KANTOROVITCH POLYNOMIALS DIMINISH GENERALIZED LENGTH

BY MARTIN E. PRICE

The Kantorovitch polynomials of a summable function s, defined on [0, 1], are

where

$$K_n s(x) = \sum_{r=0}^n I_{n,r} p_{nr}(x)$$

$$n = 1, 2, 3, \dots; x \in [0, 1],$$

$$I_{n,r} = (n+1) \int_{r/(n+1)}^{(r+1)/(n+1)} s(t) dt$$

and

$$p_{nr}(x) = \binom{n}{r} x^r (1-x)^{n-r}.$$

They are the analogue for summable functions of the Bernstein polynomials $B_n f(x)$, and they possess similar properties [1].

In [2], Goffman defined a generalized variation $\varphi(s)$ for $s \in L_1[0, 1]$ as follows: Consider the space P of polygonal functions on [0, 1], with norm given by $||p||_1 = \int_0^1 |p|$, and denote the ordinary total variation of p by Vp. By the Frechet process, we may extend V to a unique lower-semicontinuous functional φ on the completion of P, the space $L_1 = L_1[0, 1]$ of equivalence classes of summable functions, such that for every $s \in L_1$ there exists a sequence $p_n \in P$ with $||p_n - s||_1 \to 0$ and $V(p_n) \to \varphi(s)$. We show that $VK_n s \leq \varphi(s)$ for all $s \in L_1$ and all n.

In [3], Hughs developed a generalized length L based on Goffman's variation φ . L is defined on the space A of equivalence classes of parametric generalized curves $S(t) = (s_1(t), s_2(t), s_3(t)), t \in [0, 1], s_i \in L_1$ with $||S||_A = \sum_{i=1}^3 \int_0^1 |s_i|$. L is obtained by completing the space B of polygonal triples (p_1, p_2, p_3) with the above norm and using the Frechet process to extend the elementary length l to a unique lower semicontinuous functional L on the completion of B, the space A. Set $K_n S \equiv (K_n s_1, K_n s_2, K_n s_3)$. We show that $lK_n S \leq LS$ for all n and all $S \in A$.

We need the following facts:

(A) $||s - K_n s||_1 \to 0$ if $s \in L_1$. [1]

(B) If $s \in L_1$, $\varphi(s) = V_E(s)$ where V_E is the total variation computed over the set E of points of approximate continuity of s. Thus $\varphi(s) \le V(s)$ and $\varphi(s) = V(s)$ if s is continuous. [2]

Received by the editors December 16, 1970 and, in revised form, March 25, 1971

(C) (Cauchy-Steinhaus Formula) See [3]. Let B be the surface of the unit sphere in E^3 , $z = (a, b, c) \in B$, $S = (s_1, s_2, s_3) \in A$, and $L(S) < \infty$, then

$$L(S) = \frac{1}{2\pi} \iint_{B} \varphi(z \cdot S) \, dc$$

where $\varphi(z \cdot S)$ is the generalized variation of the scalar function $z \cdot S$.

THEOREM 1. For $s \in L_1$ and all n, $VK_n s \leq \varphi(s)$.

Proof.

$$VK_{n}s = \int_{0}^{1} |K'_{n}s(x)| dx = n \int_{0}^{1} \left| \sum_{r=0}^{n-1} (I_{n,r+1} - I_{n,r}) p_{n-1,r}(x) \right| dx$$
$$\leq \sum_{r=0}^{n-1} |I_{n,r+1} - I_{n,r}|,$$

using properties of Euler's *B* function. By rewriting $|I_{n,r+1} - I_{n,r}| + |I_{n,r+2} - I_{n,r+1}|$ as $|I_{n,r+2} - I_{n,r}|$ whenever possible, the last sum becomes

$$\sum_{j=0}^{n} |I_{n,r_{j+1}} - I_{n,r_{j}}|; \qquad m \le n-1, \quad r_{0} = 0, \quad r_{m+1} = n,$$

and for each j, $I_{n,r_{j+2}} - I_{n,r_{j+1}}$ is of opposite sign from $I_{n,r_{j+1}} - I_{n,r_j}$.

Let $E \subseteq [0, 1]$ be the set of points of approximate continuity of s(x). E is of measure one since s is summable. Now if $I_{n,r_1} > I_{n,r_0}$, pick x_0 in $E \cap (0, 1/(n+1))$ such that $s(x_0) \le I_{n,0}$, and x_1 in $E \cap (r_1/(n+1), (r_1+1)/(n+1))$ such that $s(x_1) \ge I_{n,r_1}$. Thus $|s(x_1) - s(x_0)| \ge |I_{n,r_1} - I_{n,r_0}|$. Continuing, we can pick $x_2 \in E \cap (r_2/(n+1), (r_2+1)/(n+1))$ such that $s(x_2) \le I_{n,r_2}$, and since $I_{n,r_2} < I_{n,r_1}$,

$$|s(x_2) - s(x_1)| \geq |I_{n, r_2} - I_{n, r_1}|,$$

etc. In case $I_{n,r_1} < I_{n,r_0}$, we proceed analogously. In either case,

$$VK_n f \leq \sum_{j=0}^m |I_{n,r_{j+1}} - I_{n,r_j}| \leq \sum_{j=0}^m |s(x_{j+1}) - s(x_j)| \leq V_E s = \varphi(s).$$

By facts (B) and (A) and the lower semi-continuity of φ , we get

COROLLARY. $VK_n s \leq Vs$ and $\lim_{n \to \infty} VK_n s = \varphi(s)$ for $s \in L_1$.

