ASSOCIATE SUBGROUPS OF ORTHODOX SEMIGROUPS

by T. S. BLYTH, EMÍLIA GIRALDES and M. PAULA O. MAROUES-SMITH

(Received 2 October, 1992)

A unit regular semigroup [1,4] is a regular monoid S such that $H_1 \cap A(x) \neq \emptyset$ for every $x \in S$, where H_1 is the group of units and $A(x) = \{y \in S; xyx = x\}$ is the set of associates (or pre-inverses) of x. A uniquely unit regular semigroup is a regular monoid S such that $|H_1 \cap A(x)| = 1$. Here we shall consider a more general situation. Specifically, we consider a regular semigroup S and a subsemigroup T with the property that $|T \cap A(x)| = 1$ for every $x \in S$. We show that T is necessarily a maximal subgroup H_{α} for some idempotent α . When S is orthodox, α is necessarily medial (in the sense that $x = x\alpha x$ for every $x \in \langle E \rangle$) and $\alpha S\alpha$ is uniquely unit orthodox. When S is orthodox and α is a middle unit (in the sense that $x\alpha y = xy$ for all $x, y \in S$), we obtain a structure theorem which generalises the description given in [2] for uniquely unit orthodox semigroups in terms of a semi-direct product of a band with an identity and a group.

Let S be a regular semigroup. Consider a subsemigroup T of S with the property that $|T \cap A(x)| = 1$ for every $x \in S$. In this case we define x^* by $T \cap A(x) = \{x^*\}$. We also define $x^{**} = (x^*)^*$ for every $x \in S$. Then $(x^*)^{**} = [(x^*)^*]^* = (x^{**})^*$ which we can write as x^{***}

Observe that since $x^* \in A(x)$ we have $x^*xx^* \in V(x) \subseteq A(x)$. Therefore, if $x \in T$ then $x^*xx^* \in T \cap A(x) = \{x^*\}$ whence $x^*xx^* = x^*$ and consequently $x \in T \cap A(x^*) = \{x^{**}\}$, so that $x = x^{**}$. Writing $S^* = \{x^*; x \in S\}$ we therefore have $T \subseteq S^*$. Since the reverse inclusion follows from the definition of x^* , we thus have $T = S^*$. Observe also that $x^{**}x^*x^{**} \in V(x^*)$ gives $x^{**}x^*x^{**} \in T \cap A(x^*) = \{x^{**}\}$. Hence $x^{**}x^*x^{**} = x^{**}$ and so $x^* \in T \cap A(x^{**}) = \{x^{***}\}$. Thus $x^{***} = x^*$, from which it follows that $x \in T = S^*$ if and only if $x = x^{**}$.

Since $x^{**} \in V(x^*)$ we have that S^* is regular; and since $y \in S^* \cap V(x^*)$ gives $y \in S^* \cap A(x^*) = \{x^{**}\}$ we see that S^* is inverse with $(x^*)^{-1} = x^{**}$. If now $e, f \in E(S^*)$ then since e and f commute we have ef. e. ef = ef = ef. f. ef whence e, $f \in S^* \cap A(ef)$ and therefore $e = (ef)^* = f$. Thus $E(S^*)$ is a singleton and so S^* is in fact a group. Denoting by α the identity element of S^* we then have the properties

$$(\forall x \in S)$$
 $x^*\alpha = x^* = \alpha x^*, x^*x^{**} = \alpha = x^{**}x^*.$

In what follows we shall call such a subgroup S^* an associate subgroup of S.

We begin by listing some basic properties arising from the existence of an associate subgroup. For every $x \in S$ we define

$$x^{\circ} = x * x x *$$
.

It is clear that $x^{\circ} \in V(x)$ and $xx^{\circ} = xx^{*}$, $x^{\circ}x = x^{*}x$. We first investigate the relationship between x° and x^{*} .

THEOREM 1. $(\forall x \in S) x^{*\circ} = x^{**} = x^{\circ*}$.

Proof. The first equality results from the observation that

$$x^{*\circ} = x^{**}x^{*}x^{**} \in S^{*} \cap V(x^{*}) \subset S^{*} \cap A(x^{*}) = \{x^{**}\}.$$

Glasgow Math. J. 36 (1994) 163-171.

