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NON-ESSENTIAL CLUSTER VALUES
AND NORMAL FUNCTIONS

C. L. BELNA*

1. Introduction

We consider continuous functions f which map the open unit disk
D into the Riemann sphere W. For a point ¢ on the unit circle C, we
say that y is a chord at ¢ if y is a chord of C having one endpoint at
¢ and that 4 is a Stolz angle at ¢ if 4 is a Stolz angle with vertex .
Suppose S denotes either a chord at &, a Stolz angle at ¢, or D. Then,
letting ¢ denote the chordal metric on W and setting

S,=SN{zeD:|z - <} r>0,

we define the cluster set C(f,¢,S) of f at L relative to S and the essen-
tial cluster set C,(f,L,S) of f at ¢ relative to S as follows: the point
w*e W is in C(f,¢,S) if, for every ¢ > 0 and every r > 0,

S, N f{we W:ow,w*) <e}) #¢ ;
whereas w* is in C/(f,¢,8) if, for every ¢ > 0,

1im sup mI[S, N f'{we W:o(w, w*) < e}l >0,
r=0 mS,

where m denotes linear Lebesgue measure m, if S is a chord at { and
denotes 2-dimensional Lebesgue measure m, if S is either a Stolz angle
at { or D. The abbreviated notations C(f,{) and C.(f,£) are used in
place of C(f,¢, D) and C.(f,¢,D). We remark that both C(f,¢{,S) and
C.(f,&,8) are closed subsets of W with C,(f,¢,S) < C(f,¢,S) and that
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for each open subset G of W containing C.(f,{,S). (Note that the latter
fact is trivially true for open sets G containing C(f,¢,S).)

The object of our study is the open set C(f,¢,S) — C.(f, ¢, S), which
we call the set of non-essential cluster values of f at ¢ relative to S.
In section 2 (8) we give a necessary condition for a point w to be a
non-essential cluster value of f at { relative to a chord (Stolz angle) at
. In both of these sections we make use of the following lemma of
Lappan [3, Lemma 2, p. 46] (see also Rung [7, p. 424]) concerning the
non-Euclidean hyperbolic distance between points a¢ and b in D given by

a—>b ‘)
1—abll -’

LEMMA L. If a and b are in D with p(a,b) = M, then

o(a, b) = tanh“(

tanh M < 10— bl o 2tanh M
“1—|a] = 1—~tanhM

We show in section 4 that normal functions have neither non-essential
chordal cluster values nor non-essential angular cluster values. On the
other hand, in the last section we exhibit a normal function having
non-essential cluster values at almost every ¢ e C relative to D.

2. Chordal Cluster Sets
For each aeD and each M > 0, we set
D(a,M) = {zeD: p(a, z) < M}
and we denote the boundary of D(a, M) by aD(a, M).

LEMMA 1. Suppose {a,} is a sequence of points lying on the chord
x at LeC with a, — . Then, for each M > 0,

mlz, 0 ) Diay, M)]
lim sup n=1

70 v e

>0.

Proof. Choose a number M > 0. Denote by b, the point of y N
oD(a,, M) that is furthest from ¢ (in the Euclidean sense). Setting
n = |b, — |, we have

ml[XTn n D(an, M)] > |an — bnl .
lern Ibn - Cl
Since {b,} C yx, there exists a constant K > 0 with (1 — |b,))/|b, — {| > K
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for all n. Also, by Lemma L, |a, — b,|/@ — |b,) > tanh M for each n.
Consequently

lim inf s 0 D@, M1 S gionn m,
n—e le‘rn

which clearly implies the conclusion of the lemma.

A sequence {a,} C D is said to be close to the sequence {b,} € D if
000y, b,) — 0 as 7 — oo,

THEOREM 1. Let f:D — W be continuous, let x be a chord at { e C,
and suppose wy,e C(f,L,x) — Cf,C ). If {a,} s a sequence of points
on y with a, — ¢ and f(a,) — w,, then there exists a sequence {b,} C y
which is close to a subsequence of {a,} and for which {f(b,)} converges
to a point of C,(f,&, .