THEOREM 2. If $s \in A$, $l(K_n S) \leq L(S)$ for all n.

Proof. We may assume $L(S) < \infty$. Consider the scalar functions $z \cdot K_n$ and $z \cdot S$ for each fixed $z \in B$. We apply the theorem to get

$$V(z \cdot K_n S) = V(aK_n s_1 + bK_n s_2 + cK_n s_3)$$

= $V(K_n (as_1 + bs_2 + cs_3)) \le \varphi(as_1 + bs_2 + cs_3) = \varphi(z \cdot s),$

[June

and thus by fact (C),

$$l(K_nS) = L(K_nS) = \iint_B \varphi(z \cdot K_nS) \, d\sigma = \iint_B V(z \cdot K_nS) \, d\sigma$$
$$\leq \iint_B \varphi(z \cdot S) \, d\sigma = L(S).$$

COROLLARY. $lK_n S \leq lS_n$ and $\lim_{n \to \infty} l(K_n S) = L(S)$ for $S \in A$.

Proof. $L \le l$ always, and L is lower semicontinuous with respect to L_1 convergence [3].

REMARKS. Let f be an arbitrary finite-valued function on [0, 1], and let

$$B_n f(x) = \sum_{r=0}^n f(\frac{r}{n}) p_{nr}(x), \quad x \in [0, 1],$$

be the *n*th Bernstein polynomial of f.

It is known that $VB_n f \le Vf$ for arbitrary f, [1]. The Cauchy-Steinhaus formula with V replacing φ shows that $lB_n F \le lF$ for arbitrary triples $F = (f_1, f_2, f_3)$. However the Bernstein polynomials behave erratically for discontinuous functions and in particular $VB_n f \rightarrow Vf$ for most discontinuous functions. There exist badly discontinuous functions f such that $Vf = \infty$ but such that $VB_n f \rightarrow 0$ [4].

Even for continuous functions of bounded variation we can have either

(a)
$$VK_n f < VB_n f$$
 or (b) $VB_n f < VK_n f$.

For (a), define f_{ϵ} to be a continuous "spike" function such that $f_{\epsilon} \equiv 0$ on

$$[0, \frac{1}{2} - \epsilon] \cup [\frac{1}{2} + \epsilon, 1], \quad f_{\epsilon}(\frac{1}{2}) = 1,$$

and linear on $[\frac{1}{2} - \epsilon, \frac{1}{2}]$ and $[\frac{1}{2}, \frac{1}{2} + \epsilon]$. Let n=2. Since $B_2 f_{\epsilon}$ depends only on $x=0, \frac{1}{2}$, and 1, the width of the spike does not affect $VB_2 f_{\epsilon}$. On the other hand, the coefficients of $K_2 f_{\epsilon}$ are integral means, so that $K_2 f_{\epsilon}$ can be made uniformly small by making $\epsilon \to 0$. Since $K_2 f_{\epsilon}$ is always a quadratic, this means $VK_2 f_{\epsilon} < VB_2 f_{\epsilon}$ for some ϵ .

For (b), define a spike function by f(0)=0, $f(\frac{1}{6})=1$, f linear on $[0, \frac{1}{6}]$, and $[\frac{1}{6}, \frac{1}{3}]$, and $f\equiv 0$ on $[\frac{1}{3}, 1]$. $B_2f\equiv 0$, hence $VB_2f=0$ but since $K_2f(0) = \int_0^{1/3} f > 0$, and $K_2f(1) = \int_{2/3}^1 f = 0$ we have $VK_2f > 0$.

If f is of bounded variation, Lorentz [1] showed that $\lim VB_n f = V_0 f$ where $V_0 f$ is the variation computed over the points of continuity of f. For such functions, $V_0 f = V_E f = \varphi(f)$ since discontinuities of the first kind cannot be points of approximate continuity. Thus by Theorem 1, $\lim VK_n f = \varphi(f) = V_0 f = \lim VB_n f$ whenever f is of bounded variation. If f is continuous but $Vf = \varphi(f) = +\infty$, both $VB_n f$ and $VK_n f$ tend to $+\infty$ by lower-semicontinuity.

1972]

MARTIN E. PRICE

Finally we remark that all of the above results hold in the plane, and in particular for the nonparametric case y=f(x), by using the Cauchy-Steinhaus formula in E^2 , i.e. as an integral over the unit circle.

References

1. G. G. Lorentz, Bernstein polynomials, Univ. of Toronto Press, Ontario, 1953.

2. C. Goffman, Lower-semicontinuity and area functionals. I. The nonparametric case, Rend. Circ. Mat. Palermo 2, (1953), 203–235.

3. R. E. Hughs, Length for discontinuous curves, Arch. Rational Mech. Anal. 12 (1963), 213-222.

4. M. Price, On the variation of the Bernstein polynomials of a function of unbounded variation, Pacific J. Math. 27 (1968), 119-122.

WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN