ASSOCIATE SUBGROUPS OF ORTHODOX SEMIGROUPS

by T. S. BLYTH, EMÍLIA GIRALDES and M. PAULA O. MARQUES-SMITH

(Received 2 October, 1992)
A unit regular semigroup $[\mathbf{1}, 4]$ is a regular monoid S such that $H_{1} \cap A(x) \neq \varnothing$ for every $x \in S$, where H_{1} is the group of units and $A(x)=\{y \in S ; x y x=x\}$ is the set of associates (or pre-inverses) of x. A uniquely unit regular semigroup is a regular monoid S such that $\left|H_{1} \cap A(x)\right|=1$. Here we shall consider a more general situation. Specifically, we consider a regular semigroup S and a subsemigroup T with the property that $|T \cap A(x)|=1$ for every $x \in S$. We show that T is necessarily a maximal subgroup H_{α} for some idempotent α. When S is orthodox, α is necessarily medial (in the sense that $x=x \alpha x$ for every $x \in\langle E\rangle$) and $\alpha S \alpha$ is uniquely unit orthodox. When S is orthodox and α is a middle unit (in the sense that $x \alpha y=x y$ for all $x, y \in S$), we obtain a structure theorem which generalises the description given in [2] for uniquely unit orthodox semigroups in terms of a semi-direct product of a band with an identity and a group.

Let S be a regular semigroup. Consider a subsemigroup T of S with the property that $|T \cap A(x)|=1$ for every $x \in S$. In this case we define x^{*} by $T \cap A(x)=\left\{x^{*}\right\}$. We also define $x^{* *}=\left(x^{*}\right)^{*}$ for every $x \in S$. Then $\left(x^{*}\right)^{* *}=\left[\left(x^{*}\right)^{*}\right]^{*}=\left(x^{* *}\right)^{*}$ which we can write as $x^{* * *}$.

Observe that since $x^{*} \in A(x)$ we have $x^{*} x x^{*} \in V(x) \subseteq A(x)$. Therefore, if $x \in T$ then $x^{*} x x^{*} \in T \cap A(x)=\left\{x^{*}\right\}$ whence $x^{*} x x^{*}=x^{*}$ and consequently $x \in T \cap A\left(x^{*}\right)=\left\{x^{* *}\right\}$, so that $x=x^{* *}$. Writing $S^{*}=\left\{x^{*} ; x \in S\right\}$ we therefore have $T \subseteq S^{*}$. Since the reverse inclusion follows from the definition of x^{*}, we thus have $T=S^{*}$. Observe also that $x^{* *} x^{*} x^{* *} \in V\left(x^{*}\right)$ gives $x^{* *} x^{*} x^{* *} \in T \cap A\left(x^{*}\right)=\left\{x^{* *}\right\}$. Hence $x^{* *} x^{*} x^{* *}=x^{* *}$ and so $x^{*} \in T \cap A\left(x^{* *}\right)=\left\{x^{* * *}\right\}$. Thus $x^{* * *}=x^{*}$, from which it follows that $x \in T=S^{*}$ if and only if $x=x^{* *}$.

Since $x^{* *} \in V\left(x^{*}\right)$ we have that S^{*} is regular; and since $y \in S^{*} \cap V\left(x^{*}\right)$ gives $y \in S^{*} \cap A\left(x^{*}\right)=\left\{x^{* *}\right\}$ we see that S^{*} is inverse with $\left(x^{*}\right)^{-1}=x^{* *}$. If now $e, f \in E\left(S^{*}\right)$ then since e and f commute we have ef.e.ef $=e f=e f . f . e f$ whence $e, f \in S^{*} \cap A(e f)$ and therefore $e=(e f)^{*}=f$. Thus $E\left(S^{*}\right)$ is a singleton and so S^{*} is in fact a group. Denoting by α the identity element of S^{*} we then have the properties

$$
(\forall x \in S) \quad x^{*} \alpha=x^{*}=\alpha x^{*}, \quad x^{*} x^{* *}=\alpha=x^{* *} x^{*}
$$

In what follows we shall call such a subgroup S^{*} an associate subgroup of S.
We begin by listing some basic properties arising from the existence of an associate subgroup. For every $x \in S$ we define

$$
x^{\circ}=x^{*} x x^{*} .
$$

It is clear that $x^{\circ} \in V(x)$ and $x x^{\circ}=x x^{*}, x^{\circ} x=x^{*} x$. We first investigate the relationship betweerr x° and x^{*}.

Theorem 1. $(\forall x \in S) x^{* 0}=x^{* *}=x^{0 *}$.
Proof. The first equality results from the observation that

$$
x^{* 0}=x^{* *} x^{*} x^{* *} \in S^{*} \cap V\left(x^{*}\right) \subseteq S^{*} \cap A\left(x^{*}\right)=\left\{x^{* *}\right\}
$$

Glasgow Math. J. 36 (1994) 163-171.