164 T. S. BLYTH, E. GIRALDES AND M. P. O. MAROUES-SMITH

As for the second equality, we have $x^{\circ} = x^{\circ}x^{\circ*}x^{\circ}$ and so

$$x = xx^{\circ}x = xx^{\circ}x^{\circ*}x^{\circ}x = xx^{*}x^{\circ*}x^{*}x$$

whence $x^*x^{\circ *}x^* \in S^* \cap A(x)$ and therefore $x^*x^{\circ *}x^* = x^*$. It now follows that $x^{\circ *} \in S^* \cap A(x^*) = \{x^{**}\}$. \square

COROLLARY 1. $(\forall x \in S) x^{\circ \circ} = \alpha x \alpha$.

Proof. By the above, we have $x^{\circ \circ} = x^{\circ *}x^{\circ}x^{\circ *} = x^{**}x^{*}xx^{*}x^{**} = \alpha x \alpha$.

COROLLARY 2. $(\forall x \in S) x^{\circ \circ \circ} = x^{\circ}$.

Proof. We have

$$x^{\circ\circ\circ} = x^{\circ\circ*}x^{\circ\circ}x^{\circ\circ*} = x^{***}x^{\circ\circ}x^{***} = x^*x^{\circ\circ}x^*$$

$$= x^*xx^* \text{ by Corollary 1}$$

$$= x^{\circ}. \quad \Box$$

Defining $S^{\circ} = \{x^{\circ}; x \in S\}$ we see from the above results that

$$x \in S^{\circ} \Leftrightarrow x = \alpha x \alpha$$

so that $S^{\circ} = \alpha S \alpha$. The subsemigroup S° is regular; for we have

$$\alpha x \alpha = \alpha x x^* x \alpha = \alpha x \alpha x^* \alpha x \alpha = \alpha x \alpha \cdot \alpha x^* \alpha \cdot \alpha x \alpha$$

This also gives $x^* = \alpha x^* \alpha = (\alpha x \alpha)^*$. Moreover, since α is the identity element of S^* we have that $S^* \subseteq S^\circ$.

We now show that every associate subgroup of S is in fact a maximal subgroup, the uniquely unit regular situation therefore being a special case.

THEOREM 2. $S^* = H_{\alpha}$.

Proof. Since the maximal subgroups of S are precisely the \mathcal{H} -classes containing idempotents we have $S^* \subseteq H_\alpha$. To obtain the reverse inclusion, let $x \in H_\alpha$. Then $xx^* \in H_\alpha$ and $x^*x \in H_\alpha$ give $xx^* = \alpha = x^*x$ whence $x^\circ = x^*xx^* = x^*\alpha = x^*$ and $x = \alpha x\alpha = x^{\circ\circ}$. Consequently, $x = x^{\circ\circ} = x^{*\circ} = x^{*\circ} = x^{*\circ} = x^{\circ\circ}$. \square

COROLLARY. So is uniquely unit regular with group of units H_{∞} .

Proof. Since S is regular and $H_{\alpha} = S^* \subseteq S^{\circ}$ we have that H_{α} is an \mathcal{H} -class of S° . Moreover,

$$H_{\alpha} \cap A(\alpha x \alpha) = S^* \cap A(\alpha x \alpha) = \{(\alpha x \alpha)^*\}$$

and $(\alpha x \alpha)^* = x^* = \alpha x^* \alpha \in S^\circ$. Since $\alpha x^\circ = x^\circ = x^\circ \alpha$ it follows that S° is uniquely unit regular with group of units H_α . \square

THEOREM 3. $(\forall x, y \in S) (xy)^* = (x^*xy)^*x^* = y^*(xyy^*)^*$.

Proof. We have

$$xy \cdot (x^*xy)^*x^* \cdot xy = x \cdot x^*xy(x^*xy)^*x^*xy = xx^*xy = xy$$

and so $(x^*xy)^*x^* \in S^* \cap A(xy)$ whence $(x^*xy)^*x^* = (xy)^*$. The other identity is established similarly. \square

Observe now that $\alpha x \alpha \in E(S^{\circ})$ if and only if $\alpha x \alpha x \alpha = \alpha x \alpha$. Pre-multiplying by x^*x and post-multiplying by x^*x , we see that this is equivalent to $x\alpha x = x$, i.e. to $x^* = \alpha$. Thus $\alpha x \alpha \in E(S^{\circ})$ implies $x = xx^*x = xx^*$. $x^*x \in \langle E \rangle$. It follows from these observations that we have $E(S^{\circ}) \subseteq \alpha \langle E \rangle \alpha$.

