
Mathematical Structures in Computer Science (2022), 32, pp. 189–215
doi:10.1017/S0960129522000184

PAPER

Synchronizing words andmonoid factorization, yielding a
new parameterized complexity class?
Henning Fernau∗ and Jens Bruchertseifer

Theoretische Informatik, Abteilung Informatikwissenschaften, Fachbereich 4, Universität Trier, Trier, Germany
∗Corresponding author. Email: fernau@uni-trier.de

(Received 8 January 2021; revised 8 February 2022; accepted 31 May 2022; first published online 28 September 2022)

Abstract
The concept of a synchronizing word is a very important notion in the theory of finite automata. We con-
sider the associated decision problem to decide if a given DFA possesses a synchronizing word of length at
most k, where k is the standard parameter. We show that this problem DFA-SW is equivalent to the prob-
lem MONOID FACTORIZATION introduced by Cai, Chen, Downey, and Fellows. Apart from the known
W[2]-hardness results, we show that these problems belong to A[2], W[P], and WNL. This indicates that
DFA-SW is not complete for any of these classes, and hence, we suggest a new parameterized complexity
class W[Sync] as a proper home for these (and more) problems. We present quite a number of problems
that belong toW[Sync] or are hard or complete for this new class.

Keywords: Synchronizing word; deterministic finite automaton (DFA); parameterized complexity; Monoid Factorization;
W[Sync]

1. Introduction
Černý’s conjecture is arguably the most famous open combinatorial problem concerning deter-
ministic finite automata (DFA), somehow dating back to Černý (1964).1 Recently, a particular
Special Issue was dedicated to this conjecture being around for more than five decades; see Volkov
(2019). This Special Issue also contains an English translation of Černý’s paper, originally written
in Slovak, see Černý (2019).

The key notion in Černý’s conjecture is that of a synchronizing word. A word x is called syn-
chronizing for a DFA A, if there is a state sf , also called the synchronizing state of A, such that if
A reads x starting in any state, it will end up in sf . The Černý conjecture given by Černý et al.
(1971) states that every n-state DFA can be synchronized by a word of length (n− 1)2 if it can be
synchronized at all. Although this bound was proven for several classes of finite-state automata,
the general case is still widely open. The currently best upper bound is cubic, and only very little
progress has been made; see Frankl (1982), Pin (1983), Shitov (2019), Szykuła (2018) in alphabet-
ical, but incidentally also nearly in chronological order. Conversely, already Černý (1964) devised
a family of DFAs that attain the mentioned quadratic bound. For instance, the 4-state automaton
from Figure 3 has a smallest synchronizing word of length nine.

The notion of a synchronizing word is not only important from a mathematical perspec-
tive, offering a nice combinatorial question, but it is quite important in a number of application
areas, simply because synchronization is an important concept for many applied areas: paral-
lel and distributed programming, system and protocol testing, information coding, robotics, etc.

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184
https://orcid.org/0000-0002-4444-3220
mailto:fernau@uni-trier.de
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129522000184&domain=pdf
https://doi.org/10.1017/S0960129522000184

190 H. Fernau and J. Bruchertseifer

Therefore, it is also interesting to compute a shortest synchronizing word. Unfortunately, as it
was shown by Rystsov (1980) and Eppstein (1990), the corresponding decision problem DFA-
SW (defined in the following) is NP-complete. Possible applications of this problem are explained
in Kisielewicz et al. (2015). The problem has also been considered from the viewpoint of approx-
imation by Berlinkov (2014) and parameterized complexity by Bruchertseifer and Fernau (2021),
Fernau et al. (2015), Fernau and Krebs (2017), Montoya and Nolasco (2018).

DFA-SYNCHRONIZING WORD (DFA-SW)
Input: DFA A, k ∈N

Problem: Is there a synchronizing word w for A with |w| ≤ k?

It is important to note at this point that we are working with complete DFAs in our defini-
tion; that is, a DFA can be specified as A= (Q,�, δ, q0, F), where Q is the finite-state alphabet,
� is the finite input alphabet, δ :Q× � →Q is the complete transition function, and q0 ∈Q
and F ⊆Q specify the start state and the final state set that are actually inessential for the task
of synchronization. While DFA-SW is NP-complete, the complexity picture actually changes if
we allow undefined transitions (i.e., if we move over to partial DFAs); the corresponding syn-
chronization problem then becomes PSPACE-complete; see Martyugin (2014). In fact, also based
on the mentioned numerous applications of synchronizing automata, many variations have been
studied. Here, we only mention some recent papers as Fernau et al. (2019, 2020), Fernau andWolf
(2020), Wolf (2020). However, we will mostly restrict our attention to the most classical variant of
synchronizing automata in this paper.

We will continue to study the problem (DFA-SW) from the point of parameterized complexity.
The standard parameter for this problem is the length upper bound k. Also with future definitions
of parameterized problems, we will follow the convention that k always denotes the parameter.
As the synchronizability of DFAs can be checked in polynomial time (see Sandberg 2005; Volkov
2008) and due to the polynomial upper bound on a shortest synchonizing word (if existent) as
discussed above, we can assume that the parameter k is given in unary or binary, whatever is more
convenient to us. It was shown in Bruchertseifer and Fernau (2021), Fernau et al. (2015), Montoya
and Nolasco (2018) that this problem is W[2]-hard, even when restricted to quite particular (and
restricted) forms of finite automata.

Also, other parameters have been studied, in particular, in Fernau et al. (2015), but they are of
less interest to the present study where we focus on the standard parameter.

2. Organization of the Paper and Main Results
In Section 3, we introduce some basic notions of parameterized complexity. Observe that we pay
special attention to some complexity classes like A[2] orWNL that are less studied in the literature.
Most problems that we look at are W[2]-hard, but in our opinion, from a complexity theoretic
viewpoint, an exact classification of parameterized problems should be at least attempted, beyond
stating that they are W[1]-hard and hence most likely outside FPT. In Section 4, we focus on
studying (DFA-SW), a problem already defined in the introduction; here, our focus is on the
length upper bound k as a parameter. As we can see in Section 5, there are several problems FPT-
equivalent to (DFA-SW); this motivated us to introduce a new class of parameterized problems
that we callW[Sync]. We prove that

W[2]⊆W[Sync]⊆WNL∩W [P] ∩ A[2]
as a main result of Section 5. In particular, MONOID FACTORIZATION, BOUNDED
TRANSFORMATION RANK(r), and BOUNDED DFA-INTERSECTION are complete for W[Sync]. In
Section 6, we describe problems that are both W[2]-hard and belong to W[Sync]. Conversely, in

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

Mathematical Structures in Computer Science 191

Section 7, we look into problems that are W[Sync]-hard and belong to some of the classes WNL
orW[P] or A[2]. We also list problems (in Section 8) that behave similar to DFA-SW, beingW[2]-
hard and belonging to some of the classes WNL or W[P] or A[2], but where the exact relation to
W[Sync] is unclear. In Section 9, we return to variations of MONOID FACTORIZATION that often
present a completely different complexity behavior. In all sections, we highlight open problems in
the hope that this paper can serve as an incentive for further research. More general questions and
further thoughts are collected in the concluding Section 10.

A preliminary version of this paper appeared in Bruchertseifer and Fernau (2020).

3. A Primer in Parameterized Complexity
In this paper, we will encounter quite a number of notions in parameterized complexity. We will
assume some familiarity with basic notions of that theory on side of the reader in the following.
In particular, a parameterized reduction is a many-one reduction that consumes FPT-time (in our
cases, it mostly uses only polynomial time) and translates a parameter value k to a parameter
value of f (k) (of the target problem), for some computable function f . One important property
of this (as of all reasonable reduction notions) is transitivity: If there is a parameterized reduction
from (�1, κ1) to (�2, κ2) and from (�2, κ2) to (�3, κ3), then there is parameterized reduction
from (�1, κ1) to (�3, κ3). Here, κi denotes the parameterization (function) for clarity. A param-
eterized complexity class can be characterized by one (complete) problem, assuming the class is
closed under parameterized reductions. Examples comprise the following classes; for the typical
problems, the parameter will be always called k:

W[1] Given a nondeterministic single-tape Turing machine and k ∈N, does it accept the empty
word within at most k steps?

W[2] Given a nondeterministic multi-tape Turing machine and k ∈N, does it accept the empty
word within at most k steps?

A[2] Given an alternating single-tape Turing machine whose initial state is existential and that
is allowed to switch only once into the set of universal states and k ∈N, does it accept the
empty word within at most k steps?

WNL Given a nondeterministic single-tape Turing machine and some integer � ≥ 0 in unary and
k ∈N, does it accept the empty word within at most � steps, visiting at most k tape cells?

W[P] Given a nondeterministic single-tape Turing machine and some integer � ≥ 0 in unary and
k ∈N, does it accept the empty word within at most � steps, thereby making at most k≤ �

nondeterministic steps?

More details can be found in textbooks like Downey and Fellows (2013), Flum and Grohe
(2006). The Turing way to these complexity classes (i.e., using variants of Turing machines and
defining parameterized problems on these machines) is described also in Cesati (2003), Guillemot
(2011). However, choosing a “typical” problem� and defining a (parameterized) complexity class
as the set of all (parameterized) problems that are reducible (with a reasonable notion of reducibil-
ity) to� clearly also works for problems not related to Turing machines. In this paper, we actually
suggest a new parameterized complexity class W[Sync] as the class of parameterized problems
that can be (parameterized) reduced to DFA-SW, a class that is situated as drawn in Figure 1, that
is, somewhere between W[2] at its lower end and the intersection of WNL, A[2] and W[P] at its
upper end. Most of the remainder of this section and the following one is devoted to proving this
relation of W[Sync] to W[2], WNL, A[2] and W[P]. Further interesting complexity classes (in our
discussion) are as follows: FPT, W[3], W[SAT], A[3], para-NP and XP. Let us briefly introduce the
complexity classes FPT,2 XP and para-NP, also see Flum and Grohe (2006): If a parameterized

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

192 H. Fernau and J. Bruchertseifer

problem � can be solved in time O∗(f (k)) (for some function f) by a deterministic algorithm, �
belongs to FPT. If a parameterized problem � can be solved in time nf (k) for instances (x, k) of
size n for some function f , then � ∈ XP. If there is a nondeterministic algorithm running in time
O∗(f (k)) (for some function f), then � ∈ para-NP. For definitions of the other classes, we refer to
the mentioned textbooks. From the literature, the following relations are known:

• FPT⊆W[1]⊆W[2]⊆W[3]⊆ · · · ⊆W[SAT]⊆W[P]⊆ (para-NP∩ XP);
• FPT⊆W[1]= A[1]⊆W[2]⊆ A[2]⊆ A[3]⊆ · · · ⊆ AW[P]⊆ XP.

Each of the inclusions that we have explicitly written is conjectured but not known to be
strict. Also, no non-trivial inter-relations are known between the A- andW-hierarchies, apart from
W[t]⊆ A[t] for each t.