As for the second equality, we have $x^{0}=x^{0} x^{0 *} x^{0}$ and so

$$
x=x x^{\circ} x=x x^{\circ} x^{\circ *} x^{\circ} x=x x^{*} x^{\circ *} x^{*} x
$$

whence $x^{*} x^{\circ *} x^{*} \in S^{*} \cap A(x)$ and therefore $x^{*} x^{0 *} x^{*}=x^{*}$. It now follows that $x^{0 *} \in S^{*} \cap$ $A\left(x^{*}\right)=\left\{x^{* *}\right\}$.

Corollary 1. $(\forall x \in S) x^{\circ \circ}=\alpha x \alpha$.
Proof. By the above, we have $x^{\circ \circ}=x^{\circ *} x^{\circ} x^{\circ *}=x^{* *} x^{*} x x^{*} x^{* *}=\alpha x \alpha$.
Corollary 2. $(\forall x \in S) x^{000}=x^{\circ}$.
Proof. We have

$$
\begin{aligned}
x^{000}=x^{\circ 0 *} x^{\circ 0} x^{00 *}=x^{* * *} x^{\circ \circ} x^{* * *} & =x^{*} x^{\circ 0} x^{*} \\
& =x^{*} x x^{*} \text { by Corollary } 1 \\
& =x^{\circ} .
\end{aligned}
$$

Defining $S^{\circ}=\left\{x^{\circ} ; x \in S\right\}$ we see from the above results that

$$
x \in S^{\circ} \Leftrightarrow x=\alpha x \alpha
$$

so that $S^{\circ}=\alpha S \alpha$. The subsemigroup S° is regular; for we have

$$
\alpha x \alpha=\alpha x x^{*} x \alpha=\alpha x \alpha x^{*} \alpha x \alpha=\alpha x \alpha . \alpha x^{*} \alpha . \alpha x \alpha
$$

This also gives $x^{*}=\alpha x^{*} \alpha=(\alpha x \alpha)^{*}$. Moreover, since α is the identity element of S^{*} we have that $S^{*} \subseteq S^{\circ}$.

We now show that every associate subgroup of S is in fact a maximal subgroup, the uniquely unit regular situation therefore being a special case.

Theorem 2. $S^{*}=H_{\alpha}$.
Proof. Since the maximal subgroups of S are precisely the \mathscr{H}-classes containing idempotents we have $S^{*} \subseteq H_{\alpha}$. To obtain the reverse inclusion, let $x \in H_{\alpha}$. Then $x x^{*} \in H_{\alpha}$ and $x^{*} x \in H_{\alpha}$ give $x x^{*}=\alpha=x^{*} x$ whence $x^{\circ}=x^{*} x x^{*}=x^{*} \alpha=x^{*}$ and $x=\alpha x \alpha=x^{\circ \circ}$. Consequently, $x=x^{\infty \circ}=x^{* o}=x^{* *} \in S^{*}$.

Corollary. S° is uniquely unit regular with group of units H_{α}.
Proof. Since S is regular and $H_{\alpha}=S^{*} \subseteq S^{\circ}$ we have that H_{α} is an \mathscr{H}-class of S°. Moreover,

$$
H_{\alpha} \cap A(\alpha x \alpha)=S^{*} \cap A(\alpha x \alpha)=\left\{(\alpha x \alpha)^{*}\right\}
$$

and $(\alpha x \alpha)^{*}=x^{*}=\alpha x^{*} \alpha \in S^{\circ}$. Since $\alpha x^{\circ}=x^{\circ}=x^{\circ} \alpha$ it follows that S° is uniquely unit regular with group of units H_{α}.

Theorem 3. $(\forall x, y \in S)(x y)^{*}=\left(x^{*} x y\right)^{*} x^{*}=y^{*}\left(x y y^{*}\right)^{*}$.
Proof. We have

$$
x y \cdot\left(x^{*} x y\right)^{*} x^{*} \cdot x y=x \cdot x^{*} x y\left(x^{*} x y\right)^{*} x^{*} x y=x x^{*} x y=x y
$$

and so $\left(x^{*} x y\right)^{*} x^{*} \in S^{*} \cap A(x y)$ whence $\left(x^{*} x y\right)^{*} x^{*}=(x y)^{*}$. The other identity is established similarly.

Observe now that $\alpha x \alpha \in E\left(S^{\circ}\right)$ if and only if $\alpha x \alpha x \alpha=\alpha x \alpha$. Pre-multiplying by $x x^{*}$ and post-multiplying by $x^{*} x$, we see that this is equivalent to $x \alpha x=x$, i.e. to $x^{*}=\alpha$. Thus $\alpha x \alpha \in E\left(S^{\circ}\right)$ implies $x=x x^{*} x=x x^{*} . x^{*} x \in\langle E\rangle$. It follows from these observations that we have $E\left(S^{\circ}\right) \subseteq \alpha\langle E\rangle \alpha$.