THEOREM 4. The following statements are equivalent:

- (1) α is medial:
- (2) $(\forall x, y \in S) (xy)^* = y^*x^*$:
- (3) $E(S^{\circ}) = \alpha \langle E \rangle \alpha$.

Proof. (1) \Rightarrow (2): If α is medial then $\alpha = x^*$ for every $x \in \langle E \rangle$. It follows by Theorem 3 that

$$(xy)^* = y^*(x^*xyy^*)^*x^* = y^*\alpha x^* = y^*x^*.$$

- $(2) \Rightarrow (1)$: If (2) holds then we have $e^* \in E$ for every $e \in E$. Since S^* is a group it follows that $e^* = \alpha$ for every $e \in E$. Consequently, if $e_1, e_2 \in E$ then by (2) we have $(e_1e_2)^* = e_2^*e_1^* = \alpha\alpha = \alpha$, whence by induction we have $x^* = \alpha$ for all $x \in \langle E \rangle$. It follows that $x = x\alpha x$ for every $x \in \langle E \rangle$ whence α is medial.
- (1) \Rightarrow (3): Suppose that α is medial and that $x \in \langle E \rangle$. Then $x^*\alpha$ and so $\alpha x \alpha \in E(S^\circ)$ whence $\alpha \langle E \rangle \alpha \subset E(S^\circ)$.
- (3) \Rightarrow (1): If (3) holds and $x \in \langle E \rangle$ then $\alpha x \alpha$ is idempotent so $x^* = \alpha$ and $x = xx^*x = x\alpha x$, i.e. α is medial. \square

COROLLARY. If α is medial then S° is uniquely unit orthodox. \square

THEOREM 5. If S is orthodox then α is medial and $E(S^{\circ}) = \alpha E \alpha$.

Proof. If S is orthodox then we have $y^{\circ}x^{\circ} \in V(xy) \subset A(xy)$. Then

$$xy = xyy^{\circ}x^{\circ}xy = xyy^*x^*xy$$

whence $y^*x^* \in S^* \cap A(xy)$ and therefore $y^*x^* = (xy)^*$. The result therefore follows by Theorem 4. \square

COROLLARY 1. If S is orthodox then $e^* = \alpha$ for every $e \in E$. \square

COROLLARY 2. If S is orthodox then any two associate subgroups of S are isomorphic.

Proof. Let A, B be associate subgroups of S with respective identity elements α , β . Since S is orthodox, α and β are medial so $\beta = \beta \alpha \beta$ and $\alpha = \alpha \beta \alpha$. Thus $\beta \in V(\alpha)$ and so β belongs to the \mathcal{D} -class of α . Consequently we have that $B = H_{\beta} \simeq H_{\alpha} = A$. \square

Observe that if we define $E^{\circ} = \{e^{\circ}; e \in E(S)\}$ then, when S is orthodox, we have $E^{\circ} = E(S^{\circ})$. This follows immediately from Theorem 5.

THEOREM 6. The following statements are equivalent:

- (1) α is a middle unit:
- (2) $(\forall x, y \in S) (xy)^{\circ \circ} = x^{\circ \circ} y^{\circ \circ}$.

Proof. (1) \Rightarrow (2): If α is a middle unit then

$$(xy)^{\circ \circ} = \alpha xy\alpha = \alpha x\alpha$$
. $\alpha y\alpha = x^{\circ \circ}y^{\circ \circ}$.

 $(2) \Rightarrow (1)$: If (2) holds then for all $x, y \in S$ we have

$$x^{\circ}xyy^{\circ} = x^{\circ}\alpha xy\alpha y^{\circ} = x^{\circ}(xy)^{\circ\circ}y^{\circ}$$

$$= x^{\circ}x^{\circ\circ}y^{\circ\circ}y^{\circ}$$

$$= x^{\circ}. \alpha x\alpha. \alpha y\alpha. y^{\circ}$$

$$= x^{\circ}x\alpha yy^{\circ}$$

whence $xy = x\alpha y$ and so α is a middle unit. \square

We recall now the following definitions. A medial idempotent α of a regular semigroup is said to be *normal* [3] if the band $\alpha \langle E \rangle \alpha$ is commutative. A regular semigroup S is said to be *locally inverse* if for every idempotent e the subsemigroup eS is inverse. An inverse transversal of a regular semigroup S is an inverse subsemigroup T with the property that $|T \cap V(x)| = 1$ for every $x \in S$. If we let $T \cap V(x) = \{x^{\circ}\}$ then we have $T = S^{\circ} = \{x^{\circ}; x \in S\}$ and the inverse transversal S° is said to be multiplicative if $x^{\circ}xyy^{\circ} \in E(S^{\circ})$ for all $x, y \in S$.

