K_{n} S\right) \leq L(S)$ for all n.
Proof. We may assume $L(S)<\infty$. Consider the scalar functions $z \cdot K_{n}$ and $z \cdot S$ for each fixed $z \in B$. We apply the theorem to get

$$
\begin{aligned}
V\left(z \cdot K_{n} S\right) & =V\left(a K_{n} s_{1}+b K_{n} s_{2}+c K_{n} s_{3}\right) \\
& =V\left(K_{n}\left(a s_{1}+b s_{2}+c s_{3}\right)\right) \leq \varphi\left(a s_{1}+b s_{2}+c s_{3}\right)=\varphi(z \cdot s)
\end{aligned}
$$

and thus by fact (C),

$$
\begin{aligned}
l\left(K_{n} S\right) & =L\left(K_{n} S\right)=\iint_{B} \varphi\left(z \cdot K_{n} S\right) d \sigma=\iint_{B} V\left(z \cdot K_{n} S\right) d \sigma \\
& \leq \iint_{B} \varphi(z \cdot S) d \sigma=L(S)
\end{aligned}
$$

Corollary. $l K_{n} S \leq l S_{n}$ and $\lim _{n \rightarrow \infty} l\left(K_{n} S\right)=L(S)$ for $S \in A$.
Proof. $L \leq l$ always, and L is lower semicontinuous with respect to L_{1} convergence [3].

Remarks. Let f be an arbitrary finite-valued function on $[0,1]$, and let

$$
B_{n} f(x)=\sum_{r=0}^{n} f\left(\frac{r}{n}\right) p_{n r}(x), \quad x \in[0,1]
$$

be the nth Bernstein polynomial of f.
It is known that $V B_{n} f \leq V f$ for arbitrary f, [1]. The Cauchy-Steinhaus formula with V replacing φ shows that $l B_{n} F \leq l F$ for arbitrary triples $F=\left(f_{1}, f_{2}, f_{3}\right)$. However the Bernstein polynomials behave erratically for discontinuous functions and in particular $V B_{n} f+V f$ for most discontinuous functions. There exist badly discontinuous functions f such that $V f=\infty$ but such that $V B_{n} f \rightarrow 0$ [4].

Even for continuous functions of bounded variation we can have either

$$
\text { (a) } V K_{n} f<V B_{n} f \text { or (b) } V B_{n} f<V K_{n} f
$$

For (a), define f_{ϵ} to be a continuous "spike" function such that $f_{\epsilon} \equiv 0$ on

$$
\left[0, \frac{1}{2}-\epsilon\right] \cup\left[\frac{1}{2}+\epsilon, 1\right], \quad f_{\epsilon}\left(\frac{1}{2}\right)=1
$$

and linear on $\left[\frac{1}{2}-\epsilon, \frac{1}{2}\right]$ and $\left[\frac{1}{2}, \frac{1}{2}+\epsilon\right]$. Let $n=2$. Since $B_{2} f_{\epsilon}$ depends only on $x=0, \frac{1}{2}$, and 1 , the width of the spike does not affect $V B_{2} f_{\epsilon}$. On the other hand, the coefficients of $K_{2} f_{\epsilon}$ are integral means, so that $K_{2} f_{\epsilon}$ can be made uniformly small by making $\epsilon \rightarrow 0$. Since $K_{2} f_{\epsilon}$ is always a quadratic, this means $V K_{2} f_{\epsilon}<V B_{2} f_{\epsilon}$ for some ϵ.

For (b), define a spike function by $f(0)=0, f\left(\frac{1}{6}\right)=1, f$ linear on $\left[0, \frac{1}{6}\right]$, and [$\left.\frac{1}{6}, \frac{1}{3}\right]$, and $f \equiv 0$ on $\left[\frac{1}{3}, 1\right] . B_{2} f \equiv 0$, hence $V B_{2} f=0$ but since $K_{2} f(0)=\int_{0}^{1 / 3} f>0$, and $K_{2} f(1)=\int_{2 / 3}^{1} f=0$ we have $V K_{2} f>0$.

If f is of bounded variation, Lorentz [1] showed that $\lim V B_{n} f=V_{0} f$ where $V_{0} f$ is the variation computed over the points of continuity of f. For such functions, $V_{0} f=V_{E} f=\varphi(f)$ since discontinuities of the first kind cannot be points of approximate continuity. Thus by Theorem $1, \lim V K_{n} f=\varphi(f)=V_{0} f=\lim V B_{n} f$ whenever f is of bounded variation. If f is continuous but $V f=\varphi(f)=+\infty$, both $V B_{n} f$ and $V K_{n} f$ tend to $+\infty$ by lower-semicontinuity.

Finally we remark that all of the above results hold in the plane, and in particular for the nonparametric case $y=f(x)$, by using the Cauchy-Steinhaus formula in E^{2}, i.e. as an integral over the unit circle.

References

1. G. G. Lorentz, Bernstein polynomials, Univ. of Toronto Press, Ontario, 1953.
2. C. Goffman, Lower-semicontinuity and area functionals. I. The nonparametric case, Rend. Circ. Mat. Palermo 2, (1953), 203-235.
3. R. E. Hughs, Length for discontinuous curves, Arch. Rational Mech. Anal. 12 (1963), 213-222.
4. M. Price, On the variation of the Bernstein polynomials of a function of unbounded variation, Pacific J. Math. 27 (1968), 119-122.

Wayne State University,
Detroit, Michigan

[^0]: Received by the editors December 16, 1970 and, in revised form, March 25, 1971