Theorem 4. The following statements are equivalent:
(1) α is medial;
(2) $(\forall x, y \in S)(x y)^{*}=y^{*} x^{*}$;
(3) $E\left(S^{\circ}\right)=\alpha\langle E\rangle \alpha$.

Proof. (1) \Rightarrow (2): If α is medial then $\alpha=x^{*}$ for every $x \in\langle E\rangle$. It follows by Theorem 3 that

$$
(x y)^{*}=y^{*}\left(x^{*} x y y^{*}\right)^{*} x^{*}=y^{*} \alpha x^{*}=y^{*} x^{*} .
$$

$(2) \Rightarrow(1)$: If (2) holds then we have $e^{*} \in E$ for every $e \in E$. Since S^{*} is a group it follows that $e^{*}=\alpha$ for every $e \in E$. Consequently, if $e_{1}, e_{2} \in E$ then by (2) we have $\left(e_{1} e_{2}\right)^{*}=e_{2}^{*} e_{1}^{*}=\alpha \alpha=\alpha$, whence by induction we have $x^{*}=\alpha$ for all $x \in\langle E\rangle$. It follows that $x=x \alpha x$ for every $x \in\langle E\rangle$ whence α is medial.
$(1) \Rightarrow(3)$: Suppose that α is medial and that $x \in\langle E\rangle$. Then $x^{*} \alpha$ and so $\alpha x \alpha \in E\left(S^{\circ}\right)$ whence $\alpha\langle E\rangle \alpha \subseteq E\left(S^{\circ}\right)$.
(3) $\Rightarrow(1)$: If (3) holds and $x \in\langle E\rangle$ then $\alpha x \alpha$ is idempotent so $x^{*}=\alpha$ and $x=x x^{*} x=x \alpha x$, i.e. α is medial.

Corollary. If α is medial then S° is uniquely unit orthodox.
Theorem 5. If S is orthodox then α is medial and $E\left(S^{\circ}\right)=\alpha E \alpha$.
Proof. If S is orthodox then we have $y^{\circ} x^{\circ} \in V(x y) \subseteq A(x y)$. Then

$$
x y=x y y^{\circ} x^{\circ} x y=x y y^{*} x^{*} x y
$$

whence $y^{*} x^{*} \in S^{*} \cap A(x y)$ and therefore $y^{*} x^{*}=(x y)^{*}$. The result therefore follows by Theorem 4.

Corollary 1. If S is orthodox then $e^{*}=\alpha$ for every $e \in E$.
Corollary 2. If S is orthodox then any two associate subgroups of S are isomorphic.
Proof. Let A, B be associate subgroups of S with respective identity elements α, β. Since S is orthodox, α and β are medial so $\beta=\beta \alpha \beta$ and $\alpha=\alpha \beta \alpha$. Thus $\beta \in V(\alpha)$ and so β belongs to the \mathscr{D}-class of α. Consequently we have that $B=H_{\beta}=H_{\alpha}=A$.

Observe that if we define $E^{\circ}=\left\{e^{0} ; e \in E(S)\right\}$ then, when S is orthodox, we have $E^{\circ}=E\left(S^{\circ}\right)$. This follows immediately from Theorem 5.

Theorem 6. The following statements are equivalent:
(1) α is a middle unit;
(2) $(\forall x, y \in S)(x y)^{\circ 0}=x^{\circ 0} y^{00}$.

Proof. (1) \Rightarrow (2): If α is a middle unit then

$$
(x y)^{\circ \circ}=\alpha x y \alpha=\alpha x \alpha . \alpha y \alpha=x^{\circ \circ} y^{\circ \circ} .
$$

(2) \Rightarrow (1): If (2) holds then for all $x, y \in S$ we have

$$
\begin{aligned}
x^{\circ} x y y^{\circ}=x^{\circ} \alpha x y \alpha y^{\circ} & =x^{\circ}(x y)^{\circ \circ} y^{\circ} \\
& =x^{\circ} x^{\circ \circ} y^{\circ \circ} y^{\circ} \\
& =x^{\circ} \cdot \alpha x \alpha \cdot \alpha y \alpha \cdot y^{\circ} \\
& =x^{\circ} x \alpha y y^{\circ}
\end{aligned}
$$

whence $x y=x \alpha y$ and so α is a middle unit.
We recall now the following definitions. A medial idempotent α of a regular semigroup is said to be normal [3] if the band $\alpha\langle E\rangle \alpha$ is commutative. A regular semigroup S is said to be locally inverse if for every idempotent e the subsemigroup $e S e$ is inverse. An inverse transversal of a regular semigroup S is an inverse subsemigroup T with the property that $|T \cap V(x)|=1$ for every $x \in S$. If we let $T \cap V(x)=\left\{x^{\circ}\right\}$ then we have $T=S^{\circ}=\left\{x^{\circ} ; x \in S\right\}$ and the inverse transversal S° is said to be multiplicative if $x^{\circ} x y y^{\circ} \in E\left(S^{\circ}\right)$ for all $x, y \in S$.

