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A Short Proof of the Characterization of
Model Sets by Almost Automorphy

Jean-Baptiste Aujogue

Abstract. _e aim of this note is to provide a conceptually simple demonstration of the fact that
repetitive model sets are characterized as the repetitive Meyer sets with an almost automorphic
associated dynamical system.

1 Introduction

In this note we will be interested in certain point sets of a locally compact Abelian
groupG that are nowadays calledMeyer sets. Meyer introduced such sets—under the
name harmonious sets—in the context of harmonic analysis [14], and observed that
some speciûc examples of Meyer sets, that he called model sets, could be produced
through an elementary geometric method. More than a decade latter and indepen-
dent ofMeyer’s work, the geometricmethod to producemodel sets was reintroduced
by several authors in an attempt to answer a problem in solid state physics, viz to
produce point sets in R2 and R3 having a diòraction picture displaying rotational
symmetries that cannot hold for fully periodic point sets, as it was ûrst realized by
considering the vertex sets of the renowned Penrose tilings of the plane [13]. Cur-
rently, many interesting examples ofmodel sets and tilings aõliated with model sets
can be found in the literature [4], illustrating the elegance and fruitfulness ofMeyer’s
method.

It has early been observed that a certain property holds for the dynamical system
associated with any model set: It is always an almost 1-to-1 cover of some Kronecker
system. _is property was ûrst recognized byRobinson [17],who asserted that the dy-
namical system of a Penrose tiling is aminimal almost 1–1 extension of an R2-action
over the torusT4 by rotation. _ismay be explained by the existence of an underlying
model set structure for such tilings. Similarly, by a direct use of the model set con-
struction, such a result was obtained by Baake, Hermisson, and Pleasants [5] for the
Fibonacci model set of the line, whose dynamical system was shown to be aminimal
almost 1–1 extension of an R-action by rotation over the torus T2. _ese results were
generalized for certain repetitivemodel sets of a Euclidean space by Forrest,Hunton,
and Kellendonk [8], and independently by Schlottmann [19] for arbitrary repetitive
model sets of a σ-compact, locally compact Abelian group, where in both works it is
shown that themodel set construction immediately describes the dynamical systemof
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a repetitivemodel set as aminimal almost 1–1 extension of aKronecker system. _is is
the so-called torus parametrization of amodel set (this terminology going back to [5]).
Dynamical systems with this property appeared long before in topological dynamics,
in particular, in the work of Veech [21] who termed them almost automorphic.

It was thus reasonable to think that almost automorphymay characterize on a dy-
namical side (repetitive) model sets among the wider class of (repetitive) Meyer sets.
Proof of such a characterization came with the work of by Baake, Lenz, and Moody
[6] and Lee andMoody [11],who showed using the geometric construction developed
in [7] that repetitive model sets satisfying the additional condition of regularity are
characterized by a strong form of almost automorphy on their associated dynamical
system. Although regularity is a very reasonable condition notably concerning the
diòraction theory of point sets [9, 19], it is not necessary for almost automorphy to
hold. _us, since regularity played a crucial role in the arguments of [6, 11] a dynami-
cal characterization that applies for all repetitive (not necessarily regular) model sets
remained a challenging open problem. _is was solved in [1], where for G = Rd , the
theorem following was proved.

Main _eorem A repetitive model set is precisely a repetitiveMeyer set whose asso-
ciated dynamical system is almost automorphic.

_e proof set in [1] involves Ellis semigroup and regional proximality for Meyer
sets, two objects coming from abstract topological dynamics [3], for which a detailed
account in the context of point sets can be found in [2]. It is also detailed in [2] how
the result of [6,11] and the above theorem are part of a natural hierarchical description
of repetitiveMeyer sets involving their associated dynamical systems.

