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Abstract

The complete symmetry group of a forced harmonic oscillator is shown to be
Sl(3,R) in the one-dimensional case. Approaching the problem through the
Hamiltonian invariants and the method of extended Lie groups, the method
used is that of time-dependent point transformations. The result applies equally
well to the forced repulsive oscillator and a particle moving under the influence
of a coordinate-free force. The generalization to M-dimensional systems is
discussed.

1. Introduction

Over the last few years there has been a resurgence of interest in the symmetries
of dynamical systems. The original impetus for the construction of dynamical
symmetry groups came from the description of unexpected degeneracies in spectra.
For the basic integrable classical systems, the Kepler problem and the harmonic
oscillator, the symmetry groups are respectively SO(4) and SC/(3) (for three
dimensions). Similarities between time-independent and time-dependent oscillator
systems led to the study of the invariants, and consequently the symmetries, of
time-dependent quadratic Hamiltonians. It was seen that time-dependent and
time-independent quadratic Hamiltonians were related by linear canonical trans-
formations [5]. Previously known invariants [4] for the time-independent oscillator
were shown to have their counterparts for time-dependent oscillators [3, 6]. In
particular, the Lewis invariant [12] was given a simple explanation. The existence
of these invariants enabled the construction of symmetry groups for quadratic
Hamiltonians [7]. As the invariants usually had non-zero Poisson brackets with
the Hamiltonian, they were called non-invariance symmetry groups.

Further work [9] on quadratic Hamiltonians showed that there are more linear
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and quadratic invariants than is necessary to form the operators of the special
unitary group. The significance of these invariants became obvious in light of the
work of Anderson and Davison [1], Wulfman and Wybourne [17], and Lutzky [13].
Anderson and Davison showed that the complete symmetry group for the one-
dimensional time-independent harmonic oscillator and the free particle was
S/(3, R). The term complete is used to indicate that the group is the largest admitted
by the problem. Wulfman and Wybourne used the method of extended Lie groups
to deduce the same result for the oscillator. Lutzky used Noether's theorem and a
modification of the theory of extended Lie groups to repeat the result.

The extension of these results to other systems has been undertaken recently.
Leach has shown that 57(3, i?) applies to the one-dimensional time-dependent
harmonic oscillator [10] and to the repulsive oscillator [11]. Of the eight generators
required, five came from the two linear and three quadratic invariants of the
Hamiltonian and the remaining three from the use of the method of extended Lie
groups. Prince and Eliezer [15] extended the work on the time-dependent oscillator
to ^-dimensions, showing that the group is Sl(n+2,R). They followed Lutzky's
method.

In this note, the complete symmetry group of a forced one-dimensional harmonic
oscillator is shown to be S7(3, R). The method used is based on the theory of linear
canonical transformations. Lutzky's approach has not been attempted, but it is
expected that the results would be equally easy to obtain. Some work was done
using the method of Wulfman and Wybourne. The resulting partial differential
equations were not easy to solve and it is believed that the method adopted here
is simpler. It also has the advantage of showing the essential similarity of linear
Hamiltonian systems.

2. Lie symmetry groups and invariants

The main ideas of the theory of Lie symmetry groups may be found in Bluman
and Cole [2]. Some of the relevant results are summarized here for the benefit of
the reader. A one-parameter infinitesimal point transformation from coordinates
(g, t) to coordinates (q, f), where

Six, (2.1)

is generated by the operator

^+ri(q,t)~. (2.2)
at dq

To find the variations induced on the derivatives it is necessary to use the extended
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group operator. For a function involving the first derivative, the operator is

dt dq dq

and, for one involving the second derivatives, it is

where

(2.5)

- dt dt dq

In particular, if it is desired to study the symmetry group of a differential equation
of the second order, such as

N(q,q,q,t)=0, (2.6)

the second extended operator must be used. An operator G is said to be the
generator of a one-parameter symmetry group for (2.6) if, whenever (2.6) is
satisfied,

G^N(q,q,q,t)=0 (2.7)