Guillemot defined WNL in Guillemot (2011) in the same way as we described it above.
Interesting formal language problems complete forWNL include BOUNDED DFA-INTERSECTION,
given k DFAs, with parameter k, plus the length of the word that should be accepted by all k
automata, or LONGEST COMMON SUBSEQUENCE, parameterized by the number of given strings.
We will come back to these problems with different parameterizations below. WNL is situated
above all levels of the W-hierarchy, because the last two mentioned problems are known to be
hard for W[t] for any t ≥ 1, see Bodlaender et al. (1995), Wareham (2001). This proves the first
part of the following theorem that we include also for the ease of reference.

Theorem 1.
⋃

t≥1 W [t]⊆WNL⊆ (para-NP∩ XP).
Proof. Clearly, by a standard product automaton construction, BOUNDED DFA-INTERSECTION
can be tested in time O(nk), where n is the maximum number of states of the input DFAs. Hence,
WNL is included in XP.

Recall that membership of BOUNDED DFA-INTERSECTION (parameterized by the number of
automata) in WNL follows by guessing an input word letter-by-letter, keeping track of the DFAs
by writing their k current states, plus a counter for the number of steps, on the tape of the Turing
machineM.We can do so by using asmany letters as there are states in the automata, plus q (which
is given in unary). Alternatively, when counting the number of bits needed to write down the tape
contents using the alphabet {0, 1}, this amounts in O(k log(n)) many bits, if n upper bounds the
size (number of bits) of (an encoding) of a BOUNDED DFA-INTERSECTION instance. Assuming
thatM has smany states, then there are obviously no more than s · 2O(k log n) many configurations
of M. With the help of an additional counter, using log(s · 2O(k log n))= log(s)+ O(k log n) many
additional bits, we can ensure that such a nondeterministic Turing machine M′ (simulating M)
would need nomore time than s · 2O(k log n) whenmoving through the configuration graph, avoid-
ing visiting configurations twice. This proves the claimed membership in para-NP. Hence,WNL is
included in para-NP.

As a final remark concerning this detour to parameterized complexity, observe that WNL is
also closely linked to the class N[f poly, f log] of parameterized problems that can be solved
nondeterministically (at the same time) obeying some time bound f (k) · nc for some constant c
and some space bound f (k) · log(n), where f is some (computable) function, k is the parameter
(value), and n gives the instance size, as discussed in Elberfeld et al. (2015). Our reasoning also
shows that BOUNDED DFA-INTERSECTION (parameterized by the number of automata) lies in
N[f poly, f log]. Hence, WNL can be seen as the closure of N[f poly, f log] under parameterized
reductions. So, although one can argue that N[f poly, f log] (and also some other classes intro-
duced by Elberfeld et al. 2015) is a better model of parameterized space complexity, WNL fits
better into the landscape of theW-hierarchy also depicted in Figure 1, being closed under parame-
terized reductions by its definition. Recall that parameterized reductions speak about time bounds
and are hence not that well related to space complexities. Therefore, Elberfeld, Stockhusen, and
Tantau considered other types of reductions in Elberfeld et al. (2015).

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

Mathematical Structures in Computer Science 193

Figure 1. Visualization of the complexity classes (“A→ B” means “A is contained in B”).

Because WNL is a less known class that is still quite central to our current discussion, let
us mention a variation of DFA-SW in the following. For a subset of states P ⊆Q of a DFA
A= (Q,�, δ, q0, F), we say that w ∈ �∗ is P-synchronizing if, for all p ∈ P, δ∗(p,w)= s for some
s ∈Q. In other words, a word is synchronizing for A if it is Q-synchronizing.

DFA-SW-FROM-SUBSET-SB (where SB indicates a size bound)
Input: DFA A with state set Q as well as k,m ∈N and subset P ⊆Q with |P| = k
Problem: Is there a P-synchronizing word w for A with |w| ≤m?

Notice that if m is given in binary and the restriction |P| = k is missing, then this problem
is even PSPACE-complete, because subset synchronization in itself (without the length bound)
is already PSPACE-complete; see Fernau et al. (2019) and Rystsov (1983) for more discussions.
However, ifm is presented in unary, as implicit in the problem definition, because the input DFA
comes with a list of its states and this list containsmore elements than k, then the problem is “only”
NP-complete, as it also follows from Montoya and Nolasco (2018), but this also follows when
considering P =Q. However, Montoya and Nolasco focused on the parameterized complexity of
DFA-SW-FROM-SUBSET-SB and could prove the following result.

Theorem 2. DFA-SW-FROM-SUBSET-SB, parameterized with the set size parameter k, is complete
for the class WNL, even when restricted to planar automata graph instances.

4. Finding a Home for DFA-SW
As mentioned above, DFA-SW is known to be W[2]-hard. However, no complexity class was
hitherto suggested to which DFA-SW belongs. In this section, we will describe three different
memberships.

Theorem 3. DFA-SW, parameterized with the length parameter k, is contained in the class WNL.

Notice that membership in WNL does not follow with the arguments presented by Montoya
and Nolasco (2018) for a different parameterization of the related problem DFA-SUBSET-SBSW,
because that argument makes explicit use of the fact that the given set P of states contains k
elements.

Proof. We now describe a nondeterministic Turing machine that visits at most f (k) many cells
(ever), providing the required reduction. Given a DFA A with state set Q and input alphabet �,
where, w.l.o.g., Q∩ � = ∅, together with a bound k on the length of a synchronizing word, a
Turing machineM is constructed that works as follows:

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

194 H. Fernau and J. Bruchertseifer

(1) M writes a word of length at most k over the alphabet� on its tape, followed by some letter
from the alphabetQ; thismeans thatM starts withmaking (atmost) k+ 1 nondeterministic
guesses.

(2) For each q ∈Q (this information can be hard-coded in the finite-state memory of M), M
first moves its head to the left end of its tape and then starts reading the tape content from
left to right. Each time a symbol a ∈ � is read,M updates the current state it stores accord-
ing to the transition function of A. Finally, M will read a symbol from Q, and it will only
continue working if this symbol equals the current state stored in the finite memory ofM.
Notice that (2) works deterministically.

(3) Only ifM has completely processed the loop described in (2) (without abort),M will accept.
This verifies that the guessed word over � is indeed synchronizing, always leading into the
state that was also previously guessed. Hence, M will accept the empty word if and only if
there is a possibility to guess a synchronizing word of length at most k. It is also clear that
the Turing machine makes at most (|Q| + 1)(2k+ 1) many steps.3

Unfortunately, we do not know if our problem isWNL-hard. Let us also remark that our reason-
ing in the previous result also proves that DFA-SW, parameterized with the length parameter k, is
contained in N[f poly, f log], a class introduced in Elberfeld et al. (2015) and also discussed above.
We could also re-interpret the arguments of the previous proof to show that DFA-SW belongs
toW[P], based on the Turing machine characterization ofW[P].

We failed when trying to put DFA-SW into W[SAT]. In order to understand the difficulties, let
us discuss a different strategy how to put DFA-SW intoW[P]. Recall the following relationships:⋃

t≥1
W[t]⊆W[SAT]⊆W[P]⊆ (XP∩ para-NP) .

W[SAT] is characterized (via parameterized reductions) by the following problem. Given an
arbitrary Boolean formula ϕ, with X being its set of variables, does there exist an assignment
α : X → {0, 1} that satisfies ϕ, such that at most k variables are set to true (i.e., to 1)? Here, k is the
parameter, also called the weight of the assignment. Similarly,W[P] is characterized by the follow-
ing problem. Given a Boolean circuit C, with X being its set of Boolean input variables, does there
exist an assignment α : X → {0, 1} of weight at most k that satisfies C? Apart from the fact that cir-
cuits (graph-theoretically speaking, directed acyclic graphs) can represent Boolean functionsmore
succinctly than formulas, another difference comes from the (related) fact that circuits can contain
implicit variables (associated to inner logical gates) that might have to be made explicit in Boolean
formulas, which means in particular that the weight of an assignment can change when moving
from a Boolean circuit to an equivalent Boolean formula. This is the reason why we can prove in
the following that DFA-SW, parameterized with the length parameter k, is contained inW[P], but
we do not know if we can adapt this proof toward showing membership inW[SAT]. As mentioned
above, we cannot tell what the relations betweenWNL andW[SAT] orW[P] are, but assuming that
WNL �=W[P] holds, the following construction also shows that DFA-SW, parameterized with the
length parameter k, is neitherWNL-hard norW[P]-hard.

Theorem 4. DFA-SW, parameterized with the length parameter k, is contained in the class W [P].

Proof. We only give a sketch of the construction of a Boolean circuit that allows an assignment
of weight k that outputs true if and only if the given DFA A= (Q,�, δ, q0, F) has a synchronizing
word of length at most k.

• We introduce an input gate Ia,i for each a ∈ � and 1≤ i≤ k. The meaning should be
the following: Symbol a is at position i in the synchronizing word that is guessed via an
assignment to these input gates. Hence, we check with a small auxiliary logical sub-circuit if
(exactly) one of the inputs from {Ia,i | a ∈ �} is set to one. In the following description, let w
denote the word of length k that is meant by a satisfying assignment.

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

Mathematical Structures in Computer Science 195

• Moreover, there are (internal) gates Sq,i,p for q, p ∈Q and 0≤ i≤ k, meaning that each of
these gates outputs true if A, when started to digest the input w within state q, will reach
state p after i steps. In particular, we can initialize Sq,0,p to output one (true) if and only if
q= p. For i> 0, the gate Sq,i,p outputs true if and only if both Ia,i and Sq,i−1,r output true and
δ(r, a)= p.

• Finally, the output gateO collects the information of all gates Sq,k,p; it outputs true if and only
if there is one p ∈Q such that for all q ∈Q, Sq,k,p outputs true.

It should be clear that the circuit that we described can be constructed in polynomial time if k is
given in unary (and in FPT-time otherwise, which is good enough for our purpose).

A reader who knows about the definition of theW-hierarchy in terms of weft will also recognize
that this construction does not prove membership within any fixed level of that hierarchy, because
the number of so-called large gates on paths from input gates to the output gate grows with k.

We are now going to prove membership in yet another parameterized complexity class, namely
A[2]. Besides the mentionedW-hierarchy, there is another hierarchy of hard parameterized prob-
lems, which is the A-hierarchy. The best explanation of this hierarchy can be found in the textbook
of Flum and Grohe (2006). It is known that W[t]⊆ A[t] for each level t of the hierarchies. In par-
ticular,W[1]= A[1], but no other equality is known. Moreover, it is unknown if A[2] is a subset of
W[P], so that the following membership of DFA-SW, parameterized with the length parameter k,
can be seen as an indication that our problem is not complete for A[2].

Recall that also A[2] possesses a characterization in terms of Turing machines. Now, we are
facing an alternating single-tape Turing machine whose initial state is existential and that is
allowed to switch only once into the set of universal states when trying to accept the empty word
in at most k steps, where k is the parameter. By observing that the switch between phases (1) and
(2) of the description of the Turing machine M in the proof of Theorem 3 can be also viewed as
switching between existentially and universally quantified states, M can be also re-interpreted to
show:

Theorem 5. DFA-SW, parameterized with the length parameter k, is contained in the class A[2].

The latter result also follows when combining the reductions of Lemmas 14 and 15 below,
because parameterized reductions are transitive as a relation between parameterized problems.