In this note, we aim to revisit this result by providing a greatly simpliûed proof,
which is shown here to hold for point sets in arbitrary second countable, σ-compact
locally compact Abelian groups. Our starting point here is a result of Schlottmann
upon characterizing repetitivemodel sets by an intrinsic condition on the return times
of the set [18], that is unexpectedly very close to almost automorphy. _e proof we
give here consists of a combination of Schlottmann’s original result (_eorem4.1)with
a general statement on almost automorphy (_eorem 5.1), and with an intermediate
statement connecting the two (Proposition 4.2). In particular, we do not make use of
the torus parametrization anywhere in this work.

2 Meyer Sets

In this notewe consider a locally compactAbelian (LCA) groupG, which is assumed
to be σ-compact and second countable. _ese assumptions guaranteemetrizability of
all the involved point set dynamical systems; see Section 3. Second countability is a
standard assumption, but is actually not essential here. However, if one gets rid of it,
then all statements involving metrics have to be reformulated using uniformities, so
we shall keep it for convenience.
A subset Λ of G is aMeyer set whenever it fulûlls the following three conditions:

First it should be uniformly discrete; that is, there is a neighborhoodU of 0 inG such
that no two diòerent points t, s ∈ Λ can yield t − s ∈ U . Second it should be relatively
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dense, meaning that there is K compact in G such that K + Λ = G. And third, there
should exists a ûnite subset F ⊂ G such that Λ − Λ ⊆ Λ + F. _is is one of the
various ways to deûne a Meyer set, and the reader will ûnd diòerent yet equivalent
formulations in [15] in the caseG = Rd , and [20] in our slightlymore general setting.
A trivial example of a Meyer set is a uniformly discrete and relatively dense sub-

group Γ, a lattice, of G, and any sum Γ + F with F ûnite. Much less trivial examples
ofMeyer sets are themodel sets, also called Cut and Project sets: To construct amodel
set one begins by considering a product H ×G with a LCA group H together with a
lattice Γ ⊂ H ×G in it. _e triple (H, Γ,G) is called a Cut and Project scheme. _en,
choosing a compact subsetW ⊆ H that is supposed equal to the closure of its interior,
one ends up with the point set

P(W) ∶= { t ∈ G ∶ ∃(t′ , t) ∈ Γ, t′ ∈W} .
One usually supposes that Γ projects in a 1–1way intoG, but this can be achieved by

modding out the discrete subgroup Γ0 ∶= Γ∩H×{0} inH and considering the Cut and
Project scheme (H/Γ0 , Γ/Γ0 ,G). It is,moreover, o�en required that the projection of
Γ in H has dense image, which can be obtained by taking the closure H′ of this range
in replacement of thewholeH. None of these operations alters themodel sets as given
above.

Remark 2.1 _ere are natural generalizations of the deûnition of model sets. For
instance, instead of requiringW to have dense interiorwe could ask this interior to be
only non-empty, or even empty at all [16]. One can also formulate this in terms of the
indicator function of the subset W and then replace it by diòerent types of function
(continuous [12, 20], Riemann measurable, Baire class 1). Ultimately, one can also
drop the commutativity requirement on all involved groups.

In our case, we will be particularly interested in a certain type of model set. A
model set P(W) is called non-singular when there is no point of Γ whose projection
in H belongs to the boundary ofW . In other terms, amodel set is non-singularwhen
it satisûes

P(W̊) =P(W)

3 The Dynamical System of a Meyer Set

We wish to characterize theMeyer sets that are non-singular model sets in terms of a
certain dynamical system canonically associatedwith each of them. Given aMeyer set
Λ, the construction of its dynamical system (XΛ ,G) goes as follows:We consider the
hull XΛ ofΛ, consisting of allMeyer sets inwhich anyûnite subset appears somewhere
in Λ,

XΛ ∶= {Λ′ ⊂ G ∶ ∀K ⊂ G compact ∃t ∈ G,Λ′ ∩ K = (Λ − t) ∩ K} .
_is set is endowedwith a topology that comes from a uniformity (see [10, Chapter 6]
for background), for which a basis is given, for an arbitrary compact set K of G and
U any neighborhood of 0 in G, by the sets

UK ,U ∶= {(Λ′ ,Λ′′) ∈ XΛ × XΛ ∶ ∃t, t′ ∈ U , (Λ′ − t) ∩ K = (Λ′′ − t′) ∩ K} .
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_e set XΛ endowed with the topology coming from this uniformity is a compact
Hausdorò space [19], and sinceG is assumed to be σ-compact and second countable,
this uniformity has a countable basis and is thus metrizable [10, Chapter 6,_eorem
13]. Finally, XΛ is naturally endowed with a G-action by t.Λ ∶= Λ − t and this action
is by homeomorphism. By construction, theMeyer set Λ now viewed as an element
of XΛ is a transitive element; that is, its G-orbit is dense in the dynamical system
(XΛ ,G).

