ON THE CLASS NUMBER AND THE FUNDAMENTAL UNIT OF THE REAL QUADRATIC FIELD $k=\mathbb{Q}(\sqrt{p q})$

JAE MOON KIM and JADO RYU ${ }^{\boxtimes}$

(Received 22 May 2011)

Abstract

For a real quadratic field $k=\mathbb{Q}(\sqrt{p q})$, let t_{k} be the exact power of 2 dividing the class number h_{k} of k and η_{k} the fundamental unit of k. The aim of this paper is to study t_{k} and the value of $N_{k / \mathbb{Q}}\left(\eta_{k}\right)$. Various methods have been successfully applied to obtain results related to this topic. The idea of our work is to select a special circular unit \mathcal{E}_{k} of k and investigate $C(k)=\left\langle \pm \mathcal{E}_{k}\right\rangle$. We examine the indices $[E(k): C(k)]$ and $\left[C(k): C_{S}(k)\right]$, where $E(k)$ is the group of units of k, and $C_{S}(k)$ is that of circular units of k defined by Sinnott. Then by using the Sinnott's index formula $\left[E(k): C_{S}(k)\right]=h_{k}$, we obtain as much information about t_{k} and $N_{k / \mathrm{Q}}\left(\eta_{k}\right)$ as possible.

2010 Mathematics subject classification: primary 11R11; secondary 11R29.
Keywords and phrases: class number, fundamental unit, circular unit, unit index, index formula.

1. Introduction

Let k be a real quadratic field of the form $k=\mathbb{Q}(\sqrt{p q})$. Let $h=h_{k}$ be the class number of k, and $t=t_{k}$ the exact power of 2 dividing h, that is, $2^{t} \mid h$ but $2^{t+1} \nmid h$. The aim of this paper is to study t and $N_{k / Q}\left(\eta_{k}\right)$, where η_{k} is the fundamental unit of k. Our results are summarised in Table 1. In this table, (\cdot / p) is the Legendre symbol. And when $p \equiv 1(\bmod 4),(\cdot / p)_{4}$ is defined to be

$$
\left(\frac{a}{p}\right)_{4}= \begin{cases}1 & \text { if } a^{(p-1) / 4} \equiv 1(\bmod p) \\ -1 & \text { if } a^{(p-1) / 4} \equiv-1(\bmod p) .\end{cases}
$$

When $p \equiv 1(\bmod 8)$,

$$
\left(\frac{-1}{p}\right)_{8}=(-1)^{(p-1) / 8}= \begin{cases}1 & \text { if } p \equiv 1(\bmod 16) \\ -1 & \text { if } p \equiv 9(\bmod 16)\end{cases}
$$

Both 1 and -1 occur in the blanks.

[^0]Table 1. Summary of results in this paper.

p, q				t	$N_{k / \mathbb{Q}}\left(\eta_{k}\right)$
$p \equiv 3(\bmod 4)$	$q \not \equiv 1(\bmod 4)$			$t=0$	1
$p \equiv 1(\bmod 4)$	$q \equiv 1(\bmod 4)$	$(q / p)=-1$		$t=1$	-1
		$(q / p)=1$	$(q / p)_{4} \cdot(p / q)_{4}=-1$	$t=1$	1
			$(q / p)_{4}=(p / q)_{4}=-1$	$t=2$	-1
			$(q / p)_{4}=(p / q)_{4}=1$	$t \geq 2$	
	$q=2$		$1 / p)_{4}=-1$	$t=1$	-1
		$(-1 / p)_{4}=1$	$(-1 / p)_{8} \cdot(2 / p)_{4}=-1$	$t=1$	1
			$(-1 / p)_{8}=(2 / p)_{4}=-1$	$t=2$	-1
			$(-1 / p)_{8}=(2 / p)_{4}=1$	$t \geq 2$	
	$q \equiv 3(\bmod 4)$	$(q / p)=-1$ or $(2 / p)=-1$		$t=1$	1
		$(q / p)=(2 / p)=1$		$t \geq 2$	1

Various results have been published in relation to to this topic. Kučera [7], for instance, proved the case where $p \equiv q \equiv 1(\bmod 4)$ by manipulating a certain circular unit. Brown [1] took care of the case where $p \equiv 1(\bmod 4)$ with $(-1 / p)_{4}=1$ and $q=2$ by using the theory of quadratic forms, while Conner and Hurrelbrink [2] applied the theory of group cohomology to handle some of the other cases.