Let us now state the position of W[Sync] within the better known parameterized complexity
classes more formally.

Corollary 1. W [2]⊆W [Sync]⊆ A[2]∩WNL∩W [P] .

5. Further Problems Complete for W[Sync]
In the following problem statements, k is always the parameter that we are analyzing with respect
to parameterized complexity. In each case, we prove a completeness result forW[Sync].

5.1 DFAs with a sink state
Our first example is an easy modification of our basic problem DFA-SW. Recall that a state s of a
DFA is a sink state if for all input letters a, we have δ(s, a)= s. Observe that if a DFA A possesses
a sink state s, then A is synchronizable if and only if s is reachable from each (other) state of A;
moreover, s is then the unique possible synchronizing state.

DFA-SYNCHRONIZING WORD WITH A SINK (DFA-SW-SINK)
Input: DFA A with a sink state, k ∈N

Problem: Is there a synchronizing word w for A with |w| ≤ k?

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

196 H. Fernau and J. Bruchertseifer

Figure 2. How to define a transition function δ′ of a DFA
with a sink state f .

Lemma 2. There is a polynomial time computable parameterized reduction that produces, given
some DFA A and some integer k as an instance of DFA-SW, an equivalent instance (A′, k′) of DFA-
SW such that A′ possesses a sink state.

Proof. Consider the DFA A= (Q,�, δ, q0, F). Without loss of generality, assume � ∩Q= ∅ and
σ /∈ � ∪Q. Let �′ = � ∪Q∪ {σ } be the input alphabet of the DFA A′ that we are going to con-
struct. An example for this construction can be found below. Let s0, . . . , sk, f /∈Q be fresh states.
Let Q′ =Q∪ {s0, . . . , sk, f } be the states of A′. Define the transition function δ′ as described
in Figure 2. This describes the interesting aspects of the automaton A′. We claim that, let-
ting k′ = k+ 1, then A has a synchronizing word of length at most k if and only if A′ has a
synchronizing word of length (at most and exactly) k′.

Letw ∈ �∗ be a synchronizing word, leadingA into state qf ∈Q, with |w| ≤ k. Then, it is easy to
observe that the wordw′ = σ k−|w|wqf leadsA′ into the sink state f , whereverA′ starts. Hence,w′ is
a synchronizing word of length k′ as claimed. Notice that due to the sequence of states s0, . . . , sk, f ,
there cannot be any shorter synchronizing word in A′.

Conversely, let w′ be a synchronizing word of length at most k′ for A′. As f is a sink state,
it must be the synchronizing state. Since in particular δ′∗(s0,w′)= f , |w′| = k′ = k+ 1, and for
the same reason, w′ =w′′q for some w′′ ∈ (� ∪ {σ })k and q ∈Q. Observe that the special letter σ

either loops (on Q∪ {f }) or advances as any other letter from � (on Q′ \Q). Therefore, if w′ is
synchronizing forA′, then so is σ k−|w|wq, wherew is obtained fromw′′ by deleting all occurrences
of σ , that is, w ∈ �∗. As σ acts as the identity on Q, and because the final letter q indicates that,
upon starting in some state from Q, the automaton must have reached state q (as w′ is leading to
the sink state f), we can see that w is indeed a synchronizing word for A; moreover, |w| ≤ k. This
proves the correctness of the transformation.

We will give an example for this proof in the following. As an example automaton, we chose the
famous 4-state DFA designed by Černý (drawn in Figure 3) to illustrate that shortest synchroniz-
ing words could be surprisingly long, in this case, of length nine. More precisely, w= baaabaaab
leads all four states to q1, so that wq1 synchronizes the resulting automaton (in our construction)
if k≤ 9. The resulting automaton can be found in Figure 4.

Remark 1. Let us mention one more formal language fact about synchronizing words: there is a
synchronizing word of length exactly k for a DFA A if and only if there is a synchronizing word of
length at most k for A. This comes from the fact that if w is a synchronizing word, then also wu is
synchronizing for any word u. Therefore, we can also employ the problem variation asking about the
existence of a synchronizing word of length exactly k if it is more convenient.

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

Mathematical Structures in Computer Science 197

Figure 3. Černý’s 4-state automaton from Černý (1964).

5.2 Synchronizing subsets
As mentioned above, the question if a given subset of states can be synchronized poses even
a PSPACE-complete problem. When enriched with a length bound on the length of a subset-
synchronizing word, we are back to an NP-complete problem, assuming that the length bound
is given in a unary encoding. Motivated by these considerations, we consider the following
parameterized problem.

DFA-SW-FROM-SUBSET

Input: DFA A with state set Q, subset P ⊆Q, k ∈N

Problem: Is there a P-synchronizing word w for A with |w| ≤ k?

Recall that we previously discussed this problem with the parameter |P|, calling it DFA-SW-
FROM-SUBSET-SB for clarity.

Theorem 6. DFA-SW-FROM-SUBSET, parameterized by an upper bound k on the length of a
subset-synchronizing word, is complete for W [Sync].

Notice that our discussions from Remark 1 translate verbatim also to this problem variation.

Proof. As a Q-synchronizing word is just another name for a synchronizing word, it is
clear that DFA-SW-FROM-SUBSET is W[Sync]-hard. We prove membership in W[Sync] in the
following.

Consider a DFAA= (Q,�, δ, q0, F), together with a state subset P and an integer k. We define a
new DFA A′ = (Q′,�′, δ′, q0, F) and an integer k′ = k+ 1 such that A possesses a P-synchronizing
word of length k if and only if A′ has a synchronizing word of length k′.

Let P̄ = {p̄ | p ∈ P} consists of (barred) copies of the states in P and let Q′ =Q∪ P̄. Let c /∈ �

be a fresh letter. Let �′ = � ∪ {c}. The transition function δ′ equals δ when restricted to Q× �.
Now, fix some pfix ∈ P. Furthermore, define δ′(q, c)= pfix for q ∈Q \ P and δ′(p̄, c)= δ′(p, c)= p
as well as δ′(p̄, a)= p̄ for any p ∈ P and a ∈ �.

Now, if w is a P-synchronizing word for A, then (by construction) cw is a synchronizing word
for A′. Conversely, if v is a synchronizing word for A′, then it must contain at least one occurrence
of c, because otherwise there is no way to synchronize the states from P̄, as by construction, the
states in P̄ cannot be synchronizing states. Assuming that v is of minimum length, we can deduce
that v contains exactly one occurrence of c and this occurrence is at the very beginning of c. Now,
after reading c and starting out from Q′, the DFA A′ will be in any of the states of P, which means
that if we write v= cw, then w is a P-synchronizing word for A.

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

198 H. Fernau and J. Bruchertseifer

Figure 4. Černý’s 4-state automaton would
yield this (k+ 6)-state automaton in our con-
struction from Lemma 2.

5.3 Factoringmonoids
We now present a problem originally introduced by Cai et al. (1997) in the context of param-
eterized complexity. As also discussed in Section 9, it is crucial that the monoid in question is
implicitly given in this type of generator problem.

MONOID FACTORIZATION (see Cai et al. 1997)
Input: A finite set Q, a collection F = {f0, f1, . . . , fm} of mappings fi :Q→Q, k ∈N

Problem: Is there a selection of at most kmappings fi1 , . . . , fik′ , k
′ ≤ k, with ij ∈ {1, . . . ,m}

for j= 1, . . . , k′, such that f0 = fi1 ◦ fi2 ◦ · · · ◦ fik′ ?

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

Mathematical Structures in Computer Science 199

We can speak of k as (an upper bound on) the generation length of f0. This problem (without
the generation length bound k) was introduced as GEN in the seminal work of Kozen (1977)
and proven to be PSPACE-complete; it appeared as MS5 under the quite fitting name FINITE
FUNCTION GENERATION in Garey and Johnson (1979, p. 280).With the generation length bound,
MONOID FACTORIZATION, restricted to collections of bijections (i.e., permutations), was proven
to be NP-complete in Even and Goldreich (1981); this restricted problem was termed MINIMUM
GENERATOR SEQUENCE by Even and Goldreich. We will discuss further variations of MONOID
FACTORIZATION concerning aspects of parameterized complexity in Section 9.

With some background knowledge on transition monoids, it is clear that by interpreting a
given DFA A= (Q,�, δ, q0, F) as a collection FA of |�| many mappings fa :Q→Q, by setting
fa(q)= δ(q, a), we can solve a DFA synchronization problem given by (A, k) by solving |Q| many
instances (Fq, k) of MONOID FACTORIZATION, where Fq = {f0 = q} ∪ FA and the aim is to rep-
resent the constant target map f0 = q. The synchronization problem (A, k) is a YES-instance if
some of the instances (Fq, k) are YES-instances. This shows that DFA-SW, parameterized with
the length upper bound k, can be solved by a Turing reduction to MONOID FACTORIZATION,
parameterized with the generation length upper bound k. Below, we will strengthen this toward
presenting a many-one reduction.

Having a closer look at the proof ofW[2]-hardness of DFA-SW, parameterized with the length
upper bound k (also discussed below in more details), which was presented in Fernau et al. (2015),
we see that the resulting automaton has one sink state, and hence, this is the only possible syn-
chronizing state. This means that the Turing reduction suggested in the previous paragraph can be
indeed viewed as amany-one (Karp) reduction, as the constant target function is uniquely defined.
Hence, this reasoning shows that MONOID FACTORIZATION, parameterized with the generation
length upper bound k, is indeedW[2]-hard. This result has been shown already in Cai et al. (1997)
by a different reduction from DOMINATING SET.

Lemma 3. There is a polynomial time computable parameterized many-one reduction from
MONOID FACTORIZATION, parameterized with some generation length upper bound, to DFA-SW,
parameterized with some length upper bound.

Proof. Let F = {f0, f1, . . . , fm} be a collection of mappings fi :Q→Q and k ∈N. Define Q̂=
Q×Q∪ {s0, . . . , sk, sk+1, f }. Let � = {a1, . . . , am, σ , τ } and define the transition function δ :
Q̂× � → Q̂ as defined in Figure 5. This describes the interesting aspects of the automaton AF . An
illustrative example will be discussed below. We claim that (F, k) is a YES-instance of MONOID
FACTORIZATION if and only if (AF , k+ 2) is a YES-instance of DFA-SW. Namely, if (F, k) is
a YES-instance of MONOID FACTORIZATION, then there exists a selection of at most k map-
pings fi1 , . . . , fik′ , k

′ ≤ k, with ij ∈ {1, . . . ,m} for j= 1, . . . , k′, such that f0 = fi1 ◦ fi2 ◦ · · · ◦ fik′ .
Then, w= σ k−k′+1ai1 · ai2 · · · aik′ τ synchronizes the DFA AF . Clearly, w begins with σ k−k′+1.
When started in some (q1, q2), AF will be in state (q1, q1) after digesting σ k−k′+1. The word
ai1 · ai2 · · · aik′ will then drive AF into some state (q1, q′

2). Now, upon reading τ , AF could
only enter (the only) synchronizing state f if q′

2 = f0(q1) was true. If AF starts reading w in
any of the states {s0, . . . , sk, sk+1, f }, it is straightforward to check that AF will be in state f
thereafter.