In this note we will be interested exclusively in Meyer sets that are repetitive: A
Meyer set Λ is repetitive whenever for any compact subset K ofG the set

ΛK ∶= { t ∈ G ∶ (Λ − t) ∩ K = Λ ∩ K}
is relatively dense in G. It admits an elegant interpretation in terms of the associated
dynamical system (XΛ ,G) as follows. Observe ûrst that for a compatiblemetric d on
XΛ , for any compact set K and open neighborhood U of 0 in G theremust exists an
ε > 0 such that whenever d(Λ,Λ′) < ε then (Λ,Λ′) ∈ UK ,U , and, conversely, given
ε > 0 there exists a pair of a compact set K and an open neighborhood U of 0 in G
such that the reverse implication holds. Now let us introduce the collection of sets
given for ε > 0 by

Pε ∶= { t ∈ G ∶ d(t.Λ,Λ) < ε} .
Whatwe can observe is that for any pair of a compact setK and an openneighborhood
U of 0 in G, there exists a ε > 0 such that Pε ⊆ ΛK + U , and conversely, for any
ε > 0, there are K and U as before such that ΛK +U ⊆ Pε . From this observation we
conclude that theMeyer set Λ is repetitive precisely when the Pε ’s are relatively dense
inG, that is, when Λ is an almost periodic point in the dynamical system (XΛ ,G). It
is a general fact of topological dynamics that this happens if and only if the dynamical
system (XΛ ,G) is minimal.

_us, when a Meyer set Λ is repetitive, its dynamical system (XΛ ,G) is equally
generated by any other Meyer in it, in which case we may hide the subscript Λ and
simplywrite (X ,G) , and refer to it as aminimal systemofMeyer sets. When aminimal
system of Meyer sets (X ,G) contains a non-singular model set, or equivalently, is
generated by a non-singular model set (these are always repetitive), then we call it
a minimal system of model sets and call its elements repetitive model sets. For more
details, see, for instance, [1].

4 Schlottmann’s Characterization of Model Sets

Let us recall the result of Schlottmann.

_eorem 4.1 ([18,_eorem 2]) For aMeyer setΛ, the following statements are equiv-
alent:
(i) Λ is a non-singular model set;
(ii) for any compact K in G, the set ΛK is relatively dense, and there is K′ compact

with ΛK′ − ΛK′ ⊆ ΛK .

_e complete proof of this can be found in Schlottmann’s original paper [18]. We
warn the reader that non-singularity is termed “regularity” in [18],which is unrelated

https://doi.org/10.4153/CMB-2017-061-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-061-4


468 J.-B. Aujogue

with today’s notion of regularity used for model sets. We shall see now that, given a
Meyer set Λ with associated dynamical system (XΛ ,G) , Schlottmann’s characteri-
zation can be expressed using the collection (Pε)ε introduced in Section 3 for some
compatiblemetric d on XΛ .

Proposition 4.2 For Λ aMeyer set and (XΛ ,G) its associated dynamical system, the
following two statements are equivalent:
(i) for any compact K inG, the set ΛK is relatively dense and there is K′ compactwith

ΛK′ − ΛK′ ⊆ ΛK ;
(ii) for any ε > 0, the set Pε is relatively dense and there exists δ > 0 such that Pδ−Pδ ⊆

Pε .