THEOREM 7. If S is orthodox then the following statements are equivalent:

- (1) α is a normal medial idempotent;
- (2) $S^{\circ} = \alpha S \alpha$ is inverse;
- (3) $(\forall x, y \in S) (xy)^{\circ} = y^{\circ}x^{\circ}$;
- (4) S is locally inverse:
- (5) S° is a multiplicative inverse transversal of S.

Proof. (1) \Rightarrow (2): By Theorem 4, $E(S^{\circ}) = \alpha E \alpha$ which by (1) is a semilattice.

- (2) \Rightarrow (1): By Theorem 5, α is medial; and by (2) it is normal.
- $(1) \Rightarrow (3)$: If (1) holds then α is a middle unit by [3, Theorem 2.2]. It follows that for all $x, y \in S$ we have

$$(xy)^{\circ} = (xy)^*xy(xy)^*$$

$$= y^*x^*xyy^*x^* \quad \text{by Theorem 4}$$

$$= y^* \cdot \alpha x^*x\alpha \cdot \alpha yy^*\alpha \cdot x^*$$

$$= y^* \cdot \alpha yy^*\alpha \cdot \alpha x^*x\alpha \cdot x^* \quad \text{by (1)}$$

$$= y^*yy^*x^*xx^*$$

$$= y^{\circ}x^{\circ}.$$

(3) \Rightarrow (2): By Corollary 1 of Theorem 5 we have $e^* = \alpha$ and hence $e^\circ = e^*ee^* = \alpha e\alpha = e$. Suppose then that (3) holds. Then for $e, f \in E(S^\circ)$ we have

$$(ef)^{\circ} = f^{\circ}e^{\circ} = fe.$$

It follows that ef = ef. fe. ef = efef and so S° is orthodox. Moreover, we have $ef \in E(S^{\circ})$ and so $(ef)^{\circ} = ef$. Hence ef = fe for all $e, f \in E(S^{\circ})$ and so S° is inverse.

 $(1) \Rightarrow (4)$: For $e \in E$ and $x \in S$ we have, by Theorem 5 and its Corollary 1,

$$(exe)^* = e^*x^*e^* = \alpha x^*\alpha = x^*.$$

Hence $exe = exe(exe)^*exe = exe$. exe and so eSe is regular. That the idempotents in eSe commute is shown precisely as in [3, Theorem 4.3].

- $(4) \Rightarrow (2)$: This is clear.
- $(2) \Rightarrow (5)$: If (2) holds then by the above so does (1) whence α is middle unit; and so

does (3). Suppose then that $x \in S^{\circ}$ and that $y \in S^{\circ} \cap V(x)$. We have $y = y^{\circ \circ}$ and yxy = y, xyx = x. By (2) and (3) it follows that

$$y = y^{\circ \circ} = \alpha y \alpha = (\alpha x \alpha)^{-1} = (\alpha x \alpha)^{\circ} = \alpha x^{\circ} \alpha = x^{\circ}.$$

Hence S° is an inverse transversal of S. Since, for all $x, y \in S$,

$$(x^{\circ}xyy^{\circ})^{\circ} = (x^{\circ}xyy^{\circ})^*x^{\circ}xyy^{\circ}(x^{\circ}xyy^{\circ})^*$$

= $\alpha x^{\circ}xyy^{\circ}\alpha$ by Corollary 1 of Theorem 5
= $x^{\circ}xvy^{\circ}$.

we have that $x^{\circ}xyy^{\circ} \in E(S^{\circ})$ and so S° is multiplicative.

$$(5) \Rightarrow (2)$$
: This is clear. \square

EXAMPLE. Let B be a rectangular band and let B^1 be obtained from B by adjoining an identity element 1. Let $S = \mathbb{Z} \times B^1 \times \mathbb{Z}$ and define on S the multiplication

$$(m, x, p)(n, y, q) = (m_k + n, xy, p + q_k)$$

where, for a fixed integer k > 1, m_k is the greatest multiple of k that is less than or equal to m. It is readily seen that S is a semigroup. Simple calculations reveal that the set of associates of $(m, x, p) \in S$ is

$$A(m,x,p) = \begin{cases} \{(n,y,q); n_k = -m_k, q_k = -p_k\} & \text{if } x \neq 1; \\ \{(n,1,q); n_k = -m_k, q_k = -p_k\} & \text{if } x = 1, \end{cases}$$

and that the set of inverses of $(m, x, p) \in S$ is

$$V(m,x,p) = \begin{cases} \{(n,y,q); n_k = -m_k, y \neq 1, q_k = -p_k\} & \text{if } x \neq 1; \\ \{(n,1,q); n_k = -m_k, q_k = -p_k\} & \text{if } x = 1. \end{cases}$$