Conversely, if w is any word of length at most k+ 2 that is synchronizing for AF , then it must
be of length exactly k+ 2, as this is the shortest path length from s0 down to f , which is a sink
state and must hence be the synchronizing state. This also enforces w to start with σ and to end
with τ . Also, w cannot contain another occurrence of τ , as this would lead to s0 again (from any
of the states si) and thereby prevent w from entering f , because the states si should be walked
through one-by-one, hence counting up to k+ 2. Let us study the longest suffix vτ of w that
satisfies v ∈ {a1, . . . , am}∗. By the structure of w that we analyzed before, we must have w= uσvτ ,

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

200 H. Fernau and J. Bruchertseifer

Figure 5. Transition function δ of the constructed DFA-SW instance.

for some possibly empty word u such that uσ starts with σ . In particular, |v| ≤ k, as |u| + |v| = k.
Hence, after reading the symbol σ preceding v, AF will be in one of the states (q, q) or si (for
some |u| + 1≤ i≤ k+ 1) or f . Now, digesting v leads us into one of the states sk+1 or f or (q, p),
with p= (fi1 ◦ fi2 ◦ · · · ◦ fik′)(q), from which we can enter f only (after reading τ) if f0(q)= p. This
shows that, if u= ai1 · ai2 · · · aik′ , then f0 = fi1 ◦ fi2 ◦ · · · ◦ fik′ .

Let us give an illustrative example for the construction used above in Lemma 3. We are
considering the following three mappings fi :Q→Q, with Q= {1, 2, 3, 4}.

fi 1 2 3 4
f0 1 1 1 1
f1 2 3 4 1
f2 1 2 3 1

This describes, together with some integer k≥ 0, our instance of MONOID FACTORIZATION. In
the equivalent instance of DFA-SW, the mappings f1 and f2 are modeled as the action of letters,
leading to a two-letter input alphabet, say, �′ = {a, b}, which is enriched by two more symbols,
σ , τ . In particular, σ and τ together model the target mapping f0 (which is constant in our case),
so that this construction, which can be found in Figure 6, results in another DFA capable of sim-
ulating the mentioned 4-state DFA designed by Černý (depicted in Figure 3) by an automaton
with a sink state, yielding a somewhat more complicated construction (to this end) than the
aforementioned one from Lemma 2 (see Figure 4).

Theorem 7. DFA-SW-SINK, parameterized by an upper bound k on the length of a synchronizing
word, is complete for W [Sync].

Proof. As each DFA-SW-SINK is trivially an instance of DFA-SW, the previous lemma shows the
result.

We like to mention that there is another algebraic problem studied in the literature that looks
quite similar to MONOID FACTORIZATION and that we define next:

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

Mathematical Structures in Computer Science 201

Figure 6. An example for our construction from Lemma 3. Notice the similarities of the mappings to the actions of letters in
Černý automaton (Figure 3). For arcs without labeling, the following holds: Arcs carried out with a or b, respectively, in the
Černý automaton (i.e., the mappings f1 and f2, respectively) are solid or dashed, respectively. Arcs resulting from transitions
with σ or τ , respectively, are dotted, or dotted and dashed, respectively. Note that the arcs labeled τ are omitted in all
vertices (i, j) for the sake of readability. They would lead from (i, i) to f and from (i, j) to (i, 1) when j �= i.

BOUNDED TRANSFORMATION RANK(1) (see Goralčík and Koubek 1995)
Input: A finite set Q, a collection F = {f1, . . . , fm} of mappings fi :Q→Q, k ∈N

Problem: Is there a selection of at most kmappings fi1 , . . . , fik′ , k
′ ≤ k, with ij ∈ {1, . . . ,m}

for j= 1, . . . , k′, such that f0 := fi1 ◦ fi2 ◦ · · · ◦ fik′ satisfies |f0(Q)| = 1 (i.e., rank
equals 1)?

With the idea of transformation monoids in mind, it is rather straightforward to see that this
problem can be viewed just as an algebraic reformulation of DFA-SW; this was also observed
in Volkov (2008). We therefore only state the consequence that is interesting for our context.

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

202 H. Fernau and J. Bruchertseifer

Corollary 4. BOUNDED TRANSFORMATION RANK(1), parameterized by an upper bound k on the
generation length, is complete for W [Sync].

Goralčík and Koubek (1995) also considered the problem BOUNDED TRANSFORMATION
RANK(r) for any r ≥ 1.4 This means that the condition |f0(Q)| = 1 is replaced by |f0(Q)| = r in
the problem definition above. By adding further elements to Q on which the mappings all act as
identities, one easily obtains the next result.

Corollary 5. For any r ≥ 1, BOUNDED TRANSFORMATION RANK(r), parameterized by an upper
bound k on the generation length, is hard for W [Sync].

As r is part of the problem definition (and hence fixed), we can strengthen the previous two
statements as follows:

Theorem 8. For any r ≥ 1, BOUNDED TRANSFORMATION RANK(r), parameterized by an upper
bound k on the generation length, is complete for W [Sync].

Proof. We will show how to reduce BOUNDED TRANSFORMATION RANK(r) to BOUNDED
TRANSFORMATION RANK(1), which completes the argument.

Given a set Q= {q1, . . . , qn}, a collection F = {f1, . . . , fm} of mappings fi :Q→Q and k ∈N

as an instance of BOUNDED TRANSFORMATION RANK(r), we construct an instance (Q̂, F̂, k̂)
of BOUNDED TRANSFORMATION RANK(1) as follows. Let Q̂=Q∪ {s} ∪ [k]∪ {c1, . . . , cr}, with
pairwise disjoint unions, and [k]= {1, . . . , k}. We interpret fi as acting on Q̂ by setting fi(s)= s,
fi(k)= c1 and fi(j)= j+ 1 for j ∈ [k− 1], as well as fi(x)= 1 if x ∈ {c1, . . . , cr}. We are now defin-
ing a collection F̂ of mappings from Q̂ to Q̂ that contains F in this sense. We add r · O(|Q|r)
many mappings gA,j : Q̂→ Q̂ into F̂. Here, A⊆Q, |A| = r, j ∈ [r]= {1, . . . , r}. More precisely,
A= {q�1 , . . . , q�r } with �j < �j+1 for j ∈ [r − 1]. For j ∈ [r − 1], let gA,j(q�j)= gA,j(cj)= cj+1, but
gA,j(ci)= c1 for i ∈ [r] \ {j}. The case j= r is covered by gA,r(q�r)= gA,r(cr)= s. Moreover, gA,j(x)=
gA,j(i)= 1 for any j ∈ [r], i ∈ [k], x ∈Q \A. In all other cases, gA,j(x)= x. Furthermore, we add
k− 1 increment mappings ιj with ιj(j)= j+ 1 if j ∈ [k− 1] that act as the identity on all other
elements of Q̂. Finally, let k̂= k+ r to complete our description of (Q̂, F̂, k̂) constructed from
(Q, F, k). Observe that the transformation is polynomial, because r is a constant. In particular,

|F̂| ≤m+ r ·
(|Q|

r

)
+ k− 1 .

If fi1 , . . . , fik′ , k
′ ≤ k, exist with ij ∈ {1, . . . ,m} for j= 1, . . . , k′, such that f0 := fi1 ◦ · · · ◦ fik′ sat-

isfies |f0(Q)| = r, then there is some set A⊆Q, |A| = r, such that f0(Q)=A. Let A= {q�1 , . . . , q�r }
with �j < �j+1 for j ∈ [r − 1]. Let kδ = k− k′. Composing first ι1 ◦ · · · ◦ ιkδ

with f0 and then with
gA,1, . . . , gA,r gives a mapping f̂0 with f̂0(Q̂)= {s}. As described, f̂0 can be expressed by composing
k+ r = k̂many mappings from F̂.

If h1, . . . , hk′ , k′ ≤ k̂, exist with hj ∈ F̂ for j= 1, . . . , k′, such that h0 := h1 ◦ h2 ◦ · · · ◦ hk′ satis-
fies |h0(Q̂)| = 1, then by the structure of the mappings in F̂, h0(Q̂)= {s}. Moreover, as executing
mappings from F after executing some gA,j has no further effects but possibly deferring the over-
all procedure, we can assume that this is not case here. Assuming that the mapping composition
yields h0, it is clear that the last mapping executed equals some gA,r. As in particular h0(1)= s, at
least k other mappings must be from F or some increment mappings ιj. As h0(c1)= s, we must
have used one mapping from {gA,j |A⊆Q} for each j ∈ [r]. Due to the length bound k̂= k+ r
that is exactly met due to counting through 1, . . . , k and through c1, . . . , cr , it is clear that the
maps from {gA,j |A⊆Q} were selected in order, starting with gA1,1, through gAr ,r . Moreover, as

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

Mathematical Structures in Computer Science 203

“wrong selections” are sent to 1 (which is unaffordable by the length bound k̂), A1 \ {q�1} ⊆A2,
with q�1 being the first element ofA1,A2 \ {q�2} ⊆A3, with q�2 being the second element ofA2, etc.
means that finally a set A= {q�1 , q�2 , . . . } is selected with |A| = r, a set with which we could have
started alternatively. Therefore, we can assume A=A1 =A2 = · · · =Ar . Hence, we can assume
that h0 is composed as h0 = f ◦ g, where f = h1 ◦ · · · ◦ hk, such that h1, . . . , hkδ

are increments,
hkδ+1, . . . , hk ∈ F and g = hk+1 ◦ · · · ◦ hk+r with hk+j = gA,j for some A⊆Q. Now, leaving out all
mappings gA,j and all possibly contained increment mappings, we are left with a sequence of k′ ≤ k
many mappings from F that can be re-interpreted as acting onQ. As their composition f0, applied
to Q, equals A, with |A| = r, the reverse implication is shown.

Finally, notice that due to the tight connections to automata theory, the previous proof can be
also interpreted as a W[Sync]-completeness result for the following family of problems RANK(r)
DFA-SYNCHRONIZING WORD (with r ≥ 1): Given a DFA A= (Q,�, δ) and a number k, does
there exist a word w ∈ �≤k such that |δ(Q,w)| = r? This is also true for the problem variation
where we ask whether |δ(Q,w)| ≤ r instead. Looking back at the previous proof, this would mean
that it is not that important to really count through all elements of up to r to ensure the exact
cardinality of the chosen set; smaller sets would suffice.

5.4 Intersecting regular languages

BOUNDED DFA-INTERSECTION (see Wareham 2001)
Input: A set A of deterministic finite automata with the same input alphabet �, k ∈N

Problem: Is there a w ∈ �∗ of length k accepted by all automata in A ?

Here, we took over the definition from Wareham (2001), but as we can also see from the
discussion in Remark 1, in our case it is not that important if we ask for a word exactly or at
most k.

Theorem 9. BOUNDED DFA-INTERSECTION, parameterized by an upper bound on the length of
the commonly accepted string, is complete for W [Sync].

Previously, Wareham (2001) only provedW[2]-hardness for this parameterized problem.