In this paper, we use the circular unit mentioned in [6] to obtain Table 1. The index formula discovered by Sinnott [8] plays the most important role in our work. For real quadratic fields, Sinnott's formula simply reads $h_{k}=\left[E(k): C_{S}(k)\right][4]$, where $E(k)$ is the unit group of k, and $C_{S}(k)$ is the group of circular units of k defined by Sinnott [8]. Let n be the conductor of k. Put $F=\mathbb{Q}\left(\zeta_{n}\right), \delta_{F}=1-\zeta_{n}$, and $\delta_{E}=N_{F / E}\left(\delta_{F}\right)$ for a subfield E of F, where $\zeta_{n}=e^{2 \pi i / n}$. Since $C_{S}(k)$ is of rank one generated by $\left\{-1, N_{F / k}\left(1-\zeta_{n}^{a}\right) \mid(a, n)=1\right\}, C_{S}(k)=\left\langle-1, \delta_{k}\right\rangle$. The generator δ_{k} can be replaced by δ_{k}^{\prime}, a conjugate of δ_{k} over \mathbb{Q}.

In Section 2, we study the first row of Table 1. In this case, k is a subfield of $K=\mathbb{Q}(\sqrt{-p}, \sqrt{-q})$. Note that K is a CM-field with $K^{+}=k$, and the index formula for K says that $\left[E(K): C_{S}(K)\right]=(1 / 2) Q_{E}(K) h_{K^{+}}$[3], where $Q_{E}(K)$ is the unit index of K. That is, $Q_{E}(K)=\left[E(K): W(K) E\left(K^{+}\right)\right]$, where $W(K)$ is the group of roots of unity in K. From these two formulas, we obtain the desired results.

In the remaining sections, we assume that $p \equiv 1(\bmod 4)$. Roughly, to compute t_{k} and $N_{k / \mathbb{Q}}\left(\eta_{k}\right)$, we shall choose a special unit \mathcal{E}_{k} in k, and investigate the subgroup $C(k)$ of $E(k)$ generated by $\pm \mathcal{E}_{k}$ which contains $C_{S}(k)$. We then analyse $[E(k): C(k)]$ and $\left[C(k): C_{S}(k)\right]$ to get the information about $h_{k}=\left[E(k): C_{S}(k)\right]$ and $N_{k / \mathbb{Q}}\left(\eta_{k}\right)$. When $q \equiv 3(\bmod 4)$, the conductor n of k is $4 p q$, which involves three primes and thus causes extra difficulties. So we have to be a little more careful. The final section takes care of this case. And in Section 3, we discuss the other two cases.

2. $\mathbb{Q}(\sqrt{p q})$ with $p \equiv 3(\bmod 4)$ and $q \not \equiv 1(\bmod 4)$

In this section, we study t_{k} and $N_{k / \mathbb{Q}}\left(\eta_{k}\right)$ when $k=\mathbb{Q}(\sqrt{p q})$ with $p \equiv 3(\bmod 4)$ and $q \not \equiv 1(\bmod 4)$. There are three cases to consider: (i) $q \equiv 3(\bmod 4)$ and $q \neq 3$, (ii) $q=3$, and (iii) $q=2$. In any case, k is a subfield of $K=\mathbb{Q}(\sqrt{-p}, \sqrt{-q})$. The class number formula for K says that $\left[E(K): C_{S}(K)\right]=(1 / 2) Q_{E}(K) h_{K^{+}}$[3]. We first examine the unit index $Q_{E}(K)$.