The set of idempotents of S is

$$E = \{(m, x, p); m_k = 0 = p_k\}$$

and so S is orthodox. For every $(m, x, p) \in S$ define

$$(m, x, p)^* = (-m_{\nu}, 1, -p_{\nu}).$$

Then S^* is an associate subgroup of S. The identity element of S^* is $\alpha = (0, 1, 0)$. It is readily seen that α is a middle unit. Now

$$(m, x, p)^{\circ} = (m, x, p)^{*}(m, x, p)(m, x, p)^{*} = (-m_{k}, x, -p_{k}),$$

whence simple calculations give

$$[(m, x, p)(n, y, q)]^{\circ} = (-m_k - n_k, xy, -p_k - q_k),$$

$$(n, y, q)^{\circ}(m, x, p)^{\circ} = (-m_k - n_k, yx, -p_k - q_k).$$

Now $xy \neq yx$ for distinct $x, y \in B$ so, by Theorem 7, α is not medial normal.

We now proceed to describe the structure of orthodox semigroups with an associate subgroup of which the identity element is a middle unit. For this purpose, let B be a band with a middle unit α and let End B be the monoid of endomorphisms on B. Define

$$\operatorname{End}_{\alpha} B = \{ f \in \operatorname{End} B; f \text{ preserves } \alpha \text{ and } \operatorname{Im} f = \alpha B \alpha \}.$$

Then $\operatorname{End}_{\alpha} B$ is a subsemigroup of $\operatorname{End} B$.

Consider the mapping $\omega: B \to B$ given by $\omega(x) = \alpha x \alpha$ for every $x \in B$. Since α is a middle unit, we have $\varphi \in \text{End } B$. Moreover, φ clearly preserves α and $\text{Im } \varphi = \alpha B \alpha$. Hence $\omega \in \operatorname{End}_{\alpha} B$. In fact, ω is the identity element of $\operatorname{End}_{\alpha} B$; for if $f \in \operatorname{End}_{\alpha} B$ then

$$(\forall x \in B)$$
 $f\varphi(x) = f(\alpha x \alpha) = \alpha f(x) \alpha = \varphi f(x) = f(x),$

the last equality following from the fact that $\varphi|_{\alpha B\alpha} = \mathrm{id}_{\alpha B\alpha}$. Hence $f\varphi = \varphi f = f$ and so $\operatorname{End}_{\alpha} B$ is a monoid.

THEOREM 8. Let B be a band with a middle unit α and let G be a group. Let $\zeta: G \to \operatorname{End}_{\alpha} B$, described by $g \mapsto \zeta_{e}$, be a 1-preserving morphism. On the set

$$[B;G]_{\zeta} = \{(x,g,a) \in B\alpha \times G \times \alpha B; \zeta_{g}(a) = \zeta_{1}(x)\}$$

define the multiplication

$$(x,g,a)(y,h,b) = (x\zeta_g(y),gh,\zeta_{h^{-1}}(a)b).$$

Then $[B;G]_{\zeta}$ is an orthodox semigroup with an associate subgroup of which the identity element $(\alpha, 1, \alpha)$ is a middle unit. Moreover, we have $E([B; G]_{\xi}) = B$ and $H_{(\alpha, 1, \alpha)} = G$.

Furthermore, every such semigroup is obtained in this way. More precisely, let S be an orthodox semigroup with an associate subgroup of which the identity element α is a middle unit. For every $y \in S$ let y^* be given by $H_{\alpha} \cap A(y) = \{y^*\}$, and for every $x \in H_{\alpha}$ let $\vartheta_x: E(S) \to E(S)$ be given by $\vartheta_x(e) = xex^*$. Then $\vartheta_x \in \text{End}_{\alpha} E(S)$, the mapping $\vartheta: H_{\alpha} \to S$ End_x E(S) described by $x \mapsto \vartheta_x$ is a 1-preserving morphism and

$$S \simeq [E(S); H_{\alpha}]_{\vartheta}$$
.