Theorem 7. If S is orthodox then the following statements are equivalent:
(1) α is a normal medial idempotent;
(2) $S^{\circ}=\alpha S \alpha$ is inverse;
(3) $(\forall x, y \in S)(x y)^{\circ}=y^{\circ} x^{\circ}$;
(4) S is locally inverse;
(5) S° is a multiplicative inverse transversal of S.

Proof. (1) $\Rightarrow(2)$: By Theorem $4, E\left(S^{\circ}\right)=\alpha E \alpha$ which by (1) is a semilattice.
(2) $\Rightarrow(1)$: By Theorem $5, \alpha$ is medial; and by (2) it is normal.
$(1) \Rightarrow$ (3): If (1) holds then α is a middle unit by [3, Theorem 2.2]. It follows that for all $x, y \in S$ we have

$$
\begin{aligned}
(x y)^{\circ} & =(x y)^{*} x y(x y)^{*} \\
& =y^{*} x^{*} x y y^{*} x^{*} \quad \text { by Theorem } 4 \\
& =y^{*} \cdot \alpha x^{*} x \alpha \cdot \alpha y y^{*} \alpha \cdot x^{*} \\
& =y^{*} \cdot \alpha y y^{*} \alpha \cdot \alpha x^{*} x \alpha \cdot x^{*} \quad \text { by (1) } \\
& =y^{*} y y^{*} x^{*} x x^{*} \\
& =y^{\circ} x^{\circ} .
\end{aligned}
$$

(3) \Rightarrow (2): By Corollary 1 of Theorem 5 we have $e^{*}=\alpha$ and hence $e^{\circ}=e^{*} e e^{*}=$ $\alpha e \alpha=e$. Suppose then that (3) holds. Then for $e, f \in E\left(S^{\circ}\right)$ we have

$$
(e f)^{\circ}=f^{\circ} e^{\circ}=f e .
$$

It follows that $e f=e f . f e . e f=e f e f$ and so S° is orthodox. Moreover, we have ef $\in E\left(S^{\circ}\right)$ and so $(e f)^{\circ}=e f$. Hence $e f=f e$ for all $e, f \in E\left(S^{\circ}\right)$ and so S° is inverse.
(1) \Rightarrow (4): For $e \in E$ and $x \in S$ we have, by Theorem 5 and its Corollary 1,

$$
(e x e)^{*}=e^{*} x^{*} e^{*}=\alpha x^{*} \alpha=x^{*} .
$$

Hence exe $=$ exe $(\text { exe })^{*}$ exe $=$ exe.ex ${ }^{*} e$. exe and so $e S e$ is regular. That the idempotents in $e S e$ commute is shown precisely as in [3, Theorem 4.3].
$(4) \Rightarrow(2):$ This is clear.
$(2) \Rightarrow(5)$: If (2) holds then by the above so does (1) whence α is middle unit; and so
does (3). Suppose then that $x \in S^{\circ}$ and that $y \in S^{\circ} \cap V(x)$. We have $y=y^{\circ \circ}$ and $y x y=y$, $x y x=x$. By (2) and (3) it follows that

$$
y=y^{\circ \circ}=\alpha y \alpha=(\alpha x \alpha)^{-1}=(\alpha x \alpha)^{\circ}=\alpha x^{\circ} \alpha=x^{\circ} .
$$

Hence S° is an inverse transversal of S. Since, for all $x, y \in S$,

$$
\begin{aligned}
\left(x^{\circ} x y y^{\circ}\right)^{\circ} & =\left(x^{\circ} x y y^{\circ}\right)^{*} x^{\circ} x y y^{\circ}\left(x^{\circ} x y y^{\circ}\right)^{*} \\
& =\alpha x^{\circ} x y y^{\circ} \alpha \quad \text { by Corollary } 1 \text { of Theorem } 5 \\
& =x^{\circ} x y y^{\circ},
\end{aligned}
$$

we have that $x^{\circ} x y y^{\circ} \in E\left(S^{\circ}\right)$ and so S° is multiplicative.
$(5) \Rightarrow(2)$: This is clear.
Example. Let B be a rectangular band and let B^{1} be obtained from B by adjoining an identity element 1 . Let $S=\mathbb{Z} \times B^{1} \times \mathbb{Z}$ and define on S the multiplication

$$
(m, x, p)(n, y, q)=\left(m_{k}+n, x y, p+q_{k}\right)
$$

where, for a fixed integer $k>1, m_{k}$ is the greatest multiple of k that is less than or equal to m. It is readily seen that S is a semigroup. Simple calculations reveal that the set of associates of $(m, x, p) \in S$ is

$$
A(m, x, p)= \begin{cases}\left\{(n, y, q) ; n_{k}=-m_{k}, q_{k}=-p_{k}\right\} & \text { if } x \neq 1 ; \\ \left\{(n, 1, q) ; n_{k}=-m_{k}, q_{k}=-p_{k}\right\} & \text { if } x=1,\end{cases}
$$

and that the set of inverses of $(m, x, p) \in S$ is

$$
V(m, x, p)= \begin{cases}\left\{(n, y, q) ; n_{k}=-m_{k}, y \neq 1, q_{k}=-p_{k}\right\} & \text { if } x \neq 1 \\ \left\{(n, 1, q) ; n_{k}=-m_{k}, q_{k}=-p_{k}\right\} & \text { if } x=1\end{cases}
$$