Proof. By Lemma 2, we need to consider only an instance A= (Q,�, δ, q0, F) of DFA-SW with
a sink state sf . Observe that A has a synchronizing word of length at most k if and only if
A has a synchronizing word of length exactly k, because wu is a synchronizing word if w is.
Define Aq = (Q,�, δ, q, {sf }) and consider the DFA collection A = {Aq | q ∈Q}. Observe that⋂

q∈Q L(Aq) contains some word w ∈ �k if and only if A has a synchronizing word of length
exactly k.5

Conversely, if A = {Ai | 1≤ i≤ �} is a collection of DFAs Ai = (Qi,�, δi, q0,i, Fi), then con-
struct an equivalent instance of DFA-SW as follows. First, assume that the state sets Qi are
pairwise disjoint. Then, take two new letters a, b to form �′ = � ∪ {σ , τ }. Let Q′ =

(⋃�
i=1 Qi

)
∪

{s0, . . . , sk, sk+1, f } be the state set of the DFAA that we construct. Define the transition function δ

as in Figure 7.
This describes the interesting aspects of the automaton A. We claim that, letting k′ = k+ 2,

then
⋂�

i=1 L(Ai) contains some word w ∈ �k if and only if A has a synchronizing word of length
(at most and exactly) k′, namely w′ = σwτ . More precisely, similar to the construction from
Lemma 3, the states si force to consider a word from {σ }�k{τ } if there should be a synchronizing
word of length k′ for A at all. One could move only from the part Ai of A to f when reading τ ,

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

204 H. Fernau and J. Bruchertseifer

Figure 7. Transition function δ of the constructed DFA-SW
instance.

which also forces to have been in the set of final states Fi before. Digesting σ as the first letter lets
Ai start in the initial state q0,i.

We could also discuss the variant when we ask for a word of length at most k to be accepted
by all automata in A . However, from the discussions of Remark 1, it immediately follows that
also this variant is complete for W[Sync]. Other variations show up when we switch to nonde-
terministic finite automata or to regular expressions for representing regular languages in these
intersection problems. In these cases (and without defining the problems formally), we can only
state the following observations.

Corollary 6. BOUNDED NFA-INTERSECTION, parameterized by an upper bound on the length of
the commonly accepted string, is hard for W [Sync].

Conversely, it would be interesting to discuss subregular language families for this type of prob-
lem, with the question in mind if we (still) obtainW[Sync]-complete problems or not. Notice that
(for instance) in the W[2]-hardness proof of Wareham (2001, Lemma 6) concerning BOUNDED
DFA-INTERSECTION, only very simplistic automata have been used. This also means that the cor-
responding regular languages can be easily expressed by simple regular expressions, leading to the
following result.

Corollary 7. BOUNDED REGULAR-EXPRESSION-INTERSECTION, parameterized by the length of
the commonly accepted string, is hard for W [2].

The exact position of BOUNDED NFA-INTERSECTION and of BOUNDED REGULAR-
EXPRESSION-INTERSECTION, in particular with respect to W[Sync], poses open questions. It
would be also interesting to discuss further restrictions, leading to subclasses of NFA or of reg-
ular expressions, where it might be easier to prove membership in W[Sync]. It might be also an
idea to quantify the degree of nondeterminism in these studies; we refer to Goldstine et al. (1992).
In a sense, the preceding discussions are continued in the next sections, where we discuss other
problems betweenW[2] andW[Sync] or hard forW[Sync], where again the precise parameterized
complexity status in unknown.

6. Problems between W[2] and W[Sync]
One natural way to get problems belowW[Sync] is to consider only restricted variants of automata
as admissible instances of DFA-SW. For instance, above we considered DFA-SW-SINK. However,

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

Mathematical Structures in Computer Science 205

it is not always clear that we arrive at problem variants that are complete forW[Sync]. For instance,
Bruchertseifer and Fernau (2021) showed that the further restriction to so-called TTSPL automata
(where the automaton multi-graphs can be described as two-terminal series-parallel multi-graphs
with loops) results in a variation of DFA-SW that is still W[2]-hard, which we were able to con-
cretize in the long version to the effect that it is “only” contained in W[Sync]. In actual fact,
it is an open problem if this problem variant is contained in W[2] or W[Sync]-hard, or really
something “in-between.” As shown byMöhring (1989), there are quite close connections between
TTSP(L) graphs and so-called series-parallel partial orders. Without going into any details here,
observe that the mappings Q→Q that can be associated to input letters are monotone with
respect to the series-parallel partial order corresponding to the TTSPL automaton graph. Our
earlier constructions show:

Corollary 8. DFA-SW, restricted to DFAs with TTSPL automata graphs, is polynomial time equiv-
alent toMONOID FACTORIZATION, restricted to collections of mappings F that are monotone with
respect to a given series-parallel partial order on the finite ground set Q.

This might indicate that we have found yet another class of parameterized problems living
inside the by now classical parameterized complexity classes. However, this is just another open
problem. As surveyed in Martyugin (2009), there are quite a number of subregular families of
DFAs whose length-bounded synchronization problem stays NP-complete. A concise study of the
corresponding parameterized complexities is still lacking. These are good further candidates of
problems that are possibly complete forW[Sync], yielding lots of open problems.

But, there are further problems lying betweenW[2] andW[Sync], as we will see next.

6.1 Satisfying constraint satisfaction formulae
We consider constraint satisfaction formulae in conjunctive normal form, or CSP CNF for short,
in the following. A CSP CNF formula ϕ on k variables x1, . . . , xk is given by a finite universe
A, atomic sentences xi = a for 1≤ i≤ k and a ∈A and a CNF built from these atomic sentences.
Hence, for A= {0, 1}, this is equivalent to a classical Boolean CNF formula.

CSP CNF SATISFIABILITY

Input: A CSP CNF formula ϕ on k variables x1, . . . , xk given by a finite universe A,
atomic sentences xi = a for 1≤ i≤ k as well as a ∈A and a CNF built from these
atomic sentences

Problem: Is ϕ satisfiable?

The Rystsov-Eppstein proof for NP-hardness of DFA SYNCHRONIZATION given by Rystsov
(1980) and Eppstein (1990) can be generalized to cope with CSP CNF formulae, preserving the
parameter. This observation already proves:

Lemma 9. CSP CNF SATISFIABILITY ∈W [Sync].

What about the converse? We do not know, but we can prove instead the following hardness
result.

Lemma 10. CSP CNF SATISFIABILITY is W [2]-hard.

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

206 H. Fernau and J. Bruchertseifer

Proof. We reduce from HITTING SET, a standard W[2]-complete problem. Let U be a universe
and let S be a set system over U. Moreover, k is the parameter. The task is to choose k elements
u1, . . . , uk ∈U such that for each S ∈ S , ui ∈ S for some 1≤ i≤ k. To express this task as a CSP
CNF formula with variables x1, . . . , xk, we simply add the clauses

k∨
i=1

∨
s∈S

xi = s

for each S ∈ S . Now, it should be clear that we can choose at most k different elements
u1, . . . , uk ∈U to cover all sets in the set system S if and only if the resulting CSP CNF formula
(over the universe U) is satisfiable.

6.2 Long subsequences
We now discuss the well-known LONGEST COMMON SUBSEQUENCE problem.

LONGEST COMMON SUBSEQUENCE

Input: A set of � strings x1, . . . , x� over an alphabet �
Problem: Is there a string w ∈ �k occurring in each of the xi as a subsequence?

As explained in Wareham (2001), by building an automaton Ai for each xi that accepts all
subsequences of xi, it is not hard to solve a LONGEST COMMON SUBSEQUENCE instance by a
BOUNDED DFA-INTERSECTION instance, preserving our parameter. Hence:

Proposition 11. LONGEST COMMON SUBSEQUENCE ∈W [Sync].

Observe that we can also use the previous proposition to prove Lemma 9, because one
can modify the proof of Theorem 3 in Bodlaender et al. (1995) to show the reduction
CSP CNF SATISFIABILITY ≤FPT LONGEST COMMON SUBSEQUENCE. Unfortunately, we do not
know if LONGEST COMMON SUBSEQUENCE is also hard for W[Sync]. We only know W[2]-
hardness from Bodlaender et al. (1995); further membership results were unknown hitherto, so
the previous proposition remedies this situation a bit.

6.3 Discussions
One could also think of many ways to restrict the inputs of BOUNDED DFA-INTERSECTION. For
instance, observe that the automata constructed in the argument of Proposition 11 are all accept-
ing finite languages. Is there a converse reduction from such a BOUNDED DFA-INTERSECTION
instance to some LONGEST COMMON SUBSEQUENCE instance? Might this open question lead to
another interesting complexity class betweenW[2] andW[Sync]?

Let us also mention that Guillemot (2011) has shown that LONGEST COMMON SUBSEQUENCE,
parameterized by the number of strings �, is complete for WNL. Likewise, BOUNDED DFA-
INTERSECTION, parameterized by the number of automata, is complete forWNL. Hence, whether
or not two problems are FPT-equivalent clearly depends on the chosen parameterization.

Of course, having found two concrete problems between W[2] and W[Sync] leads to the nat-
ural open question if they are mutually reducible. As mentioned above, we only know that
CSP CNF SATISFIABILITY ≤FPT LONGEST COMMON SUBSEQUENCE. Further examples of prob-
lems belowW[Sync] can be obtained by restricting BOUNDED DFA-INTERSECTION to subclasses
of DFA. Notice that also for several such restricted classes of DFA, the basic problem is still
NP-hard; see Arrighi et al. (2021) for a recent study.

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

Mathematical Structures in Computer Science 207

7. Problems Hard for W[Sync]
In the following problem statements, k is always the parameter that we are analyzing with
respect to parameterized complexity. In each case, we prove a hardness result for W[Sync]. We
remind the reader about the unknown status of BOUNDED NFA-INTERSECTION. We also discuss
memberships inWNL, A[2], A[3], andW[P].

7.1 Intersecting regular languages again
Lemma 12. BOUNDED NFA-INTERSECTION, parameterized by the length of the commonly
accepted string, is contained in WNL.

Proof. We only sketch this proof, as it parallels previous ones. Let A be a collection of NFAs
and k ∈N. We can design a nondeterministic one-tape Turing machineM (starting on the empty
input) that first guesses a string w of length k and then verifies, for each automaton A ∈ A , that
A accepts w. Only if all these simulations succeed, M will accept. As required, M needs only
space k.

However, it is not clear to us how we could limit the number of guessing steps in the simulation
of the previous proof; that is, it is an open question if BOUNDED NFA-INTERSECTION belongs to
W[P]. Likewise, it is an open question if BOUNDED NFA-INTERSECTION belongs to A[2], because
it is not clear how to make this simulation work with only one switch from existential to universal
states. Without going into details here, let us mention that with one further switch from univer-
sal to existential states, an alternating Turing machine could be designed that simulates a given
BOUNDED NFA-INTERSECTION instance in time f (k), which gives (see Flum and Grohe 2006 for
details) the following result.

Lemma 13. BOUNDED NFA-INTERSECTION, parameterized by the length of the commonly
accepted string, is contained in A[3].