Lemma 2.1. Let $K=\mathbb{Q}(\sqrt{-p}, \sqrt{-q})$ with $p \equiv 3(\bmod 4)$ and $q \not \equiv 1(\bmod 4)$. Then we have $Q_{E}(K)=2$.

Proof. We only give a proof for $q=2$. The other cases can be treated similarly, or the reader may refer to [5], where the unit index is determined when the conductor is odd. Note that the conductor n of $K=\mathbb{Q}(\sqrt{-p}, \sqrt{-2})$ is $8 p$. So $F=\mathbb{Q}\left(\zeta_{n}\right)=\mathbb{Q}\left(\zeta_{8 p}\right)$. In order to prove $Q_{E}(K)=2$, it suffices to show that $\delta_{K}^{J}=-\delta_{K}$, where J is complex conjugation. We compute $N_{K / \mathbb{Q}(\sqrt{-2})}\left(\delta_{K}\right)$ and $N_{K / \mathbb{Q}(\sqrt{-p})}\left(\delta_{K}\right)$.

Let a be an integer satisfying $a p \equiv 1(\bmod 8)$. Then $a \equiv p(\bmod 8)$. So

$$
N_{K / \mathbb{Q}(\sqrt{-2})}\left(\delta_{K}\right)=N_{\mathbb{Q}\left(\zeta_{8}\right) / \mathbb{Q}(\sqrt{-2})}\left(N_{F / \mathbb{Q}\left(\zeta_{8}\right)}\left(\delta_{F}\right)\right)=N_{\mathbb{Q}\left(\zeta_{8}\right) / \mathbb{Q}(\sqrt{-2})}\left(\frac{1-\zeta_{8}}{1-\zeta_{8}^{p}}\right) .
$$

Note that $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{8}\right) / \mathbb{Q}(\sqrt{-2})\right)$ is generated by the isomorphism sending ζ_{8} to ζ_{8}^{3}. Thus

$$
N_{K / \mathbb{Q}(\sqrt{-2})}\left(\delta_{K}\right)= \begin{cases}1 & \text { if } p \equiv 3(\bmod 8) \\ -1 & \text { if } p \equiv 7(\bmod 8) .\end{cases}
$$

On the other hand,

$$
N_{K / \mathbb{Q}(\sqrt{-p)}}\left(\delta_{K}\right)=N_{\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}(\sqrt{-p})}\left(N_{F / \mathbb{Q}\left(\zeta_{p}\right)}\left(\delta_{F}\right)\right)=N_{\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}(\sqrt{-p})}\left(\frac{1-\zeta_{p}}{1-\zeta_{p}^{2-1}}\right),
$$

where 2^{-1} is the inverse of $2(\bmod p)$. If $(2 / p)=1$, then the automorphism $\sigma_{2^{-1}}$ of $\mathbb{Q}\left(\zeta_{p}\right)$ sending ζ_{p} to $\zeta_{p}^{2^{-1}}$ permutes the elements of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}(\sqrt{-p})\right)$. Thus $N_{K / \mathbb{Q}(\sqrt{-p})}\left(\delta_{K}\right)=1$. Suppose that $(2 / p)=-1$. Then $\sigma_{2^{-1}} \notin \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}(\sqrt{-p})\right)$. Let $\pi=N_{\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}(\sqrt{-p})}\left(1-\zeta_{p}\right)$. Then $\pi^{1+\sigma_{2}^{-1}}=p$ and $\pi^{1-\sigma_{2}^{-1}}= \pm 1$. If $\pi^{1-\sigma_{2}^{-1}}=1$, then $\pi^{1+\sigma_{2}^{-1}}=$ $\pi^{2}=p$. So $\pi \in \mathbb{Q}(\sqrt{p})$, which is impossible. Thus $N_{K / \mathbb{Q}(\sqrt{-p})}\left(\delta_{K}\right)=\pi^{1-\sigma_{2}^{-1}}=-1$. Therefore

$$
N_{K / \mathbb{Q}(\sqrt{-p})}\left(\delta_{K}\right)= \begin{cases}-1 & \text { if } p \equiv 3(\bmod 8) \\ 1 & \text { if } p \equiv 7(\bmod 8)\end{cases}
$$