The set of idempotents of S is

$$
E=\left\{(m, x, p) ; m_{k}=0=p_{k}\right\}
$$

and so S is orthodox. For every $(m, x, p) \in S$ define

$$
(m, x, p)^{*}=\left(-m_{k}, 1,-p_{k}\right) .
$$

Then S^{*} is an associate subgroup of S. The identity element of S^{*} is $\alpha=(0,1,0)$.
It is readily seen that α is a middle unit. Now

$$
(m, x, p)^{\circ}=(m, x, p)^{*}(m, x, p)(m, x, p)^{*}=\left(-m_{k}, x,-p_{k}\right)
$$

whence simple calculations give

$$
\begin{aligned}
{[(m, x, p)(n, y, q)]^{\circ} } & =\left(-m_{k}-n_{k}, x y,-p_{k}-q_{k}\right) \\
(n, y, q)^{\circ}(m, x, p)^{\circ} & =\left(-m_{k}-n_{k}, y x,-p_{k}-q_{k}\right) .
\end{aligned}
$$

Now $x y \neq y x$ for distinct $x, y \in B$ so, by Theorem 7, α is not medial normal.
We now proceed to describe the structure of orthodox semigroups with an associate subgroup of which the identity element is a middle unit. For this purpose, let B be a band with a middle unit α and let End B be the monoid of endomorphisms on B. Define

$$
\operatorname{End}_{\alpha} B=\{f \in \operatorname{End} B ; f \text { preserves } \alpha \text { and } \operatorname{Im} f=\alpha B \alpha\}
$$

Then End ${ }_{c} B$ is a subsemigroup of End B.

Consider the mapping $\varphi: B \rightarrow B$ given by $\varphi(x)=\alpha x \alpha$ for every $x \in B$. Since α is a middle unit, we have $\varphi \in$ End B. Moreover, φ clearly preserves α and $\operatorname{Im} \varphi=\alpha B \alpha$. Hence $\varphi \in \operatorname{End}_{\alpha} B$. In fact, φ is the identity element of $\operatorname{End}_{\alpha} B$; for if $f \in \operatorname{End}_{\alpha} B$ then

$$
(\forall x \in B) \quad f \varphi(x)=f(\alpha x \alpha)=\alpha f(x) \alpha=\varphi f(x)=f(x)
$$

the last equality following from the fact that $\left.\varphi\right|_{\alpha B \alpha}=\mathrm{id}_{\alpha B \alpha}$. Hence $f \varphi=\varphi f=f$ and so End $_{\alpha} B$ is a monoid.

Theorem 8. Let B be a band with a middle unit α and let G be a group. Let $\zeta: G \rightarrow \operatorname{End}_{\sigma} B$, described by $g \mapsto \zeta_{g}$, be a 1-preserving morphism. On the set

$$
[B ; G]_{\zeta}=\left\{(x, g, a) \in B \alpha \times G \times \alpha B ; \zeta_{g}(a)=\zeta_{1}(x)\right\}
$$

define the multiplication

$$
(x, g, a)(y, h, b)=\left(x \zeta_{g}(y), g h, \zeta_{h^{-1}}(a) b\right) .
$$

Then $[B ; G]_{\zeta}$ is an orthodox semigroup with an associate subgroup of which the identity element $(\alpha, 1, \alpha)$ is a middle unit. Moreover, we have $E\left([B ; G]_{\xi}\right) \simeq B$ and $H_{(\alpha \cdot 1, \alpha)} \simeq G$.

Furthermore, every such semigroup is obtained in this way. More precisely, let S be an orthodox semigroup with an associate subgroup of which the identity element α is a middle unit. For every $y \in S$ let y^{*} be given by $H_{\alpha} \cap A(y)=\left\{y^{*}\right\}$, and for every $x \in H_{\alpha}$ let $\vartheta_{x}: E(S) \rightarrow E(S)$ be given by $\vartheta_{x}(e)=x e x^{*}$. Then $\vartheta_{x} \in \mathrm{End}_{\alpha} E(S)$, the mapping $\vartheta: H_{\alpha} \rightarrow$ End $_{\alpha} E(S)$ described by $x \mapsto \vartheta_{x}$ is a 1-preserving morphism and

$$
S \simeq\left[E(S) ; H_{\alpha}\right]_{\theta} .
$$

Proof. Observe first that the multiplication on $[B ; G]_{\zeta}$ is well defined, for we have $x \zeta_{g}(y) \in B \alpha . \alpha B \alpha \subseteq B \alpha$ and $\zeta_{n^{-1}}(a) b \in \alpha B \alpha . \alpha B \subseteq \alpha B$, with

$$
\zeta_{g h}\left[\zeta_{h^{-1}}(a) b\right]=\zeta_{g}(a) \zeta_{g}\left[\zeta_{h}(b)\right]=\zeta_{1}(x) \zeta_{g}\left[\zeta_{1}(y)\right]=\zeta_{1}\left[x \zeta_{g}(y)\right] .
$$