^+^^+^=0. (2.8)
dt dq dq dq

It is possible to obtain the generator of a one-parameter symmetry group if the
motion corresponding to the differential equation (2.6) has an integral invariant.
In terms of the Lagrangian formulation, if there exists an invariant, it may be
written in the form

ftq, 4, i)=(Zq-n$:-ZL+f(q, t). (2.9)
dq

The operator G is obtained by the use of the £ and t] which satisfies (2.9) for a
particular <p(g,q,t). In the Hamiltonian formulation the corresponding relation is

4>{q,p,t) = SH-r,p+f{q,t). (2.10)

The function f(q, t) performs the task of soaking up remaining terms. For each
invariant <f> there corresponds only one generator. It has been noted by Lutzky [14]
that, were / allowed to depend upon q, q, t (or q, p, t), this uniqueness property
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is lost. From (2.10) it is obvious that, for those Hamiltonians which are at most
quadratic in the momentum, invariants are also at most quadratic in the momentum
if they are to give rise to a symmetry group generator.

It should be emphasized that, although to each invariant (subject to the
limitations mentioned above) there exists a generator of a one-parameter Lie
group, there may be one-parameter groups which do not correspond to the
Lagrangian (or Hamiltonian) invariants. The generators of such groups are formed
from the solutions of (2.8). They have the property of leaving the equation of
motion invariant, but not the action integral. Only the Lagrangian (Hamiltonian)
derived generators have this property. There has been some work done on finding
constants which correspond to these additional generators, but so far the results
have not been reported in the literature [16].

3. Invariants for the forced oscillator

The one-dimensional, time-independent, forced harmonic oscillator has
Newtonian equation of motion .

+ « ? + / = 0, (3.1)

where / is taken to be a continuous function of time over the interval of time
which is of interest. The corresponding Hamiltonian is

H = Xp2+q2)+fq, (3-2)

the conjugate momentum, p, being q. This may be transformed to the unforced
oscillator

(3-3)

by means of a linear canonical transformation. Rewriting (3.2) and (3.3) as

, (3.4)

(3.5)

where

•-a- -ra- »-Ki-
the transformation is

z = 5z+r, (3.7)
where [5]

$=JIS-SJI, (3.8)

r =JIr+Jb. (3.9)
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The matrix / is the 2x2 symplectic matrix. There is no loss of generality in taking
S to be the identity. The solution of (3.9) is given by

r(O = i?«r(O)+ R(t)R-\xL' (3.10)

where R(t) is the 2x2 matrix formed from the solution set of the homogeneous
equation corresponding to (3.9). Explicitly,

mJ*»t sin*!
L — sin t cos tJ

(3.11)

Again there is no loss of generality if r(0) is set at zero. The transformation
relating the two Hamiltonians is then

where

g(t) = sin(r—
Jo

r= cos(x-t)f(x)dx.

(3.12)

(3.13)

(3.14)

The two linear and three quadratic invariants for (3.2) are (compare with [8]):

24>x{q,p,t) = -{(q-g)2-(p+h)2}sin2t-2(q-g)(p+h)cos2t,~
2(j>2{q,p,t) = -{(q-g)2-{p+h)2}cos2t+2(q-g)(j>+h)sm2t,

4>A(3>P> 0 = ia-9) cos t-(p+ti) sin t,
(3.15)

The ordering adopted is that which has been used in recent papers [10, 13, 15].
From (2.2) and (2.10) it follows that the corresponding generators are

—K((Z~ d) cos 2t—h sin 2t\ —,
dt dq

G2 =
dt dq

G3=cost—,
dq

dq

dt dq

(3.16)
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These five generators have commutation relations which are appropriate for the
five-parameter proper subgroup of 57(3, R). They are

(3.17)
[G 3 ,G 4 ]=0 ,

[G3, GJ = [G2> G4] = [G5) G4] = G3,

[G,, G4] = [G3) G5] = [Ga, G3] = G4.