7.2 Extensions and orderings of words
Extension variants of SYNCHRONIZING WORD have been studied before, as in Fernau and
Hoffmann (2019). The underlying problem, which depends on the choice of a partial order ≺
on the set of all words, is defined as follows:

EXT DFA-SW-≺
Input: DFA A with input alphabet �, u ∈ �∗

Problem: Is there a w ∈ �∗, u≺w, such that w is minimal for the set of synchronizing
words for A with respect to ≺ ?

Please note that the complexity varies fundamentally with the choice of the partial order. In
the following, we will concentrate on the length-lexicographical ordering ≤ll as the partial order,
where v≤ll w means that either |v| < |w| or that |v| = |w| and v≤lex w, where v≤lex w refers to
a lexicographical (total) order induced by a given total order on the alphabet. In Fernau and
Hoffmann (2019) and in Bruchertseifer and Fernau (2021), we are also discussing other (natu-
ral) partial orders. It should be noted that in some cases, the extension variants are solvable in
polynomial time, while other cases lead to NP- or co-NP-hard problems. In particular, there is a
co-NP-hardness of EXT DFA-SW-≤ll. To avoid clumsy formulations, we will therefore consider
the NP-hard problem CO EXT DFA-SW-≤ll instead that reverses YES with NO answers compared
to EXT DFA-SW-≤ll.

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

208 H. Fernau and J. Bruchertseifer

Theorem 10. CO EXT DFA-SW-≤ll, parameterized by |u|, is contained in WNL∩W [P]∩ A[2],
but one can reduce DFA-SW, parameterized by a length upper bound k, to CO EXT DFA-SW-≤ll,
parameterized by |u|.
Proof. For membership CO EXT DFA-SW− ≤ll ∈WNL∩W[P]∩ A[2], we canmodify the accord-
ing proofs of Theorems 3, 4, or 5, constructing a nondeterministic Turing machineM as follows,
given A and u. As in the previous construction, the machine can first guess a possible word
w≤ll u and verify if it is synchronizing. If such a word is found, then (A, u) is a NO-instance.
The reduction itself checks if A is synchronizable at all, which can be done in polynomial time
according to Sandberg (2005) and Volkov (2008). We also have that ifM does not find a synchro-
nizing word w≤ll u, then (A, u) is a YES-instance, because as A is synchronizable, there must be a
synchronizing word v. Remind that according to the previous tests, u≤ll vmust hold.

We are now turning to the second claim. Consider a DFA A on the input alphabet �, together
with a number k, as an instance of DFA-SW. We can first check in polynomial time if A is syn-
chronizable at all. If A is not synchronizable, then (A, k) (clearly) is a NO-instance of DFA-SW,
so our reduction will produce some fixed NO-instance of CO EXT DFA-SW-≤ll. Hence, we now
assume that A is synchronizable. Let c /∈ � be a fresh letter. Consider an arbitrary ordering <

on �, extended by c< x for all x ∈ � toward an ordering on �̂ = � ∪ {c}. We are going to define
the DFA Â as an extension of A, working on the same state set Q. Let c simply act as the identity
on Q. Hence, no word from c∗ is synchronizing for Â. As A is synchronizable, Â is also synchro-
nizable. Consider Â together with u= ck+1 as an instance of CO EXT DFA-SW-≤ll. If Â has a
synchronizing word w of length at most k, then clearly u is not extendible, as |w| < |u|. Otherwise,
as Â is synchronizable, Âmust have some synchronizing word w with |w| ≥ |u|, and any synchro-
nizing word of Â is of length at least |u|. As u is the smallest of all words in �̂∗ of length at least |u|,
any synchronizing word will hence extend u. Hence, if Â has no synchronizing word of length at
most k, then u is extendible.

The natural open question is if CO EXT DFA-SW-≤ll is inW[Sync].
In Bruchertseifer and Fernau (2021), we also showed that EXT DFA-SW-≤| is W[3]-hard,

where | refers to the (scattered) subsequence ordering. But it is an open question if this exten-
sion problem belongs to W[3]. Notice that there are few natural parameterized problems higher
up in theW-hierarchy; see Chen and Zhang (2006). However, the very idea of extension problems
(not only applicable to formal language problems) seems to lead to such problems; we also refer
to Bläsius et al. (2019), Casel et al. (2018).

7.3 Non-universality questions for NFAs

BOUNDED NFA NON-UNIVERSALITY

Input: A nondeterministic finite automaton A= (Q,�, δ,Q0, F), k ∈N

Problem: Is there a word w ∈ �k that is not accepted by A?

Lemma 14. BOUNDED NFA NON-UNIVERSALITY is W [Sync]-hard.

Proof. We reduce from BOUNDED DFA-INTERSECTION. Let A be a set of deterministic finite
automata with the same input alphabet �. To be more precise, let A = {A1, . . . ,An} with
Ai = (Qi,�, δi, qi,0, Fi) for 1≤ i≤ n. Without loss of generality, let Qi ∩Qj �= ∅ imply that i= j.
Define Q= ⋃n

i=1 Qi. Let A= (Q,�, δ,Q0, F) be an NFA that is defined as follows. The set of
initial states Q0 equals {qi,0 | 1≤ i≤ n}. The final states are F = ⋃n

i=1 (Qi \ Fi). Interpreting the

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

Mathematical Structures in Computer Science 209

function δi as a set of triples (qi, a, pi), with qi, pi ∈Qi and a ∈ �, we can define the relation δ as
δ = ⋃n

i=1 δi. Now, w ∈ �∗ is accepted by all DFAs Ai if and only if w is not accepted by A, because
the state sets Qi are pairwise disjoint.

Observe that the NFA A constructed in the preceding proof is very special, as its transition
relation is actually a mapping. The only source of nondeterminism comes from the fact that A
has n initial states. Alternatively, we could create a new single initial state q0 and add transitions
(q0, a, pi) whenever there is a transition (qi,0, q, pi) ∈ δi. This way, we can get an NFA A′ with the
property that for any w ∈ �+, w is accepted by all Ai if and only if w is not accepted by A′. Notice
that now there is only one state (namely q0) that can be seen as the source of nondeterminism ofA′.
In particular, this proves that the number of “nondeterministic states” is not a useful (additional)
parameter. Moreover, if an NFA with a single initial state and no “nondeterministic state,” that is,
a DFA, is given, the question of the existence of a word of length k that is not accepted by this
automaton becomes easy (solvable in polynomial time) by a product automaton construction,
reducing it to the question of testing a single DFA for non-emptiness.

Lemma 15. BOUNDED NFA NON-UNIVERSALITY belongs to A[2].

Proof. We describe the work of an alternating single-tape Turing machine M that can be pro-
duced from a given NFA A= (Q,�, δ,Q0, F) and k ∈N in polynomial time, such that M accepts
the empty word in 2k steps if and only if there is a word w ∈ �k that is not accepted by A. In
the following, we describe how M works, and this way we also give sufficient details on how to
constructM. The state set ofM consists of P = {p0, . . . , pk} andQ (the state set of the given NFA),
where P \ {pk} are existential states andQ∪ {pk} are universal states. The state p0 is the initial state
ofM. The set of final states ofM is Q \ F.

• First,M writes k letters from� on its tape, moving its head from left to right. In this phase,M
traverses the states p0, . . . , pk in order. It ignores the tape contents (which should be empty
anyways in the beginning).

• After entering pk, M reads the tape contents backwards, until it reaches the left end of the
tape (again). More precisely, when being in state pk, M ignores its tape contents, and stays
where it is, but moves from state pk (universally) to any of the states of Q0.

• When being in a state q from Q,M does the following:
– It reads a tape symbol a.
– If (q, a, p) ∈ δ,M moves to state p.
– The tape head moves one step to the left.

• When M detects the right border of the tape, it stops working and accepts if it is in a state
from Q \ F.

As the states of Q∪ {pk} are universal, all possible computation paths of A are checked if they do
not accept the guessed word w ∈ �k. Therefore, the described reduction works.

Notice that there are several aspects of the reduction described in the previous proof that might
need small adaptations if we use a different concrete model of an alternating Turing machine. For
instance, we (implicitly) assumed a Turing machine model where the tape is only (potentially)
infinite to the right, but bounded to the left, and the left border could be detected. If we assume a
tape that is (potentially) infinite to both sides, then we might need two more steps (of the Turing
machine) to implement a left border by first printing a special border symbol and reading it in the
end. But these details are inessential for our complexity result.

It is unclear to us (and hence an open question) if BOUNDED NFA NON-UNIVERSALITY
belongs to WNL or to W[P], because in both cases, we face a model of nondeterministic Turing

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

210 H. Fernau and J. Bruchertseifer

machine (if we follow the Turing way paved by Cesati 2003) that cannot cope with checking all
possible nondeterministic ramifications of the given NFA, in particular, because the step bounds
are given in unary. This leads to the intuition that BOUNDED NFANON-UNIVERSALITY is indeed
“harder” than DFA-SW. However, we do not see either why BOUNDED NFANON-UNIVERSALITY
should be hard forWNL or forW[P]. For instance, in order to proveWNL-hardness, one could start
with a BOUNDED DFA-INTERSECTION instance (A , k), now parameterized by |A |. However,
in any classical construction linking BOUNDED DFA-INTERSECTION to BOUNDED NFA NON-
UNIVERSALITY, there is no obvious connection between |A | and the string length parameter of
BOUNDED NFA NON-UNIVERSALITY.

8. Problems that Feel Similar to Synchronizing DFAs
In this section, we like to collect problems that are W[2]-hard and belong at least to some of the
classes A[2], W [P] , or WNL, but where the relation to W[Sync] is unknown. Alas, we can present
only one concrete problem, again related to synchronization.

Türker and Yenigün (2015) asked to extract a synchronizable sub-automaton that is as small
as possible, obtained by deleting letters from its specification. This notion of a sub-automaton is
of particular interest to us, as we are dealing with completely specified deterministic automata,
and DFAs are not closed under most other notions of sub-automaton one might come up with,
because they tend to produce incomplete automata. Türker and Yenegün formalized this idea
as a weighted minimization problem. For our purposes, it is sufficient to consider the following
unweighted variant:

DFA-MSS (referring to a minimum synchronizable sub-automaton)
Input: DFA A with input alphabet �, k ∈N

Problem: Is there a sub-alphabet �̂ ⊆ �, |�̂| ≤ k, such that the restriction of A to �̂ is
synchonizable?

Interestingly, Türker and Yenegün used nearly the same reduction as Fernau, Heggernes, and
Villanger in Fernau et al. (2015) for a different purpose to prove the following result.

Theorem 11. DFA-MSS is NP-complete.

From that reduction, we can observe the following.

Corollary 16. DFA-MSS, parameterized by the upper bound k on the size of the selected alphabet,
is W [2]-hard.

As with the other W[2]-hard problems considered in this paper, membership in W[2] is open.
Also in this case, we can prove membership in WNL, although this is not completely trivial this
time.

Theorem 12. DFA-MSS is contained in WNL∩W [P].