A purely routine calculation shows that it is also associative. That the semigroup $[B ; G]_{\zeta}$ is regular follows from the fact that

$$
\begin{aligned}
(x, g, a)\left(\alpha, g^{-1}, \alpha\right)(x, g, a) & =\left(x \zeta_{g}(\alpha), g g^{-1}, \zeta_{R}(a) \alpha\right)(x, g, a) \\
& =\left(x \alpha, 1, \zeta_{g}(a) \alpha\right)(x, g, a) \\
& =\left(x \alpha \zeta_{1}(x), g, \zeta_{g}{ }^{-1}\left[\zeta_{g}(a) \alpha\right] a\right) \\
& =\left(x \alpha x \alpha, g, \zeta_{1}(a) \alpha a\right) \\
& =(x, g, \alpha a \alpha a) \\
& =(x, g, a) .
\end{aligned}
$$

It is readily seen that the set of idempotents of $[B ; G]_{\zeta}$ is

$$
E\left([B ; G]_{\xi}\right)=\{(x, 1, a) ; \alpha x=a \alpha\}
$$

and that the idempotent $(\alpha, 1, \alpha)$ is a middle unit of $[B ; G]_{\xi}$. If now $(x, 1, a)$ and $(y, 1, b)$ are idempotents then

$$
\begin{aligned}
(x, 1, a)(y, 1, b) & =\left(x \zeta_{1}(y), 1, \zeta_{1}(a) b\right) \\
& =(x \alpha y \alpha, 1, \alpha a \alpha b) \\
& =(x y, 1, a b),
\end{aligned}
$$

with $\alpha x y=a \alpha y=a b \alpha$. Hence we see that $[B ; G]_{\xi}$ is orthodox. Moreover, we have $E\left([B ; G]_{\xi}\right) \simeq B$. To see this, consider the mapping $f: E\left([B ; G]_{\xi}\right) \rightarrow B$ given by

$$
f(x, 1, a)=x a
$$

Now f is surjective since for every $e \in B$ we have $(e \alpha, 1, \alpha e) \in E\left([B ; G]_{\zeta}\right)$ with $f(e \alpha, 1, \alpha e)=e \alpha . \alpha e=e$. To see that f is also injective, suppose that $(x, 1, a)$ and $(y, 1, b)$ are idempotents with $f(x, 1, a)=f(y, 1, b)$. Then $x a=y b$ with $\alpha x=a \alpha$ and $\alpha y=b \alpha$. It follows that $x=x \alpha x=x a \alpha=y b \alpha=y \alpha y=y$ and similarly $a=b$. Finally, f is a morphism; for

$$
f[(x, 1, a)(y, 1, b)]=f(x y, 1, a b)=x y a b
$$

and

$$
\begin{aligned}
x y a b=x \alpha y a \alpha b & =x b \alpha x b \\
& =x b=x \alpha x b \alpha b=x a \alpha y b \\
& =x a y b=f(x, 1, a) f(y, 1, b) .
\end{aligned}
$$

It is also readily seen that

$$
(y, h, b) \in A(x, g, a) \Leftrightarrow \zeta_{g}(y) \in A(x), h=g^{-1}, \zeta_{g^{-1}}(b) \in A(a)
$$

Since α is a middle unit of B, it follows that $\left(\alpha, g^{-1}, \alpha\right) \in A(x, g, a)$. Defining

$$
(x, g, a)^{*}=\left(\alpha, g^{-1}, \alpha\right)
$$

we see that $[B ; G]_{\zeta}^{*}$ is an associate subgroup, with identity element $(\alpha, 1, \alpha)$, that is isomorphic to G. It follows from Theorem 2 that $G=H_{(\alpha, 1, \alpha)}$.

