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In the theory of probability, the conditional can be treated by an operation 
analogous to division. Many properties of the conditional can best be studied 
by means of the corresponding multiplication (called the cross-product). An 
implicative Boolean ring is defined [2] in terms of a cross-product and the usual 
Boolean operations. The cross-product is the only device yet known in which 
the events corresponding to conditional probabilities are themselves elements 
of the Boolean ring. The fact tha t such advice was not introduced by Boole 
is probably the reason why Boolean algebra has been very little used in the 
theory of probability, although probability was one of the principal applications 
which Boole had in mind. 

When one introduces a cross-product into the two element Boolean algebra, 
no additional elements are obtained. However the closure under cross-product 
of any other finite Boolean algebra is infinite. The same is, of course, true for 
the usual number systems, namely, the set {0, 1} is closed under multiplication 
bu t the closure of the set obtained by including any additional positive element 
is infinite. The introduction of probabilities into a Boolean algebra maps the 
algebra into the reals between 0 and 1. In the case of an implicative Boolean 
ring, this mapping is a homomorphism in which cross-product corresponds to 
multiplication of the reals. 

I t is shown in this paper tha t implicative Boolean rings can be characterized 
in terms of familiar ring concepts only. More specifically, a Boolean ring B 
can contain a cross-product if and only if it is isomorphic to its quotient rings 
modulo the non-unit principal ideals. The isomorphisms enable one to set up a 
semigroup of transformations (not necessarily unique) of B into B. These are 
one-parameter transformations where the parameter is a non-zero element of 
the Boolean ring. The product of the transformations defines the cross-product 
of the parameters. The inverse of one of these transformations, when defined, 
is an implication which is neither strict nor material. The implication can be 
extended to elements for which the inverse does not exist and can be given a 
logical interpretation. 

By definition a Boolean algebra (B, V , -, ~ ) , or equivalently a Boolean ring 
with unit (B, + , •) where + denotes symmetric difference, is called implicative 
if there exists a binary operation, X , such tha t the following postulates 
hold: 
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PO B is closed under X . 
Fl a X (bXc) = (a Xb) Xc. 
P2 a X (b + c) = a X b + a X c. 
P3 a X (b • c) = (aXb) • (a X c). 
P4 x y£ 0 and x X y = x X z imply y = z. 
P5 x X 1 = x. 
P6 If x, y £ B and y ^ 0, then there is an element z such tha t x • y = y X z. 

We use the notation z — x C y for this element. 
Let x < y denote the condition x • y = x; let (a) denote the principal ideal 

generated by a. Then (a) is the set of all x (z B such tha t x < a, and x = y 
mod (a) if and only if x • ^ a = 3/ • ^ a. 

T H E O R E M . A necessary and sufficient condition for a Boolean ring B to be 
implicative is that for all a £ B, a ^ 1, the Boolean rings B and B/(a) are 
isomorphic. 

Equivalently we may consider B ~ B/(~a) for all a ^ O , 

Proof of necessity. Let C = {x C a, x Ç B}. Then C is a Boolean algebra 
and B/(~a) = C. For x C # = y C # is equivalent to each of the following 
s ta tements : (x + y) Q a = 0; (x + y)-a = 0; and x = y mod ( ^ 2 ) and thus 
x <Z_a corresponds to tha t coset of B/(~a) of which x is a representative. 
But for any y Ç B, y = (a X y) C a Ç C. Hence C = B ^ B/(~a). 

Proof of sufficiency. Since I? ~ B/(~a) for any a ^ 0, there exists by hypo
thesis a one-to-one correspondence between the elements x of B and the cosets 
which are the elements of B/(~a). Let Cx

(a) denote the coset corresponding to x. 
For any element w £ Cx

(a\ the element y = w • a of Cz
(a) is uniquely deter

mined since z; • a = w • a if z/, w £ Cz
(a). This procedure establishes a one-to-one 

correspondence between the elements x of 5 and those elements y of B such tha t 
3/ • a = ;y. For, any two different elements 3^, 3>2 contained in a mus t lie in 
different cosets mod (~a) and thus must correspond to different elements of B. 
The following scheme indicates this one-to-one correspondence, which we 
denote by Ta, so tha t Ta(x) = y: 

B^B/(~a) 
x <-» C,(a) 

I 
3/ = w • a where w £ Cr(a). 

The following conditions CO to C6 will be shown later to correspond to the 
postulates for implicative Boolean algebra. These conditions are restricted for 
the present to the single element a ^ 0. 

CO Ta(x) e B for all x £ B. 

I t is more convenient to discuss CI after the other conditions have been 
considered. 
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I t follows a t once from the definitions of + and • on the elements of B/(~a) 
t ha t 

C2 Ta(%i + x2) = Ta(xi) + Ta(x2), 

C3 Ta(xi - x2) = Ta(xi) • Ta(x2). 

Since it is shown tha t Ta is one-to-one, we have 

C4 If a s* 0, then Ta(xi) = Ta(x2) implies X\ = x2. 

Clearly Ta(x) = a if and only if x = 1. For if x = 1, the coset Ci(a) in B/(~a) 
corresponding to x must be the unit element of this quotient ring and therefore 
must consist of all z £ B such tha t z • a — a. The converse follows since Ta 

is a one-to-one transformation. Thus we have 

C5 Ta{\) = a. 

C6 The transformation Ta(z) = w has an inverse z = Ta~
1(w) if w < a. 

This is assured by the fact tha t each element of B contained in a is the image 
under Ta of a unique element z. 