Hence $N_{K / \mathbb{Q}(\sqrt{-p})}\left(\delta_{K}\right) \neq N_{K / \mathbb{Q}(\sqrt{-2})}\left(\delta_{K}\right)$ in any case.
If $\delta_{K}^{J}=\delta_{K}$, then $\delta_{K} \in k=\mathbb{Q}(\sqrt{2 p})$. So $N_{k / \mathbb{Q}}\left(\delta_{K}\right)=N_{K / \mathbb{Q}(\sqrt{-p})}\left(\delta_{K}\right)=N_{K / \mathbb{Q}(\sqrt{-2})}\left(\delta_{K}\right)$, which is a contradiction. Therefore $\delta_{K}^{J}=-\delta_{K}$, and this proves the lemma.

By the lemma,

$$
\left[E(K): C_{S}(K)\right]=h_{K^{+}}=h_{k} \quad \text { and } \quad[E(K): W(K) E(k)]=2 .
$$

Note that rank $E(K)=1$. Let η_{K} be a generator of $E(K)$ modulo $W(K)$.
Theorem 2.2. Let $k=\mathbb{Q}(\sqrt{p q})$ with $p \equiv 3(\bmod 4)$ and $q \not \equiv 1(\bmod 4)$. Then we have $N_{k / \mathbb{Q}}\left(\eta_{k}\right)=1$ and $2 \nmid h_{k}$.
Proof. Since $[E(K): W(K) E(k)]=2, \eta_{K}^{2}=\alpha \eta_{k}$ for some $\alpha \in W(K)$. Thus

$$
N_{k / \mathbb{Q}}\left(\eta_{k}\right)=N_{K / \mathbb{Q}(\sqrt{-p})}\left(\eta_{k}\right)=N_{K / \mathbb{Q}(\sqrt{-p})}\left(\eta_{K}^{2} \alpha^{-1}\right)=1 .
$$

To prove $2 \nmid h_{k}$, we treat three cases separately.
(i) $q \equiv 3(\bmod 4)$ and $q \neq 3$. Since $(q / p)(p / q)=-1$, we may take $(q / p)=-1$. Then

$$
N_{K / \mathbb{Q}(\sqrt{-p})}\left(\delta_{K}\right)=N_{\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}(\sqrt{-p})}\left(N_{F / \mathbb{Q}\left(\zeta_{p}\right)}\left(\delta_{F}\right)\right)=N_{\mathbb{Q}\left(\zeta_{p} p / \mathbb{Q}(\sqrt{-p})\right.}\left(\frac{1-\zeta_{p}}{1-\zeta_{p}^{q^{-1}}}\right)= \pm 1
$$

Since $(q / p)=-1, \sigma_{q^{-1}} \notin \mathrm{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}(\sqrt{-p})\right)$, where $\sigma_{q^{-1}}$ is the automorphism of $\mathbb{Q}\left(\zeta_{p}\right)$ sending ζ_{p} to $\zeta_{p}^{q^{-1}}$. Then as in the proof of Lemma 2.1, $N_{K / \mathbb{Q}(\sqrt{-p})}\left(\delta_{K}\right)=-1$. Suppose that $2 \mid h_{k}=\left[E(K): C_{S}(K)\right]$. Put $h_{k}=2 m$. Then $\eta_{K}^{2 m}= \pm \delta_{K}^{j}$ for some odd integer j. By taking norms of both sides from K to $\mathbb{Q}(\sqrt{-p})$, we get a contradiction.
(ii) $q=3$. In this case, $K=\mathbb{Q}(\sqrt{-3}, \sqrt{-p})$ and $E(K)=\left\langle-\zeta_{3}, \eta_{K}\right\rangle$. Suppose that $2 \mid h_{k}$. Then $\eta_{K}^{2 m}= \pm \zeta_{3}^{i} \delta_{K}^{j}$ for some odd integer j.