Conversely, suppose that S is an orthodox semigroup with an associate subgroup G the identity element α of which is a middle unit of S. Then by Theorem 2 we have $G=H_{\alpha}$. Let x^{*} be given by $H_{\alpha} \cap A(x)=\left\{x^{*}\right\}$ for every $x \in S$. Observe first that for every $x \in H_{\alpha}$ we have $x e x^{*} \in E(S)$ for every $e \in E(S)$. In fact, xex*. xex* $=$ xeaex* $=$ xex*. For $x \in H_{\alpha}$ the mapping $\vartheta_{x}: E(S) \rightarrow E(S)$ given by $\vartheta_{x}(e)=x e x^{*}$ is then a morphism; for

$$
\vartheta_{x}(e f)=x e f x^{*}=x e \alpha f x^{*}=x e x^{*} \cdot x f x^{*}=\vartheta_{x}(e) \vartheta_{x}(f) .
$$

Moreover, ϑ_{x} preserves α. Since α is the identity of H_{α} it is clear that $\operatorname{Im} \vartheta_{x} \subseteq \alpha E(S) \alpha$. Since for every $e \in \alpha E(S) \alpha$ it is clear that $\vartheta_{x}\left(x^{*} e x\right)=e$, it follows that $\operatorname{Im} \vartheta_{x}=\alpha E(S) \alpha$ for every $x \in H_{\alpha}$, and therefore $\vartheta_{x} \in \operatorname{End}_{\alpha} E(S)$. The mapping $\vartheta: H_{\alpha} \rightarrow \operatorname{End}_{\alpha} E(S)$ given by $x \mapsto \vartheta_{x}$ is then a morphism; for

$$
\vartheta_{x}\left[\vartheta_{y}(e)\right]=x y e y^{*} x^{*}=x y e(x y)^{*}=\vartheta_{x y}(e) .
$$

Furthermore, ϑ is 1-preserving since $\vartheta_{\alpha}(e)=\alpha e \alpha=\varphi(e)$ where φ is the identity of End $_{\alpha} E(S)$. We can therefore construct the semigroup $\left[E(S) ; H_{\alpha}\right]_{\vartheta}$.

Since for every $x \in S$ we have $x x^{*}=x x^{*} \alpha \in E(S) \alpha$ and $x^{*} x=\alpha x^{*} x \in \alpha E(S)$ with

$$
\vartheta_{x} \cdot\left(x^{*} x\right)=x^{* *} x^{*} x x^{*}=\alpha x x^{*} \alpha=\vartheta_{\alpha}\left(x x^{*}\right),
$$

we can define a mapping $\psi: S \rightarrow\left[E(S) ; H_{\alpha}\right]_{\vartheta}$ by

$$
\psi(x)=\left(x x^{*}, x^{* *}, x^{*} x\right) .
$$

We show as follows that ψ is an isomorphism.

That ψ is injective follows from the fact that if $\psi(x)=\psi(y)$ then $x x^{*}=y y^{*}$, $x^{* *}=y^{* *}$ and $x^{*} x=y^{*} y$ give

$$
x=x x^{*} x^{* *} x^{*} x=y y^{*} y^{* *} y^{*} y=y
$$

To see that ψ is surjective, let $(e, x, f) \in\left[E(S) ; H_{\sigma}\right]_{\vartheta}$. Then $x f x^{*}=\vartheta_{x}(f)=\vartheta_{r}(e)=\alpha e \alpha$. Consider the element $s=e x f$. Using Theorem 4 and Corollary 1 of Theorem 5, we have

$$
s^{* *}=e^{* *} x^{* *} f^{* *}=\alpha x \alpha=x
$$

It follows that $s^{*}=x^{*}$ and so

$$
s s^{*}=e x f x^{*}=e \alpha e \alpha=e \alpha=e .
$$

Since α is a middle unit, we also have

$$
s^{*} s=x^{*} e x f=x^{*} \alpha e \alpha x f=x^{*} x f x^{*} x f=\alpha f \alpha f=\alpha f=f .
$$

Consequently, $\psi(s)=\left(s s^{*}, s^{* *}, s^{*} s\right)=(e, x, f)$ and so ψ is surjective.
Finally, ψ is a morphism since

$$
\begin{aligned}
\psi(x) \psi(y) & =\left(x x^{*}, x^{* *}, x^{*} x\right)\left(y y^{*}, y^{* *}, y^{*} y\right) \\
& =\left(x x^{*} \vartheta_{x^{* *}}\left(y y^{*}\right), x^{* *} y^{* *}, \vartheta_{y} \cdot\left(x^{*} x\right) y^{*} y\right) \\
& =\left(x x^{*} x^{* *} y y^{*} x^{*},(x y)^{* *}, y^{*} x^{*} x y^{* *} y^{*} y\right) \\
& =\left(x y y^{*} x^{*},(x y)^{* *}, y^{*} x^{*} x y\right) \\
& =\left(x y(x y)^{*},(x y)^{* *},(x y)^{*} x y\right) \\
& =\psi(x y) .
\end{aligned}
$$