Proof. Set G, ={we W:aw,C.(f,¢ ) <1/j} and choose positive
integers N and J such that f(a,) ¢ G, (the closure of G,) for » > N and
i>J. Set

M(n,j) = max {M: f(x N D(a,, M) N G; = ¢},
and suppose there exists a j, > J for which

lim sup M(n, j) = M;, > 0.

N0

This implies the existence of a subsequence {a,} of {a,} such that f(y N
D(a,,M;,/2) N G;, = ¢ for each n. Then, by Lemma 1,

mly, N ) D@}y Myy[2)]
lim sup n=1

>0 ;
70 oye

and hence

lim myly, N f_l(Gjo)] +1
70 mx,

in violation of C.(f,¢ » C Gy. It follows that, for each j > J,
lim M(n,7) = 0. Thus for each j > J there exist an integer n; and a

point b, €  for which |a,, — &| < 1/4, (@, , b)) < 1/j and f(b)) € G,. Then
since each convergent subsequence of {f(b;)} converges to a point of
C.(f,¢& ), the theorem is proved.

https://doi.org/10.1017/5S0027763000014902 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014902

52 C. L. BELNA

A chord y at {eC is called a segment of Julia for a function f
at  provided f assumes all values of W except possibly two in each
Stolz angle at ¢ meeting y.

COROLLARY 1. Let f be a meromorphic function in D, and let y be
a chord at e C. If CAf,C ) # C(f,L x), then x is a segment of Julia
for f at €.

Proof. Suppose C.(f,,x) # C(f,L, x). Applying Theorem 1 we
obtain sequences {a,}, {b,} C x and distinct complex values « and B for
which o(a,, b,) — 0, f(a,) > a and f(b,) — p. According to Lappan [3,
Theorem 4, p. 44], for each value de W with perhaps two exceptions,
there exists a sequence {z}} close to a subsequence of {a,} with f(z}) =4
for each k. Then, for any Stolz angle 4 at { meeting y, each of the
sequences {z}} has a terminal subsequence that lies in 4 and the corollary
is proved.

The outer angular cluster set of f at {eC is the set

C.d(f: C) = LZJ C(f, ¢, A)

where 4 ranges over all Stolz angles at {. Since C(f,¢, 4) = W for each
Stolz angle 4 at { meeting a segment of Julia for f at {, we have the
following result.

COROLLARY 2. Let f be a meromorphic function in D, and let { be
a point of C. If Cf,0) + W, then C(f,L,v) = C(f,&, ) for every chord
x at C.

3. Angular Cluster Sets
We start with a simple lemma.

LEMMA 2. Let a be a point of D, let x be the chord at e C that
passes through a, and let M be o positive number. If Q represents
either component of D(a, M) — x, then

m,Q > Ky(1 — |a])?
where K,; = [arcsin (sech M)-tanh M sech M]tanh? M > 0.

Proof. For a = 0,m,Q = (z/2) tanh* M > K. Suppose a #* 0. Let
A denote the line segment joining e to the origin, and let x* be the
chord of C that passes through a and is orthogonal to A. Then let T
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be the component of D(a, M) — x* that is separated from the origin by
x*. Clearly m,Q > m,T. Through elementary calculations we find that

m,T = l|a|, MI(1 — |a))?
with

ellal, M1 = (2 - I‘“’ ) (42 5) Taresin WT=7) — /T =71

where 2 = |a|tanh M. Finally, it is easy to see that z[ja|, M] > K, and
the proof is complete.