Proof We already discussed the equivalence between relative denseness of the ΛK ’s
and of the Pε ’ in Section 3. Now one easily shows that (i) implies (ii): Since d is
compatible, from the discussion of Section 3we have for any given ε > 0 a compact K
and and a neighborhood U of 0 in G with ΛK + U ⊆ Pε , and taking K′ and U ′ such
that ΛK′ − ΛK′ ⊆ ΛK and U ′ −U ′ ⊆ U , and then choosing δ > 0 with Pδ ⊆ ΛK′ +U ′

gives Pδ − Pδ ⊆ Pε , as desired.
Let us show that, conversely, (ii) implies (i): Again from the discussion of Section 3,

we deduce that forK chosen and anyopenneighborhoodU of 0 ∈ G there exists, using
our assumption, a K′ compact aswell as another open neighborhoodU ′ of 0 ∈ G, that
can be chosen arbitrarily small, such that (ΛK′ +U ′) − (ΛK′ +U ′) ⊆ ΛK +U . _is
yields, in particular, ΛK′−ΛK′ ⊆ ΛK+U . Now let us observe that for a compact K that
intersect Λ the point set ΛK belongs to the diòerence set Λ−Λ. Indeed, having t ∈ ΛK
means that Λ ∩ K and (Λ − t)∩ K are equal, and selecting some point p in it ensures
that both p and p+ t belong to Λ, providing t = (p+ t)−p ∈ Λ−Λ. _us, applying this
to K′ yields that ΛK′ − ΛK′ belongs to Λ − Λ + Λ − Λ independently on K′, provided
it is large enough to intersect Λ. Now as we can freely reduce U (although this would
change K′),we can select it small enough so that (Λ−Λ+Λ−Λ)∩(ΛK+U) is actually
contained in ΛK : Indeed one can check that any open set U whose intersection with
Λ−Λ+Λ−Λ+Λ−Λ is {0}works, and such an open set always exists from theMeyer
property of Λ. _us, for such a choice of open U , we end up with a compact K′ that
satisûes the desired inclusion ΛK′ − ΛK′ ⊆ ΛK .

5 A General Result on Almost Automorphy

In this section we consider an abstract dynamical system (X ,G), where X is a com-
pact metric space andG a LCA group that acts jointly continuously on X. Wemore-
over assume the existence of a transitive point x ∈ X, that is, a point whoseG-orbit is
dense in X.

Recall that a factor map π∶X → Y from a dynamical system (X ,G) to another
dynamical system (Y ,G) is a continuous onto mapping that is aG-map, that is, such
that π(t.x) = t.π(x) occurs for any x ∈ X and any t ∈ G. A dynamical system (X ,G)
always admit a greatest factor whose G-action is equicontinuous, its so-called max-
imal equicontinuous factor (Xeq ,G), which is uniquely deûned up to conjugacy; see
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[2] for details. _e factor map from a dynamical system onto its maximal equicon-
tinuous factor is, in particular, unique up to le�-composing the factor map with a
G-commuting homeomorphism of Xeq.
For a dynamical system (X ,G)with a transitive point x themaximal equicontinu-

ous factor is aminimalKronecker system:_e space Xeq admits a compact (Hausdorò)
Abelian group structure, and there exists a continuous group morphism r∶G → Xeq
with dense range such that the G-action on Xeq is given by addition t.z ∶= r(t) + z
for any z ∈ Xeq and t ∈ G. _e group structure on Xeq is not canonical here. In fact,
any element z ∈ Xeq can play the role of unit, and this is with respect to a unique
compact Abelian group structure on Xeq. Once an element z ∈ Xeq is chosen as unit,
themorphism r is recovered through theG-action on Xeq by r(t) ∶= t.z for any t ∈ G.
Adynamical system (X ,G) is almost automorphicwhen its factormap π∶X → Xeq

is 1–1 over some element of Xeq. A point x ∈ X where π is 1–1 is called an almost
automorphic point (“non-singular point” would have also been a good terminology).
In this section,wewill characterize the property of almost automorphy of a dynamical
system (X ,G) and of a point x ∈ X by means of the sets, for any ε > 0, of ε-return
times of x:

Pε ∶= { t ∈ G ∶ d(t.x, x) < ε} .
Each of these sets contains the origin 0 ∈ G. _e following result shows that almost
automorphy of the system (X ,G) corresponds to a simple algebraic structure on the
set of return times of a single transitive point.