Proof. Observe first that the multiplication on $[B; G]_{\xi}$ is well defined, for we have $x\zeta_{\rho}(y) \in B\alpha$. $\alpha B\alpha \subseteq B\alpha$ and $\zeta_{h^{-1}}(a)b \in \alpha B\alpha$. $\alpha B \subseteq \alpha B$, with

$$\zeta_{gh}[\zeta_{h^{-1}}(a)b] = \zeta_g(a)\zeta_g[\zeta_h(b)] = \zeta_1(x)\zeta_g[\zeta_1(y)] = \zeta_1[x\zeta_g(y)].$$

A purely routine calculation shows that it is also associative. That the semigroup $[B; G]_{\mathcal{E}}$ is regular follows from the fact that

$$(x,g,a)(\alpha,g^{-1},\alpha)(x,g,a) = (x\zeta_g(\alpha),gg^{-1},\zeta_g(a)\alpha)(x,g,a)$$

$$= (x\alpha,1,\zeta_g(a)\alpha)(x,g,a)$$

$$= (x\alpha\zeta_1(x),g,\zeta_{g^{-1}}[\zeta_g(a)\alpha]a)$$

$$= (x\alpha\alpha\alpha,g,\zeta_1(a)\alpha\alpha)$$

$$= (x,g,\alpha\alpha\alpha\alpha)$$

$$= (x,g,a).$$

It is readily seen that the set of idempotents of $[B; G]_{\varepsilon}$ is

$$E([B;G]_{\xi})=\{(x,1,a);\,\alpha x=a\alpha\},$$

and that the idempotent $(\alpha, 1, \alpha)$ is a middle unit of $[B; G]_{\epsilon}$. If now (x, 1, a) and (y, 1, b) are idempotents then

$$(x, 1, a)(y, 1, b) = (x\zeta_1(y), 1, \zeta_1(a)b)$$
$$= (x\alpha y\alpha, 1, \alpha a\alpha b)$$
$$= (xy, 1, ab),$$

with $\alpha xy = a\alpha y = ab\alpha$. Hence we see that $[B; G]_{\xi}$ is orthodox. Moreover, we have $E([B; G]_{\xi}) \simeq B$. To see this, consider the mapping $f: E([B; G]_{\xi}) \to B$ given by

$$f(x, 1, a) = xa$$
.

Now f is surjective since for every $e \in B$ we have $(e\alpha, 1, \alpha e) \in E([B; G]_{\xi})$ with $f(e\alpha, 1, \alpha e) = e\alpha$. $\alpha e = e$. To see that f is also injective, suppose that (x, 1, a) and (y, 1, b) are idempotents with f(x, 1, a) = f(y, 1, b). Then xa = yb with $\alpha x = a\alpha$ and $\alpha y = b\alpha$. It follows that $x = x\alpha x = xa\alpha = yb\alpha = y\alpha y = y$ and similarly a = b. Finally, f is a morphism; for

$$f[(x, 1, a)(y, 1, b)] = f(xy, 1, ab) = xyab$$

and

$$xyab = x\alpha ya\alpha b = xb\alpha xb$$

$$= xb = x\alpha xb\alpha b = xa\alpha yb$$

$$= xayb = f(x, 1, a)f(y, 1, b).$$

It is also readily seen that

$$(y, h, b) \in A(x, g, a) \Leftrightarrow \zeta_g(y) \in A(x), h = g^{-1}, \zeta_{g^{-1}}(b) \in A(a).$$

Since α is a middle unit of B, it follows that $(\alpha, g^{-1}, \alpha) \in A(x, g, a)$. Defining

$$(x, g, a)^* = (\alpha, g^{-1}, \alpha),$$

we see that $[B; G]_{\xi}^*$ is an associate subgroup, with identity element $(\alpha, 1, \alpha)$, that is isomorphic to G. It follows from Theorem 2 that $G \simeq H_{(\alpha, 1, \alpha)}$.