Proof. Let (A, k) be an instance of DFA-MSS. Notice that in a first preprocessing step, we can elim-
inate letters a′ that act the same on the state set Q as another letter a that we decide to keep. Such
a rule can be implemented to run in polynomial time, as we simply loop over all pairs of letters,
so that we can now assume to face an automaton A with input alphabet � and state set Q such
that |�| ≤ |Q||Q|. Moreover, we can assume that � contains more than log(|Q|) many symbols,
as otherwise we can test all subsets of � (for synchronizability) in polynomial time. Finally, we
can test in polynomial time if A itself is synchronizable at all, as proven in Sandberg (2005) and

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

Mathematical Structures in Computer Science 211

Volkov (2008). Recall that the algorithm checking synchronizability tests if any pair of states can
be synchronized within at most |Q| steps. We adapt this strategy in the following.

Now, we hard-wire the DFA into a Turing machineM as described in the following. In partic-
ular, this means that this Turing machine can keep track of pairs of states, say, (q, p) and update
this information toward (q′, p′) in its finite memory (alternatively, on the tape, using state letters)
upon reading a symbol a ∈ �, such that q′ is reached from q (in the given DFA) and p′ is reached
from p upon reading a. We also assume a fixed linear ordering< on the state setQ, and moreover,
we assume that Q∩ � = ∅. Let qa and qb be the smallest and second-to-smallest states in Q.

The Turing machine M first guesses a sub-alphabet �′ by writing the corresponding k input
letters on its tape. Moreover, it writes down qa next to qb. After reading (and memorizing) the
current state pair (q, p), initially (q, p)= (qa, qb), the machine (nondeterministically) reads one of
the k guessed input letters on its tape and transfers to (q′, p′) in its internal memory. It continues
doing so until it reaches a pair (r, r) for some r ∈Q. If it reaches such a pair, it is verified that the
pair (q, p) written on the tape can be synchronized. It continues by incrementing p on the tape
(according to the linear order <) and then testing the synchronizability of the new pair of states
on the tape with respect to the guessed sub-alphabet.M loops until the largest element of Q (with
respect to <) is reached. Then, it would increment the first component q of the pair and set the
second component of the pair of states to the smallest state larger than the first component’s state;
then, again the inner loop is entered. Finally, when reaching the largest state in the first compo-
nent, the procedure terminates, this way verifying that the automaton is indeed synchronizable
when restricted to the guessed alphabet.

Obviously, the machine M uses only k+ c space for some constant c, depending upon details
of the implementation. This proves that DFA-MSS belongs toWNL.

Toward proving membership in W[P], recall that two states (q, q′) are synchronizable if and
only if there is a path in the following directed auxiliary graph from (q, q′) to the target ver-
tex t: V =Q×Q∪ {t} is the set of vertices. There is an arc from (q, q′) to (p, p′) if there is
some letter a such that the given DFA makes transitions from q to p and from q′ to p′ upon
reading the letter a. Moreover, there are arcs from any vertex (q, q) to t. In our case, after having
guessed the sub-alphabet, this information can be used to construct a sub-graph of the graph just
described and write its description down on the tape (in polynomial time). Now, we can use, for
example, Dijkstra’s algorithm to decide if there is such a path in this sub-graph, deterministically
looping through all pairs of states. This describes a Turing machineM′ that first makes k guesses
and then works deterministically a polynomial number of steps and hence proves membership
inW[P].

The reader might have expected in the previous proof that logarithmic space would be needed
by a Turingmachine that (basically) verifies reachability in a graphwith |Q|2 many vertices. Notice
that this is implicit in the model, because the Turing machine writes down letters of an arbi-
trary alphabet on its tape, not just bits. Breaking down to the bit level, one observes that indeed
2 log2(�|Q|�)+ k log2(�|�|�) many bits are necessary to write down the letters used by the Turing
machine in the previous construction.

Although we found similar parameterized complexity results for DFA-MSS as for DFA-SW,
we are not aware of further close links between both problems. In particular, it remains an open
question how to solve one problem with the help of the other (respecting our choice of parame-
ters). In particular, the first Turing machine constructed in the previous proof (or straightforward
re-interpretations) does not show membership inW[P], because the number of nondeterministic
(guess) steps is not bounded in k (so that we had to design a second Turingmachine that worked in
a different way), nor in A[2], since after guessing k letters, it would enter a universal state (to ensure
that all pairs of states are tested for synchronizability), but then the synchronizing word should
be guessed again, that is, now this machine would enter again some existential states. Even then,
the number of steps is not bounded by a function in k, so that this does not prove membership

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

212 H. Fernau and J. Bruchertseifer

in A[3].6 Furthering this question, we do not know of any fixed level of the A-hierarchy to which
this problem belongs.

9. Further Comments and Discussions on MONOID FACTORIZATION
Observe that it is important that the monoid used in MONOID FACTORIZATION is only implicitly
given, not by a multiplication table. A variation could be:

MONOID FACTORIZATION (Variation)
Input: A finite set M, a binary operation ◦ given in the form of a multiplication table,

such that (M, ◦) forms a finite monoid, with neutral element e ∈M, a target
element t ∈M, a finite subset B⊆M, k ∈N

Problem: Is there a selection of at most k elements b1, . . . , bk′ , k′ ≤ k, from B, such that
t = b1 ◦ b2 ◦ · · · ◦ bk′?

However, an explicit representation of themultiplication table of (QQ, ◦) (whereQQ is the set of
all mappings from Q to Q) would already take O∗(|Q|2|Q|) space and hence allow to construct an
arc-labeled directed graph with a vertex for each mappingQ→Q and an arc-labeled fi from f to g
if f ◦ fi = g, where fi is from the explicit set of generators F′ = {f1, . . . , fm}. Now, the representabil-
ity of f0 with at most k mappings from F′ can be solved by looking for a path of length at most k
in the directed graph we just described, leading from the identity mapping �Q to f0. Hence, when
the monoid is given in an explicit form, then the factorization problem can be solved in polyno-
mial time (even in NL, see the discussion in Barrington et al. 2001). It might be interesting to study
other implicitly givenmonoids with respect to the factorization question. Let usmention onemore
example. Assume that our implicitly given monoid operation is set union. Then, the correspond-
ing factorization problem would take subsets {X0, X1, . . . , Xm} of a given finite set S as an input,
and the question is to pick at most k sets from {X1, . . . , Xm}, say, Xi1 , . . . , Xik′ , where k

′ ≤ k, such
that X0 = ⋃k′

j=1 Xij . Obviously, this corresponds to SET COVER, which hence gives an example of
a monoid factorization problem which, when parameterized by k, is complete for W[2]. It might
be interesting to investigate further implicitly given monoids from this parameterized perspective.
We only mention as a last example from the literature PERMUTATION GROUP FACTORIZATION,
which is known to beW[1]-hard but is lacking a precise classification; see Bodlaender et al. (1995),
Downey and Fellows (2013). In the classical complexity context, we refer to Even and Goldreich
(1981) (where the problem has the nameMINIMUM GENERATOR SEQUENCE) and Jerrum (1985).

Let us also mention that from the 1980s onwards, Martin Beaudry and his colleagues led a
whole research agenda, looking at what they called the MEMBERSHIP PROBLEM, which meant to
look at special cases of MONOID FACTORIZATION; in many cases, they still obtain NP-hardness.
We only mention here monoids with threshold (at least) two and point to Beaudry (1988, 1994).7
It should be noted that the question whether or not an upper bound on the length of the factoriza-
tion is given makes a difference for various special cases if it comes to classical complexity. None
of these monoid classes has been studied from the angle of parameterized complexity. Further
problems of this type are discussed in Böhler et al. (2005). To the best of our knowledge, none
of these has been examined from the viewpoint of parameterized complexity and hence give a
number of open questions. To mention one concrete problem of this type: Let {c1, . . . , cm} be a
collection of clauses, with variables {x1, . . . , xn}, and let k ∈N. The question is if the empty clause
can be derived within the resolution proof system within k resolution steps.

Let us finally remark that the discussion of implicit or explicit representations also extends
to finite automata. Namely, it is well-known that the question if a given DFA accepts a word of
length k is easy to check, while DFA-SW isNP-complete. Yet, we can build a DFAA′ from a DFAA
with the classical power automaton construction, see Sandberg (2005), such thatA′ accepts a word

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

Mathematical Structures in Computer Science 213

of length k if and only if A possesses a synchronizing word of length k. In other words, L(A′) can
be viewed as an implicitly presented regular language. This type of presentation tends to make
problems harder.

10. Open Questions and Concluding Thoughts
Throughout the paper, we already highlighted several concrete open questions. Let us now draw
the reader’s attention to three more general questions.

• Are there any relationships betweenW[SAT] andW[Sync]?
• Are there further problems in or hard for W[Sync]? We explicitly mention the intersection
problems from Sections 5.4 and 7 again here.

• Is there any relation between the classWNL and the A-hierarchy?

There is some evidence that W[Sync] is different from A[2]. Namely, if W[Sync]= A[2], then
A[2]⊆ para-NP, because W[Sync]⊆ para-NP. As shown by Haan (2016), then all �

p
2-problems

would be as “easy” as SAT from an algorithmic point of view, something which contradicts at least
the practical experience with this type of problems.

It is also interesting to observe that most of our problems come from the area of formal
languages, in most cases, from automata theory. This area has been a bit neglected from the
perspective of parameterized complexity, see Fernau (2019) for discussing further questions in
this regard. Also, the class WNL mostly hosts formal language problems, as already exhibited by
Guillemot (2011). It would be interesting to see further problems situated in WNL or in W[Sync]
coming from other areas. As problems related to string problems can be found in computational
biology and also in computational social choice, we expect these to be good candidate areas to
look into in the future.

Acknowledgements. We are grateful for discussions on the topic of this paper with several colleagues. Further develop-
ments concerning the parameterized complexity of automata problems can be found in Fernau et al. (2021).

Notes
1 We refer to discussions in the mentioned Special Issue about the real origins of that conjecture that in fact cannot be found
in Černý’s paper.
2 Appropriate for parameterized algorithms is using theO∗-notation; for instance, a problem solvable in timeO∗(f (k)) refers
to an algorithm running in timeO(f (k)p(n)), where n is the input size, p is some polynomial, f is some arbitrary (computable)
function and k is the so-called parameter, some secondary measurement of the input.
3 Here, some definitorial details might change the constants, e.g., how ‘fast’ can a Turing machine detect that it is at the tape
end and turn back?
4 They did not consider the length bound restriction, but they did so for the restriction to idempotent target mappings; we
drop the idempotency condition in our discussions to make our reasoning a bit less technical. Notice that even without the
length bound, TRANSFORMATION RANK(r) is NP-hard for any r ≥ 2, see Goralčík and Koubek (1995).
5 We refer to Remark 1 for a discussion on asking for synchronizing words of length exactly or at most k.
6 For a formal treatment of the class A[3], we refer to Flum and Grohe (2006). It is known thatW[3]∪ A[2]⊆ A[3].
7 To f : X → X, one can associate integers t ≥ 0 and p> 0 (threshold and period), which are the smallest numbers such that
f t+p = f t . If t = 0, then f is a permutation.