We now consider the formulation of condition CI corresponding to postulate 
P I . By way of preparation, we shall show how to select a semigroup of the above 
transformations in which multiplication is consistent. 

If a, b 5* 0, let Ta(b) = c. Then c ^ O and c < a. The transformation Tc 

which is defined by the given system of isomorphisms is not necessarily the 
same transformation as Ta Tb} where Ta and Tb are defined by the given isomor
phisms. In order tha t the set of all transformations Ta, a ^ 0, be consistent, 
we shall define a transformation Tc havingthe property tha t Tc(x) = Ta Tb(x). 

Since Ta Th(l) = Ta(b) = c, it follows tha t Ta Tb(x) < c, x Ç B. For the 
isomorphisms Ta and Tb preserve order, and x < 1. If y < c is given, we wish 
to solve Ta Tb(x) = y for x. To do this we first solve Ta(u) — y for u. This may 
be done by C6 because y < a. We then solve Ta(x) = u for x. In order to be 
able to do this by C6, it must be shown tha t u • b = u. But this follows from 
Ta(u - b) = Ta(u) - Ta(b) = y • c = y = Ta(u) and the fact tha t Ta is one-to-
one. Hence the transformation Ta Tb is one-to-one on the set of all elements 
x < c. 

Finally, if Ta Tb(x) = y we let Cx^
c) = {w Ç B, w • c = y}. Then Cx

(c) 

is one of the elements of the quotient algebra B/(~c). I t is easy to verify tha t 
the set of all these cosets forms a Boolean algebra isomorphic to B} i.e., tha t the 
map x —» Cx

(c) is an isomorphism. If we define Tc using this system of cosets, 
then the transformation Tc is consistent with Ta and Tbl whereas the transforma
tion defined by the given isomorphism might be inconsistent with Ta and Tb. 

Assuming for the moment tha t all of the above mentioned inconsistencies 
have been removed, then to each non-zero element a G B there corresponds a 
transformation Ta. The set of all such transformations is a one-parameter 
semigroup in which the parameter is an element of B. The product of the trans-
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formations defines the cross-product of the parameters. More specifically, let 
a X b be that element c of B such that Ta Tb(pc) = Tc(x). Then 

Ta(b) = Ta Tb(\) = r c ( l ) = c = aXb. 

If the non-zero elements of B are well ordered, then the set of corresponding 
transformations may be made consistent by the following procedure. If a is 
the first element of B in the well ordering, let Ta be defined as above by means 
of the given isomorphism, B = B/ (~a). Let a1 = a, and an be defined recursively 
by an — an~x X a, n > 2. Then by the argument of the preceding paragraph, 
the transformations Ta*, . . . , TV, . . . may all be consistently defined. 

Now suppose that the transformations Tx have been defined for all x preceding 
a given element b in the well-ordered series. Then all finite cross-products 
of such elements have been defined. If b is one of these cross-products, then Tb 

is already defined. Otherwise let Tb be defined by the given system of isomor
phisms. We have thus obtained a consistent family of transformations Tx for 
all non-zero x G B. Finally T0(z) = 0 defines Tx for x = 0. 

Since the consistent family of transformations is a semigroup, we have the 
condition 

CI Ta(Tb Tc) = (Ta Tb) Te. 

Therefore [Ta(Tb Te)] (1) 
Ta TbxciX) 
Ta (b X c) 

aX (b Xc) 

Similarly the remaining conditions CO, C2, C3, C4, C5, C6 are immediately 
seen from the relation Ta(b) = a X b to be verifications of the postulates for 
implicative Boolean algebra. This completes the proof of the characterization 
theorem. 

In C6 we discussed the inverse transformation z = Ta~
l(w) defined for 

w < a. We use the notation z = w C # = Ta~
l(w). Thus s is a function of w 

and a. This function can be extended so that w can range over the entire 
ring B. Namely, z = w C Q> is the solution of the equation w • a = Ta(z) for 
any w Ç B. 

The element x C o, of an implicative Boolean ring can be interpreted as the 
sentence "x if a" or the sentence ua implies x." This uif" operation is the 
conditional in probability theory. The conventional treatment of the conditional 
is based on ordered pairs of propositions, whereas in our system such an ordered 
pair is itself a proposition, i.e., an element of the ring. Koopman [4] uses this 
particular implication as a model for conditional probability, but still treats 
the conditional as an ordered pair of propositions. Material implication "a implies 
x" is the proposition ~ a V x. Strict implication can be defined equivalently 
by either of the equations ~ a V x — l o r # C # = 1. These three implications 
are all distinct. Our implication x C a is the only implication which is approp
riate to the theory of probability. 

= [(Ta Tb) Tc] (1), 
= TaXb Tc(l), 
= TaXb (c), 
= (aXb) Xc. 
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In addition, the implication x Ca has an interpretation in formal logic. 
Consider a set of postulates Pi, P2 , . . . , Pn> Let B be the set of all propositions 
which are statable on the base of these postulates. We extend B to an implicative 
Boolean ring B* by the method of [3]. Let P = P i • P2 • . . . • Pn- These 
elements of B which are in the unit coset of B*/(~P) are those which are 
strictly implied by the postulates. For x C P = 1 if and only if x is the unit 
coset of B*/(~P). 

It is meaningful in this extended language i3* to consider propositions of the 
form x C P where x is not necessarily an element of the unit coset of B*/(~P). 
That is, we consider such implications as valid sentences even though they may 
not be true in the sense of being strict implications. This last property is also 
true of material implication. The language 5* is thus seen to be a metalanguage 
containing the original language B. In the probabilistic interpretation, this 
metalanguage also contains all conditional sentences. 
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