Conversely, suppose that S is an orthodox semigroup with an associate subgroup G the identity element α of which is a middle unit of S. Then by Theorem 2 we have $G = H_{\alpha}$. Let x^* be given by $H_{\alpha} \cap A(x) = \{x^*\}$ for every $x \in S$. Observe first that for every $x \in H_{\alpha}$ we have $xex^* \in E(S)$ for every $e \in E(S)$. In fact, $xex^* \cdot xex^* = xe\alpha ex^* = xex^*$. For $x \in H_{\alpha}$ the mapping $\vartheta_x : E(S) \to E(S)$ given by $\vartheta_x(e) = xex^*$ is then a morphism; for

$$\vartheta_x(ef) = xefx^* = xe\alpha fx^* = xex^* \cdot xfx^* = \vartheta_x(e)\vartheta_x(f).$$

Moreover, ϑ_x preserves α . Since α is the identity of H_α it is clear that $\operatorname{Im} \vartheta_x \subseteq \alpha E(S)\alpha$. Since for every $e \in \alpha E(S)\alpha$ it is clear that $\vartheta_x(x^*ex) = e$, it follows that $\operatorname{Im} \vartheta_x = \alpha E(S)\alpha$ for every $x \in H_\alpha$, and therefore $\vartheta_x \in \operatorname{End}_\alpha E(S)$. The mapping $\vartheta: H_\alpha \to \operatorname{End}_\alpha E(S)$ given by $x \mapsto \vartheta_x$ is then a morphism; for

$$\vartheta_x[\vartheta_v(e)] = xyey^*x^* = xye(xy)^* = \vartheta_{xy}(e).$$

Furthermore, ϑ is 1-preserving since $\vartheta_{\alpha}(e) = \alpha e \alpha = \varphi(e)$ where φ is the identity of End_{α} E(S). We can therefore construct the semigroup $[E(S); H_{\alpha}]_{\vartheta}$.

Since for every $x \in S$ we have $xx^* = xx^*\alpha \in E(S)\alpha$ and $x^*x = \alpha x^*x \in \alpha E(S)$ with

$$\vartheta_{x^{**}}(x^*x) = x^{**}x^*xx^* = \alpha xx^*\alpha = \vartheta_{\alpha}(xx^*),$$

we can define a mapping $\psi: S \to [E(S); H_{\alpha}]_{\theta}$ by

$$\psi(x) = (xx^*, x^{**}, x^*x).$$

We show as follows that ψ is an isomorphism.

That ψ is injective follows from the fact that if $\psi(x) = \psi(y)$ then $xx^* = yy^*$, $x^{**} = y^{**}$ and $x^*x = y^*y$ give

$$x = xx^*x^{**}x^*x = vv^*v^{**}v^*v = v.$$

To see that ψ is surjective, let $(e, x, f) \in [E(S); H_{\alpha}]_{\theta}$. Then $xfx^* = \vartheta_x(f) = \vartheta_{\alpha}(e) = \alpha e \alpha$. Consider the element s = exf. Using Theorem 4 and Corollary 1 of Theorem 5, we have

$$s^{**} = e^{**}x^{**}f^{**} = \alpha x \alpha = x.$$

It follows that $s^* = x^*$ and so

$$ss^* = exfx^* = e\alpha e\alpha = e\alpha = e$$
.

Since α is a middle unit, we also have

$$s*s = x*exf = x*\alpha e\alpha xf = x*xfx*xf = \alpha f\alpha f = \alpha f = f.$$

Consequently, $\psi(s) = (ss^*, s^{**}, s^*s) = (e, x, f)$ and so ψ is surjective.

Finally, ψ is a morphism since

$$\psi(x)\psi(y) = (xx^*, x^{**}, x^*x)(yy^*, y^{**}, y^*y)$$

$$= (xx^*\vartheta_{x^{**}}(yy^*), x^{**}y^{**}, \vartheta_{y^{*}}(x^*x)y^*y)$$

$$= (xx^*x^{**}yy^*x^*, (xy)^{**}, y^*x^*xy^{**}y^*y)$$

$$= (xyy^*x^*, (xy)^{**}, y^*x^*xy)$$

$$= (xy(xy)^*, (xy)^{**}, (xy)^*xy)$$

$$= \psi(xy).$$

Hence we have that $S \simeq [E(S); H_{\alpha}]_{\theta}$. \square

That the structure theorem in [2] for uniquely unit orthodox semigroups is a particular case of Theorem 8 can be seen as follows. Suppose that S is uniquely unit orthodox. Then, taking $\alpha = 1$ in Theorem 8, the mappings ϑ_x become automorphisms on E(S). For, $xex^* = xfx^*$ gives $e = 1e1 = x^*xex^*x = x^*xfx^*x = 1f1 = f$ so that ϑ_x is injective; and $\vartheta_x(x^*ex) = xx^*exx^* = 1e1 = e$ so that ϑ_x is surjective. Therefore, in the construction of the first part of Theorem 8 we can take ζ to be a group morphism from G to Aut B. In this case the elements of $[B; G]_{\zeta}$ are the triples (x, g, a) with $a = \zeta_{g^{-1}}(x)$. Since the third component of the triple is therefore completely determined by the first two components we can effectively ignore third components. Then it is clear that $[B; G]_{\zeta}$ reduces to the semi-direct product described in [2].