Hence we have that $S \simeq\left[E(S) ; H_{\sigma}\right]_{9}$.
That the structure theorem in [2] for uniquely unit orthodox semigroups is a particular case of Theorem 8 can be seen as follows. Suppose that S is uniquely unit orthodox. Then, taking $\alpha=1$ in Theorem 8, the mappings ϑ_{x} become automorphisms on $E(S)$. For, $x e x^{*}=x f x^{*}$ gives $e=1 e 1=x^{*} x e x^{*} x=x^{*} x f x^{*} x=1 f 1=f$ so that ϑ_{x} is injective; and $\vartheta_{x}\left(x^{*} e x\right)=x x^{*} e x x^{*}=1 e 1=e$ so that ϑ_{x} is surjective. Therefore, in the construction of the first part of Theorem 8 we can take ζ to be a group morphism from G to Aut B. In this case the elements of $[B ; G]_{\zeta}$ are the triples (x, g, a) with $a=\zeta_{g^{-1}}(x)$. Since the third component of the triple is therefore completely determined by the first two components we can effectively ignore third components. Then it is clear that $[B ; G]_{\zeta}$ reduces to the semi-direct product described in [2].

Theorem 8 can of course be illustrated using the example that precedes it. Here we have $\alpha=(0,1,0)$ and the "building bricks" in the construction are the bands $E(S) \alpha$ consisting of the elements of the form ($0, x, p$), $\alpha E(S)$ consisting of the elements of the form ($m, x, 0$), and the subgroup H_{c} consisting of the elements of the form ($m_{k}, 1, p_{k}$). Simple calculations give $(m, x, p)(m, x, p)^{*}=\left(0, x, p-p_{k}\right), \quad(m, x, p)^{*}(m, x, p)=$ ($m-m_{k}, x, 0$), and $(m, x, p)^{* *}=\left(m_{k}, 1, p_{k}\right)$. The isomorphism $S \simeq\left[E(S) ; H_{k}\right]_{4}$ is then given via the coordinatisation

$$
(m, x, p) \sim\left(\left(0, x, p-p_{k}\right),\left(m_{k}, 1, p_{k}\right),\left(m-m_{k}, x, 0\right)\right) .
$$

Definition. If S is an orthodox semigroup with an associate subgroup of which the identity element is a middle unit then we shall say that S is compact if $x^{\circ}=x^{*}$ for every $x \in S$.

Theorem 9. Let S be an orthodox semigroup with an associate subgroup of which the identity element is a middle unit. Then the following statements are equivalent:
(1) S is compact;
(2) $E(S)$ is a rectangular band.

Proof. (1) $\Rightarrow(2)$: If (1) holds then $\alpha S \alpha=S^{\circ}=S^{*}$ and is a subgroup of S whence $\alpha E(S) \alpha=\{\alpha\}$. Thus $\alpha f \alpha=\alpha$ for every $f \in E(S)$. If now $e, f, g \in E(S)$ then, since α is a middle unit,

$$
e f g=e \alpha f \alpha g=e \alpha g=e g .
$$

Thus every $f \in E(S)$ is a middle unit of $E(S)$, so $E(S)$ is a rectangular band.
$(2) \Rightarrow(1)$: If $E(S)$ is a rectangular band then $\alpha E(S) \alpha=\{\alpha\}$. It follows that, for every $x \in S$,

$$
x^{\circ \circ} x^{\circ}=\alpha x \alpha x^{\circ}=\alpha x x^{\circ}=\alpha x x^{*}=\alpha x x^{*} \alpha=\alpha
$$

Hence, by Theorem 1,

$$
\begin{aligned}
x^{\circ}=\alpha x^{\circ} & =x^{*} x^{* *} x^{\circ}=x^{*} x^{\circ *} x^{\circ} \\
& =x^{*} x^{\circ \circ} x^{\circ}=x^{*} \alpha=x^{*}
\end{aligned}
$$

whence S is compact.
In the compact situation, Theorem 8 simplifies considerably. To see this, observe that for every $x \in H_{\alpha}$ we have $\vartheta_{x}(e)=x e x^{*}=x \alpha e \alpha x^{*}=x \alpha x^{*}=x x^{*}=\alpha$. The structure maps ϑ_{x} therefore "evaporate" and S is isomorphic to the cartesian product semigroup $E(S) \alpha \times$ $H_{r} \times \alpha E(S)$.

Acknowledgement. We gratefully acknowledge the NATO Collaborative Reseach Grant 910765.

REFERENCES

1. H. d'Alarcao, Factorizable as a finiteness condition, Semigroup Forum, 20 (1980), 281-282.
2. T. S. Blyth and R. McFadden, Unit orthodox semigroups, Glasgow, Math. J., 24 (1983), 39-42.
3. T. S. Blyth and R. McFadden, On the construction of a class of regular semigroups, J. Algebra, 81 (1983), 1-22.
4. K. R. Goodearl, von Neumann regular rings, (Pitman, 1979), (second edition, Krieger, 1991).
T. S. Blyth:
E. Giraldes:

Mathematical Institute, University of St Andrews, Scotland.

Departamento de Matemática, F.C.T., Universidade Nova de Lisboa, Portugal.
M. P. O. Marques-Smith:

Departamento de Matemática, Universidade do Minho, Portugal.