_eorem 5.1 Let (X ,G) be a dynamical system and let x ∈ X be a transitive point.
_en the following statements are equivalent:
(i) For any ε > 0, the set Pε is relatively dense and there exists δ > 0 such that

Pδ − Pδ ⊆ Pε ;

(ii) (X ,G) is almost automorphic, with x ∈ X an almost automorphic point.

Proof Assume that (i) holds:_e collection of subsets (Pε)ε>0 ofG deûnes the basis
(Bε)ε>0 of a translation-invariant and inversion-invariant uniformity on G, where
Bε ⊆ G ×G is the set of pairs (t, t′) with t − t′ ∈ Pε . _e topology coming from this
uniformity, which we call here the (Pε)ε-topology, turns G into an Abelian (possibly
non-Hausdorò) topological group, for which (Pε)ε is a neighborhood basis of 0 ∈
G. _is topological group admits a completion by an Abelian (Hausdorò) compete
topological group Z with completion morphism r∶G→ Z, and
● with dense range in Z,
● having kernel Ker(r) = ⋂ε>0 Pε ,
● which is continuous and open for the (Pε)ε-topology on G.
For details, one can see [18, Appendix A]. _en the mapping deûned along the

G-orbit of x ∈ X by t.x ↦ r(t) ∈ Z is well deûned, because each time we get t.x =
t′ .x, t − t′ belongs to any Pε and thus to the kernel of the morphism r, giving r(t) =
r(t′). It is, moreover, uniformly continuous and therefore extends in a continuous
map π∶X → Z. We need to show that for any ε > 0 there exists a δ > 0 such that
whenever d(t.x, t′ .x) < δ, t − t′ ∈ Pε . To see this, observe that for ε > 0 there exists
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by assumption a ε′ > 0 such that Pε′ − Pε′ ⊆ Pε . Now because the (Pε)ε are relatively
dense, the transitive point x is almost periodic; i.e., (X ,G) is minimal, so the set of
translates s.B(x, ε′), s ∈ G, covers X. One is thus able to extract a ûnite subcover
given by s ∈ F with F ûnite, which admits a Lebesgue number δ > 0. _is guarantees
that if one has d(t.x, t′ .x) < δ, then there is an s ∈ F such that t.x and t′ .x belong
to s.B(x, ε′), and as a result, both (t − s).x and (t′ − s).x belong to the ball B(x, ε′).
Hence t − t′ = (t − s) − (t′ − s) ∈ Pε′ − Pε′ ⊆ Pε , as desired. _e resulting map π
satisûes π(x) = o ∈ Z, the unit element in Z, and is onto, since its image is compact
and contains the range of r. It is naturally a G-map as one may check that π(t.x) =
r(t).π(x) holds for any x ∈ X and t ∈ G. _erefore, π is a factor map form (X ,G) to
the Kronecker system (Z,G) with Kronecker action given by themorphism r, which
is continuous, since it is given by r(t) = π(t.x) for each t ∈ G. It now suõces to show
that x is a one-point ûberwith respect to this factormap to conclude that (Z,G)must
be themaximal equicontinuous factor of (X ,G) and that (ii) holds.

Let us show this: Suppose that x ∈ X satisûes π(x) = π(x). Since x is transitive,
there is a sequence (tn)n ⊂ G such that tn .x converges to x, and this gives in the factor
Z the convergence of r(tn) towards the unit o ∈ Z. Since r∶G → Z is open when G
is equipped with the (Pε)ε-topology and the collection (Pε)ε forms a neighborhood
basis of 0 ∈ G, we deduce that for any ε > 0 the sequence (tn) must belong to Pε for
n great enough. But by construction of the sets Pε , this means that d(tn .x, x) < ε for
any ε > 0 and n great enough. _is latter argument guarantees that x = x, giving (ii).
Assume that (ii) holds: _e dynamical system (X ,G) admits a factor map π∶X →