Theorem 8 can of course be illustrated using the example that precedes it. Here we have $\alpha=(0,1,0)$ and the "building bricks" in the construction are the bands $E(S)\alpha$ consisting of the elements of the form (0,x,p), $\alpha E(S)$ consisting of the elements of the form (m,x,0), and the subgroup H_{α} consisting of the elements of the form $(m_k,1,p_k)$. Simple calculations give $(m,x,p)(m,x,p)^*=(0,x,p-p_k)$, $(m,x,p)^*(m,x,p)=(m-m_k,x,0)$, and $(m,x,p)^{**}=(m_k,1,p_k)$. The isomorphism $S \cong [E(S);H_{\alpha}]_{\theta}$ is then given via the coordinatisation

$$(m, x, p) \sim ((0, x, p - p_k), (m_k, 1, p_k), (m - m_k, x, 0)).$$

DEFINITION. If S is an orthodox semigroup with an associate subgroup of which the identity element is a middle unit then we shall say that S is *compact* if $x^{\circ} = x^{*}$ for every $x \in S$.

THEOREM 9. Let S be an orthodox semigroup with an associate subgroup of which the identity element is a middle unit. Then the following statements are equivalent:

- (1) S is compact;
- (2) E(S) is a rectangular band.

Proof. (1) \Rightarrow (2): If (1) holds then $\alpha S \alpha = S^{\circ} = S^{*}$ and is a subgroup of S whence $\alpha E(S)\alpha = \{\alpha\}$. Thus $\alpha f \alpha = \alpha$ for every $f \in E(S)$. If now $e, f, g \in E(S)$ then, since α is a middle unit.

$$efg = e\alpha f\alpha g = e\alpha g = eg$$
.

Thus every $f \in E(S)$ is a middle unit of E(S), so E(S) is a rectangular band.

(2) \Rightarrow (1): If E(S) is a rectangular band then $\alpha E(S)\alpha = {\alpha}$. It follows that, for every $x \in S$,

$$x^{\circ \circ}x^{\circ} = \alpha x \alpha x^{\circ} = \alpha x x^{\circ} = \alpha x x^* = \alpha x x^* \alpha = \alpha.$$

Hence, by Theorem 1,

$$x^{\circ} = \alpha x^{\circ} = x^* x^{**} x^{\circ} = x^* x^{\circ *} x^{\circ}$$

= $x^* x^{\circ \circ} x^{\circ} = x^* \alpha = x^*$

whence S is compact. \square

In the compact situation, Theorem 8 simplifies considerably. To see this, observe that for every $x \in H_{\alpha}$ we have $\vartheta_{x}(e) = xex^{*} = x\alpha e\alpha x^{*} = x\alpha^{*} = xx^{*} = \alpha$. The structure maps ϑ_{x} therefore "evaporate" and S is isomorphic to the cartesian product semigroup $E(S)\alpha \times H_{\alpha} \times \alpha E(S)$.

ACKNOWLEDGEMENT. We gratefully acknowledge the NATO Collaborative Reseach Grant 910765.

REFERENCES

- 1. H. d'Alarcao, Factorizable as a finiteness condition, Semigroup Forum, 20 (1980), 281–282.
- 2. T. S. Blyth and R. McFadden, Unit orthodox semigroups, Glasgow, Math. J., 24 (1983), 39-42
- 3. T. S. Blyth and R. McFadden, On the construction of a class of regular semigroups, J. Algebra, 81 (1983), 1-22.
- 4. K. R. Goodearl, von Neumann regular rings, (Pitman, 1979), (second edition, Krieger, 1991).

T. S. Blyth:

MATHEMATICAL INSTITUTE, UNIVERSITY OF ST ANDREWS, SCOTLAND. E. Giraldes:

DEPARTAMENTO DE MATEMÁTICA, F.C.T., UNIVERSIDADE NOVA DE LISBOA, PORTUGAL.

M. P. O. Marques-Smith:

DEPARTAMENTO DE MATEMÁTICA, Universidade do Minho, Portugal.