LEMMA 3. Let {a,} be a sequence of points in the Stolz angle 4 at
e C with a, — . Then, for each M > 0,

>0.

my[4, 0 J D@y, M)]
lim sup n=1
70 m,d,

Proof. Choose a number M > 0. Since {a,} C 4, there exists a number
M*(0 < M* < M) such that the set D(a,, M*) N (D — 4) is connected for
each n. Let y, denote the chord at { that passes through the point a,,
and let D} and D? denote the components of D(a,, M*) — y, with m,D}
< m,D?. 1t is clear that, for each n, either D) C 4 or D2 C 4. Denote
by b, the point of y, N dD(a,, M*) that is furthest from { (in the Euclidean

sense), and set r, =|b, —¢|. If E, denotes the region obtained by
reflecting D across y,, it is evident that

E,.cD:N{zeD:|z— | <1y}
and that m,E, = m,D,. Thus
m,l4,, N D(a,, M*)] > m,D}, .
Applying Lemma 2 we obtain
my[d,, O D(@z, M*)] > Kye(1 — |a,)* .
Then, using « to denote the angular opening of 4, we have

mZ[Ar,,, n D(an, M*)]
md,,

> Qa 'Ky (llT‘_l“_C{_)z .

It follows from Lemma L that there exists a constant A > 0 such that
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1 —la,p/A —|b,) > A for all n; and, since {b,} C 4, there exists a
constant B > 0 with (1 —16,)/|b, — | > B for all n. Hence

lim inf mz[Ar,, n D(a/ny M*)]

> (AB)Y’a"'Ky. >0,
(e mZAr,,

and the conclusion of the lemma now follows.
We now give the analogue of Theorem 1 for Stolz angles.

THEOREM 2. Let f:D — W be continuous, let 4 be a Stolz angle
at £eC, and suppose w,e C(f,, 4 — C(f, ¢, 4. If {a,} is a sequence of
points in 4 with a, — ¢ and f(a,) — w, then there exists a sequence
{b,} C 4 which is close to a subsequence of {a,} and for which {f(b,)}
converges to a point of C,(f,¢, 4.

The proof of Theorem 2 is obtained by using Lemma 3 in place of
Lemma 1 and replacing y by 4 in the proof of Theorem 1. Also the
proofs of the following corollaries are similar to those of the corollaries
of Theorem 1.

COROLLARY 1. Let f be a meromorphic function in D, and let 4 be
a Stolz angle at {eC. If C,/f,¢, 4) + C(f,L, 4), then f assumes all
values on W except possibly two in each Stolz angle 4* at L containing 4.

COROLLARY 2. Let f be a meromorphic function in D, and let € be

a point of C. If C(f,0) #+ W, then Cf,{, 4) = C(f,¢, 4) for each Stolz
angle 4 at .

4, Applications to Normal Functions

Let 7 denote the collection of all one-one conformal mappings of D
onto D. A continuous function f: D — W is said to be normal if the
family of functions {f(T(®)}r@es is normal in D in the sense of Montel.

THEOREM 3. Suppose the continuous function f:D — W is normal.
Then, for each {eC, 1) Cf,L ) = C(f,&,x) for each chord y at { and
Q) C,(f,L, 4 = C(f,¢&, 4) for each Stolz angle 4 at C.

Proof. Assume C‘e(f, ¢, #+ C(f,¢& y) for some { e C and some chord
x at {. By Theorem 1 there exist sequences {a,},{b,} C y and distinct
complex values « and g for which p(a,,b,) — 0, f(a,) — « and f(b,) — B.
According to Lappan [4, Theorem 2, p. 156], f is non-normal in violation
of the hypothesis; and (1) is proved. The proof of (2) is similar.
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The converse of Theorem 3 is not true, as the following theorem
shows.

THEOREM 4. There exists a non-normal continuous function f:D —
W such that, for each e C, (1) C.(f,% 1) = C(f,&L x) for each chord yx
at ¢ and (2) Cf,&, 4 = C(f,L, 4) for each Stolz angle 4 at .

Proof. Define the sets
A=1{zeD:|z— 3/4| < 1/4}

and
B={zeD:|z—1/2| > 1/2}.

Let {a,} and {b,} be disjoint sequences of points in D — (4 U B) with
a, — 1 and p(a,, b,) — 0. Define the continuous function F on 4 U B U
{a,} U {b,} by

w, for ze A U B U {a,}

Fe) = W, for ze {b,}

where w, and w, are distinct points of W. The function F can be
extended to a continuous function f: D — W. It follows from the result
of Lappan cited in the proof of Theorem 3 that f is non-normal. Fur-
thermore, for each e C,

C(f’ C, S) = {wl} = Ce(f, C’ S)

where S denotes an arbitrary Stolz angle or chord at . Hence the
theorem is proved.