Xeq that is 1–1 at x, where (Xeq ,G) is the maximal equicontinuous factor with Kro-
necker action given by a continuous morphism r∶G → Xeq. Since π is 1–1 at x, one
easily shows (by contradiction) that for any ε > 0, there is a neighborhood Uε of
π(x) ∈ Xeq such that π−1(Uε) ⊆ Bd(x, ε). From this we deduce that the sets Pε are
relatively dense in G (e.g., x is an almost periodic point). Indeed, the point π(x) is
transitive and thus almost periodic in the Kronecker system (Xeq ,G), so the set of
t ∈ G such that r(t) + π(x) belongs to Uε is relatively dense in G. Each such point
admits t.x as unique li� in X, which thus belong to Bd(x, ε) from the very choice of
Uε , giving that t ∈ Pε , so this latter is relatively dense. Now since Xeq is a topolog-
ical group, one can choose for each ε > 0 a neighborhood U ′

ε of the unit 0 ∈ Xeq
such that U ′

ε − U ′

ε ⊆ Uε − π(x). As π is continuous, there is some δ > 0 such that
π(Bd(x, δ)) ⊆ π(x) + U ′

ε , and therefore whenever t, t′ ∈ Pδ , t.x and t′ .x have im-
ages r(t) + π(x) and r(t′) + π(x) that belong to π(x) + U ′

ε . _us, r(t − t′) lies in
U ′

ε −U ′

ε ⊆ Uε − π(x), and therefore r(t − t′) + π(x) belongs to Uε . Consequently, its
li� (t − t′).x lies in Bd(x, ε), yielding t − t′ ∈ Pε . _is gives (i).

Now, the proof of theMain _eorem can directly be given as follows.

Proof of theMain _eorem A repetitive model set of G is, by our deûnition, a
repetitiveMeyer set whose hull X contains a non-singular model set Λ. Hence, from
_eorem 4.1, Proposition 4.2, and _eorem 5.1 the dynamical system (X ,G) is al-
most automorphic, with Λ an almost automorphic point in X. _is shows the ûrst
implication. If, conversely, we are given a repetitive Meyer set Λ whose associated
dynamical system is almost automorphic, then it contains an almost automorphic el-
ement, which again from _eorem 5.1, Proposition 4.2, and _eorem 4.1 must be a
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non-singular Model set. Since Λ belongs to the hull of this model set, it must then
itself be a repetitivemodel set, as desired.

Remark 5.2 It is possible to set an elementary proof of _eorem 5.1 by invoking
a much more general (and deeper) result due to Veech [22], which can be stated
as follows. First, since both statements in _eorem 5.1 imply minimality of the sys-
tem (X ,G) , we can assume this condition. _en consider a metric minimal system
(X ,G), with factor map π∶X → Xeq over its maximal equicontinuous factor, and a
point x ∈ X with associated family of sets (Pε)ε>0. _e result of [22] then describes
the set of points in X belonging in the ûber of x over Xeq as

π−1(π(x)) = ⋂
ε>0
(Pε − Pε).x.

Using this result, one easily shows _eorem 5.1. Indeed, if (i) holds then the ûber
π−1(π(x)) is equally given by the intersection of the sets Pε .x, which is nothing but
the singleton {x}, so that (ii) holds. Conversely, if (ii) holds, then for any ε > 0 there
is a δ > 0 such that (Pδ − Pδ).x must belong to B(x , ε), giving Pδ − Pδ ⊆ Pε , and thus
(i) holds.
As a result, the characterization of model sets by dynamical systems as presented

here ismainly the combination of Schlottmann’s characterization and ofVeech’s result
on the equicontinuous structure relation for minimal systems. Despite the existence
of this very direct argument,we decided to keep the proof of_eorem 5.1 as presented
above, ûrst for self-containment of the note, and second because it involves a comple-
tion process of topological groups that is very similar to the one appearing in the proof
of Schlottmann’s characterization given in [18].
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