4. Transformation of the generators

The remaining three generators, which also constitute a proper subgroup of
5/(3, R), may be obtained by solving the partial differential equation (2.8) for
£(q, t) and rj(q, t). This has the disadvantage of including the derivation of the
generators already obtained. Further, for this problem, the ordinary equations
which emerge are coupled, which complicates the algebra. An alternative method,
which has been used elsewhere [11], is to compare the expressions for Gt to Gs

for the harmonic oscillator with those obtained in this case, for the forced
oscillator. By noting the variations, an educated guess can be made as to the
expressions for G6 to G7. The guess can be checked by substitution of I; and r\ in
(2.8). There is another method which may be applied in this problem. Before
outlining it, the generators for the harmonic oscillator described by (3.3) are listed.
They are

at

oQ

oQ

£,
oQ

at

(4.1)
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The transformation from H to H may be written as

p=P-h{t'),\

j

[7]

(4.2)

where the distinction is made between t and / ' for reasons which become apparent
shortly. The transformation (4.2) is a point transformation and the second equation
adds no further information to that contained in the other two. (Note that
dg(t')jdt' = -h(t').) The differential operators in (4.1), namely d/dt' and d/8Q,
take the following expression in the new coordinates,

^ + = h

dt' dt'dt dt'dq dt dq' (4.3)

dQ dQdt dQdq dq'

If, in the first five equations in (4.1), Q is replaced by q-g, t' by t, d/dt' by
8/8t—L8/dq and 8/dQ by d/dq, the operators are now in the form given in (3.16).
The remaining generators for the forced oscillator are

d
G6=(q~9)d~q'

G7=(q-g)sint—+{(q-g)2cost-(q-g)hsint}—, )• (4.4)
dt dq

G8=(q-g)cost--{(q-g)2sint+(q-g)hcost}—.
at oq

It is simply a matter of algebra to verify that G6, G7 and G8 do form a proper
subgroup of SL(3,R). The commutation relations are

G^^G,, [G6,G8]=G8, [G7,G8]=0. (4.5)

The commutation relations between the generators of the two subgroups are also
the standard ones, being

[G6, G,] = [G6, G2] = [G6, G5] = 0,

IG7,G1] = -G1, iG1,G2-\ = -Gfi, \G1,Gi-] = -G&

[GS,GX~\=GS, [_Gi,G2~] = -G1, [G8,G5] = G1,

[G6, G3] = - G3> [G6, G4] = - G4)

ZG7,G3-] = - K G ! + 3 G 6 ) , [G8,G4] = K - G 1 + 3 G 6 ) ,

[GltGA-\ = K G 2 - G 5 ) , IGs.G,] = - K G 2 + G 5 ) .

(4.6)
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Thus the complete symmetry group of the one-dimensional forced harmonic
oscillator is Sl(3, R).

5. Discussion

The result obtained here for the forced oscillator applies equally well to an
oscillator with a moving source of potential for it is essentially the same problem,
having the same equation of motion. The transformation between the two
Hamiltonians was of the form of identity plus a time-dependent displacement.
Thus the symmetry group of any forced linear system will be the same as the
corresponding unforced linear system. As the symmetry group 5/(3, R) is applic-
able to the free particle, attractive and repulsive (both time-independent and time-
dependent) oscillators, it is applicable to the case of a particle moving under the
influence of a coordinate-free force and to the forced attractive and repulsive
oscillator. It is also applicable to motion relative to frames of reference in recti-
linear motion (the equivalent for the oscillators to a moving source of potential).
It might be noted that this is independent, in the case of oscillators, of whether
the forcing term (or source movement) is resonant or not.

For n-dimensional systems without coupling, damping or rotating axes, the
corresponding result is that the symmetry group is Sl(n+2, R). The excluded cases
await further investigation.

The use of point transformations may make the investigation of the symmetries
of other systems easier. To take the example of the time-dependent harmonic
oscillator which has been studied in other ways [10, 15], the Hamiltonians

(5.1)

and

H=p-2{P2+Q2} (5.2)

are related by the point transformation

(5.3)

where p{i) is any solution of

p+(02(t)p = l/(p3). (5.4)

Hence the symmetries of the systems corresponding to Hand R are the same. The
change of time variable from t to W, where

W=[ p~2dt\ (5.5)
J to
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makes (5.2) the equivalent to the time-independent harmonic oscillator which
possesses Sl(3,R) symmetry. The problem of determining whether a given
dynamical system possesses this symmetry is reduced to finding a point trans-
formation relating it to a system which does.
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