We now show that Theorem 3 is not true if the condition that f is
normal is removed, even if f is assumed to be holomorphic.

THEOREM 5. The function

F@ =] {1 — (_Z_) "g} (n, = 39)

i=1 1— n;t

18 holomorphic in D and has the properties: (1) for nearly every {eC,
C.(F,L, p) #+ CF,C, p) where p, denotes the chord at { which forms a
diameter of C, and (2) for almost every CeC,C. (F,{ 4) + C(F,¢, 4)
where 4 denotes an arbitrary Stolz angle at .

Proof. Bagemihl and Seidel [1] have shown that F'(z) is holomorphic
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in D and that F(2) » o as |z| — 1 through a region 2 which is described
as follows: for § =1,2,8,..- and v=0,1,---,73 — 1 set

2, = 1 - n;l)ezuivlnj
and
Iy ={z:]z — 25| < 7y}
where 7, = 1/nj. Then 2 is the region obtained by deleting all the
disks Iy, from D.

Since each point of C is a limit point of the set {z;} of zeros of
F(2),0cCF,L) for every {ecC; and it follows from a theorem of
Collingwood [6, p. 66] that 0e C(F, ¢, p.) for nearly every {eC. Also,
as a consequence of the uniqueness theorem of Lusin and Privaloff [6,
p. 72] and Plessner’s theorem [6, p. 70], for almost every { e C, C(F, , 4)
= W for each Stolz angle 4 at {. That F(2) has properties (1) and (2)
now follows from the next two lemmas.

LEMMA 4. C. (F,{,y) = {o} for every £eC and every chord y at €.
Proof. Let { be a point of C and let y be a chord at {. For
1/n4., < r < 1/n; we have

mly VD =D _ 2

MY, i=k nj
= 1
<6 — =0 k—
< J;‘ p as o
Hence
im Ml 0D — D1 _
70 myxr ’

which implies C.(F,{, ) = {oo}.

LEMMA 5. C.(F,{,4) = {0} for every (e C and every Stolz angle
4 at .

Proof. Choose a point e C and let 4 be a Stolz angle at { with
angular opening «. For 1/n;,, < r < 1/n; we have

m,[4, N (D — )]
m,d,

< 207l 3 miln(L/mi)]

3180("7:2—414———»0 as k— .
]=knj
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Consequently

lim 4, 0D — 2] _ o
70 mzAr

and so C.(F,¢, 4) = {co}).

5. Total Cluster Sets

If the analogue of Theorem 1 (or Theorem 2) for C(f, ) and C.(f, )
were true, it would easily follow that these two sets are always equal
for normal functions. Thus the next theorem shows that no such analogue
exists. (In this section m denotes linear measure.)

THEOREM 6. There exists a bounded holomorphic function g in D
for which

m{eC:Cl9,0) =C(g,0)}=0.

To establish the existence of such a function, we make use of the
following portion of a result of Goffman and Sledd [2, Theorem 2]. (We
note that their proof is for real-valued functions in the upper half plane,
but only slight modifications are needed to obtain a proof for complex-
valued functions in D.)

THEOREM GS. For each {eC let p, denote the chord at ¢ which
forms a diameter of C. If f:D — W is measurable, then

m{ce C: Ce(f9 C) c Ce(fyC’ Pc)} = 2r .

Proof of Theorem 6. It follows from a theorem of Littlewood [5,
p. 172] that there exists a bounded holomorphic function g in D for
which there exists a subset E of C with mE = 2z and C(g, ¢, o)) # C(g,0)
for each {e¢ E. By Theorem GS there exists a subset F of C with mF
=2z and C.(9,0) C C.(9,¢,p,) for each (€ F. Then in view of Theorem
3 we have

Ce(9,0) C Cu(9,&, p) = Cg,8, 0) < C(g,0)
for each ¢ E N F, and the theorem is proved.
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