If $(p / 3)=1$, then $(3 / p)=-1$. After a computation similar to that of case (i), we see that

$$
N_{K / \mathbb{Q}(\sqrt{-p})}\left(\delta_{K}\right)=N_{\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}(\sqrt{-p})}\left(\frac{1-\zeta_{p}}{1-\zeta_{p}^{3-1}}\right)=-1
$$

By taking norms of both sides of $\eta_{K}^{2 m}= \pm \zeta_{3}^{i} \delta_{K}^{j}$ from K to $\mathbb{Q}(\sqrt{-p})$, we have $1=$ $N_{K / Q(\sqrt{-p})}\left(\pm \zeta_{3}^{i} \delta_{K}^{j}\right)=-1$, which is absurd. So $2 \nmid h_{k}$.

On the other hand, suppose that $(p / 3)=-1$. In this case, we take norms of both sides of the equation $\eta_{K}^{2 m}= \pm \zeta_{3}^{i} \delta_{K}^{j}$ from K to $\mathbb{Q}(\sqrt{-3})$. Then

$$
N_{K / Q(\sqrt{-3})}\left(\eta_{K}^{2 m}\right)=N_{K / Q(\sqrt{-3})}\left(\pm \zeta_{3}^{i} \delta_{K}^{j}\right)
$$

Since $N_{K / \mathbb{Q}(\sqrt{-3})}\left(\eta_{K}\right)$ is a unit in $\mathbb{Q}(\sqrt{-3})$, the left-hand side is of the form ζ_{3}^{α}. And since

$$
N_{K / \mathbb{Q}(\sqrt{-3})}\left(\delta_{K}\right)=N_{\mathrm{Q}\left(\zeta_{3 p}\right) / \mathbb{Q}\left(\zeta_{3}\right)}\left(\delta_{F}\right)=\frac{1-\zeta_{3}}{1-\zeta_{3}^{p^{-1}}}=-\zeta_{3},
$$

the right-hand side equals $\zeta_{3}^{2 i}\left(-\zeta_{3}\right)^{j}=-\zeta_{3}^{\beta}$ for some β. Thus $\zeta_{3}^{\alpha}=-\zeta_{3}^{\beta}$, which cannot happen. Hence $2 \nmid h_{k}$.
(iii) $q=2$. We saw in the proof of Lemma 2.1 that $N_{K / \mathbb{Q}(\sqrt{-2})}\left(\delta_{K}\right)=-1$ if $p \equiv$ $7(\bmod 8)$ and $N_{K / Q(\sqrt{-p})}\left(\delta_{K}\right)=-1$ if $p \equiv 3(\bmod 8)$. Suppose that $2 \mid h_{k}$. Then $\eta_{K}^{2 m}= \pm \delta_{K}^{j}$ for some odd integer j. But this is impossible since $N_{K / Q(\sqrt{-2})}\left(\eta_{K}^{2 m}\right)=$ $N_{K / Q(\sqrt{-p})}\left(\eta_{K}^{2 m}\right)=1$.

Remark 2.3. Since $N_{k / \mathbb{Q}}\left(\eta_{k}\right)=1,-1$ is not a norm of a unit in $E(k)$. That is, $-1 \notin$ $N_{k / \mathbb{Q}} E(k)$. We can say a little more. Indeed, by Remark 4.3 at the end of this paper, $\widehat{H}^{0}\left(G, E_{k}\right) \longrightarrow \widehat{H}^{0}\left(G, k^{\times}\right)$is injective, where $G=\operatorname{Gal}(k / \mathbb{Q})$. Thus -1 cannot be a norm element from k^{\times}either.