References
Arrighi, E., Fernau, H., Hoffmann, S., Holzer, M., Jecker, I., de Oliveira Oliveira, M. and Wolf, P. (2021). On the complexity

of intersection non-emptiness for star-free language classes. In: Bojanczyk, M. and Chekuri, C. (eds.) 41st IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS, LIPIcs, vol. 213, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 34:1–34:15.

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

214 H. Fernau and J. Bruchertseifer

Barrington, D. A. M., Kadau, P., Lange, K. and McKenzie, P. (2001). On the complexity of some problems on groups input
as multiplication tables. Journal of Computer and System Sciences 63 (2) 186–200.

Beaudry, M. (1988). Membership testing in commutative transformation semigroups. Information and Computation
(formerly Information and Control) 79 (1) 84–93.

Beaudry, M. (1994). Membership testing in threshold one transformation monoids. Information and Computation (formerly
Information and Control) 113 (1) 1–25.

Berlinkov, M. V. (2014). Approximating the minimum length of synchronizing words is hard. Theory of Computing Systems
54 (2) 211–223.

Bläsius, T., Friedrich, T., Lischeid, J., Meeks, K. and Schirneck, M. (2019). Efficiently enumerating hitting sets of hypergraphs
arising in data profiling. In: Algorithm Engineering and Experiments (ALENEX), SIAM, 130–143.

Bodlaender, H., Downey, R. G., Fellows, M. R. and Wareham, H. T. (1995). The parameterized complexity of sequence
alignment and consensus. Theoretical Computer Science 147 31–54.

Böhler, E., Glaßer, C., Schwarz, B. and Wagner, K. W. (2005). Generation problems. Theoretical Computer Science 345 (2–3)
260–295.

Bruchertseifer, J. and Fernau, H. (2020). Synchronizing words and monoid factorization: A parameterized perspective. In:
Chen, J., Feng, Q. and Xu, J. (eds.) Theory and Applications of Models of Computation, 16th International Conference,
TAMC, LNCS, vol. 12337, Springer, 352–364.

Bruchertseifer, J. and Fernau, H. (2021). Synchronizing series-parallel deterministic automata with loops and related
problems. RAIRO Informatique théorique et Applications/Theoretical Informatics and Applications 55 (7) 1–24.

Cai, L., Chen, J., Downey, R. and Fellows, M. (1997). On the parameterized complexity of short computation and
factorization. Archive for Mathematical Logic 36 321–337.

Casel, K., Fernau, H., Ghadikolaei, M. K., Monnot, J. and Sikora, F. (2018). On the complexity of solution extension of
optimization problems. CoRR, abs/1810.04553.

Černý, J., Pirická, A. and Rosenauerová, B. (1971). On directable automata. Kybernetika 7 (4) 289–298.
Černý, J. (1964). Poznámka k homogénnym experimentom s konečnými automatmi. Matematicko-fyzikálny časopis 14 (3)

208–216.
Černý, J. (2019). A note on homogeneous experiments with finite automata. Journal of Automata, Languages and

Combinatorics 24 (2–4) 123–132.
Cesati, M. (2003). The Turing way to parameterized complexity. Journal of Computer and System Sciences 67 654–685.
Chen, J. and Zhang, F. (2006). On product covering in 3-tier supply chain models: Natural complete problems for W[3] and

W[4]. Theoretical Computer Science 363 (3) 278–288.
de Haan, R. (2016). Parameterized Complexity in the Polynomial Hierarchy. Phd thesis, Faculty of Informatics at the

Technische Universität Wien, Austria.
Downey, R. G. and Fellows, M. R. (2013). Fundamentals of Parameterized Complexity, Texts in Computer Science, Springer,

Cham, Switzerland.
Elberfeld, M., Stockhusen, C. and Tantau, T. (2015). On the space and circuit complexity of parameterized problems: Classes

and completeness. Algorithmica 71 (3) 661–701.
Eppstein, D. (1990). Reset sequences for monotonic automata. SIAM Journal on Computing 19 (3) 500–510.
Even, S. and Goldreich, O. (1981). The minimum-length generator sequence problem is NP-hard. Journal of Algorithms 2

(3) 311–313.
Fernau, H. (2019). Modern aspects of complexity within formal languages. In: Martín-Vide, C., Okhotin, A. and Shapira, D.

(eds.) Language and Automata Theory and Applications - 13th International Conference, LATA, LNCS, vol. 11417, Springer,
3–30.

Fernau, H., Gusev, V. V., Hoffmann, S., Holzer, M., Volkov,M. V. andWolf, P. (2019). Computational complexity of synchro-
nization under regular constraints. In: Rossmanith, P., Heggernes, P. and Katoen, J.-P. (eds.) 44th International Symposium
on Mathematical Foundations of Computer Science, MFCS, Leibniz International Proceedings in Informatics (LIPIcs), vol.
138, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 63:1–63:14.

Fernau, H., Heggernes, P. and Villanger, Y. (2015). A multi-parameter analysis of hard problems on deterministic finite
automata. Journal of Computer and System Sciences 81 (4) 747–765.

Fernau, H. and Hoffmann, S. (2019). Extensions to minimal synchronizing words. Journal of Automata, Languages and
Combinatorics 24 287–307.

Fernau, H., Hoffmann, S. and Wehar, M. (2021). Finite automata intersection non-emptiness: Parameterized complexity
revisited. CoRR, abs/2108.05244.

Fernau, H. and Krebs, A. (2017). Problems on finite automata and the exponential time hypothesis. Algorithms 10 24:1–25.
Fernau, H. and Wolf, P. (2020). Synchronization of deterministic visibly push-down automata. In: Saxena, N. and Simon, S.

(eds.) 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS,
LIPIcs, vol. 182, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 45:1–45:15.

Fernau, H., Wolf, P. and Yamakami, T. (2020). Synchronizing deterministic push-down automata can be really hard. In:
Esparza, J. and Král’, D. (eds.) 45th International Symposium on Mathematical Foundations of Computer Science, MFCS,
LIPIcs, vol. 170, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 33:1–33:15.

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184

Mathematical Structures in Computer Science 215

Flum, J. and Grohe, M. (2006). Parameterized Complexity Theory, Springer, Heidelberg, Germany.
Frankl, P. (1982). An extremal problem for two families of sets. European Journal of Combinatorics 3 (2) 125–127.
Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability, New York, Freeman.
Goldstine, J., Leung, H. andWotschke, D. (1992). On the relation between ambiguity and nondeterminism in finite automata.

Information and Computation 100 261–270.
Goralčík, P. and Koubek, V. (1995). Rank problems for composite transformations. International Journal of Algebra and

Computation 5 (3) 309–316.
Guillemot, S. (2011). Parameterized complexity and approximability of the longest compatible sequence problem. Discrete

Optimization 8 (1) 50–60.
Jerrum, M. (1985). The complexity of finding minimum-length generator sequences. Theoretical Computer Science 36

265–289.
Kisielewicz, A., Kowalski, J. and Szykuła, M. (2015). Computing the shortest reset words of synchronizing automata. Journal

of Combinatorial Optimization 29 (1) 88–124.
Kozen, D. (1977). Lower bounds for natural proof systems. In: 18th Annual Symposium on Foundations of Computer Science,

FOCS, IEEE Computer Society, 254–266.
Martyugin, P. (2009). Complexity of problems concerning reset words for some partial cases of automata. Acta Cybernetica

19 (2) 517–536.
Martyugin, P. V. (2014). Computational complexity of certain problems related to carefully synchronizing words for partial

automata and directing words for nondeterministic automata. Theory of Computing Systems 54 (2) 293–304.
Möhring, R. H. (1989). Computationally tractable classes of ordered sets. In: Rival, I. (ed.) Algorithms and Order: Proceedings

of the NATO Advanced Study Institute on Algorithms and Order, NATO Science Series C, vol. 255, 105–194, Springer.
Montoya, J. A. and Nolasco, C. (2018). On the synchronization of planar automata. In: Klein, S. T., Martín-Vide, C. and

Shapira, D. (eds.) Language and Automata Theory and Applications - 12th International Conference, LATA, LNCS, vol.
10792, Springer, 93–104.

Pin, J. E. (1983). On two combinatorial problems arising from automata theory. Annals of Discrete Mathematics 17 535–548.
Rystsov, I. K. (1980). On minimizing the length of synchronizing words for finite automata. In: Theory of Designing of

Computing Systems, Institute of Cybernetics of Ukrainian Academy of Science, 75–82. (in Russian).
Rystsov, I. K. (1983). Polynomial complete problems in automata theory. Information Processing Letters 16 (3) 147–151.
Sandberg, S. (2005). Homing and synchronizing sequences. In: Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M. and

Pretschner, A. (eds.)Model-Based Testing of Reactive Systems, LNCS, vol. 3472, Springer, 5–33.
Shitov, Y. (2019). An improvement to a recent upper bound for synchronizing words of finite automata. Journal of Automata,

Languages and Combinatorics 24 (2–4) 367–373.
Szykuła, M. (2018). Improving the upper bound on the length of the shortest reset word. In: Niedermeier, R.

and Vallée, B. (eds.) 35th Symposium on Theoretical Aspects of Computer Science, STACS, LIPIcs, vol. 96, Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 56:1–56:13.

Türker, U. C. and Yenigün, H. (2015). Complexities of some problems related to synchronizing, non-synchronizing and
monotonic automata. International Journal of Foundations of Computer Science 26 (1) 99–122.

Volkov, M. V. (2008). Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., and Fernau, H.
(eds.) Language and Automata Theory and Applications, Second International Conference, LATA, LNCS, vol. 5196, Springer,
11–27.

Volkov, M. V. (2019). Preface: Special issue on the Černý conjecture. Journal of Automata, Languages and Combinatorics 24
(2–4) 119–121.

Wareham, H. T. (2001). The parameterized complexity of intersection and composition operations on sets of finite-state
automata. In: Yu, S. and Păun, A. (eds.) Implementation and Application of Automata, 5th CIAA 2000, LNCS, vol. 2088,
Springer, 302–310.

Wolf, P. (2020). Synchronization under dynamic constraints. In: Saxena, N. and Simon, S. (eds.) 40th IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS, LIPIcs, vol. 182, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 58:1–58:14.

Cite this article: Fernau H and Bruchertseifer J (2022). Synchronizing words and monoid factorization,
yielding a new parameterized complexity class? Mathematical Structures in Computer Science 32, 189–215.
https://doi.org/10.1017/S0960129522000184

https://doi.org/10.1017/S0960129522000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000184
https://doi.org/10.1017/S0960129522000184

	Synchronizing words and monoid factorization, yielding a new parameterized complexity class?
	Introduction
	Organization of the Paper and Main Results
	A Primer in Parameterized Complexity
	Finding a Home for DFA-SW
	Further Problems Complete for W[Sync]
	DFAs with a sink state
	Synchronizing subsets
	Factoring monoids
	Intersecting regular languages

	Problems between W[2] and W[Sync]
	Satisfying constraint satisfaction formulae
	Long subsequences
	Discussions

	Problems Hard for W[Sync]
	Intersecting regular languages again
	Extensions and orderings of words
	Non-universality questions for NFAs

	Problems that Feel Similar to Synchronizing DFAs
	Further Comments and Discussions on Monoid Factorization
	Open Questions and Concluding Thoughts