3. $\mathbb{Q}(\sqrt{p q})$ with $p \equiv 1(\bmod 4)$ and $q \not \equiv 3(\bmod 4)$

Let $K=\mathbb{Q}(\sqrt{p}, \sqrt{q})$. It is clear that $2 \mid h_{k}$ since K / k is an unramified extension. We investigate the divisibility of h_{k} by a higher power of 2 by playing around with a suitable unit of k. Fix a generator σ of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right)$ and τ of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}\right)$ when $q \neq 2$, and extend them to $\mathbb{Q}\left(\zeta_{n}\right)$ naturally, that is, $\zeta_{q}^{\sigma}=\zeta_{q}$ and $\zeta_{p}^{\tau}=\zeta_{p}$. Let J_{1} be the complex conjugation of $\mathbb{Q}\left(\zeta_{p}\right)$ or its extension to $\mathbb{Q}\left(\zeta_{n}\right)$, so that $\zeta_{p}^{J_{1}}=\zeta_{p}^{-1}$ and $\zeta_{q}^{J_{1}}=\zeta_{q}$. We similarly define J_{2}, that is, $\zeta_{p}^{J_{2}}=\zeta_{p}$ and $\zeta_{q}^{J_{2}}=\zeta_{q}^{-1}$. Thus $J=J_{1} J_{2}$ is the complex conjugation of $\mathbb{Q}\left(\zeta_{n}\right)$. When $q=2$, the conductor of k is $8 p$. In this case, τ is a generator of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{16}\right)^{+} / \mathbb{Q}\right)$ or its natural extension to $\mathbb{Q}\left(\zeta_{16 p}\right)$ so that $\zeta_{4 p}^{\tau}=\zeta_{4 p}$, and J_{2} is the complex conjugation of $\mathbb{Q}\left(\zeta_{16}\right)$ or its extension to $\mathbb{Q}\left(\zeta_{16 p}\right)$. For each integer i, put $v_{p}(i)=\left(\left(1-\zeta_{p}^{\sigma^{i}}\right) /\left(1-\zeta_{p}\right)\right) \zeta_{p}^{\left(1-\sigma^{i}\right) / 2}$. Then $v_{p}(i) \in \mathbb{Q}\left(\zeta_{p}\right)^{+}$. We denote $N_{\mathbb{Q}\left(\zeta_{p}\right)^{+} / \mathbb{Q}(\sqrt{p})}\left(v_{p}(i)\right)$ by $\bar{v}_{p}(i)$. Note that $\bar{v}_{p}(1)$ is a unit in $\mathbb{Q}(\sqrt{p})$ which differs from ± 1. In fact, $\bar{v}_{p}(1)^{2}$ generates the Sinnott group of circular units of $\mathbb{Q}(\sqrt{p})$ modulo $\{ \pm 1\}$.

Lemma 3.1. The unit $\bar{v}_{p}(i)$ satisfies:
(1) $N_{\mathbb{Q}(\sqrt{p}) / \mathbb{Q}}\left(\bar{v}_{p}(i)\right)=(-1)^{i}$;
(2) $\quad \bar{v}_{p}(i)= \begin{cases}(-1)^{m} & \text { if } i=2 m \\ (-1)^{m} \bar{v}_{p}(1) & \text { if } i=2 m+1 .\end{cases}$

Proof. Put $t=\left[\mathbb{Q}\left(\zeta_{p}\right)^{+}: \mathbb{Q}(\sqrt{p})\right]=(p-1) / 4$. Then for any integers a, b, and c, $v_{p}(2 t)=-1, v_{p}(2 t+c)=-v_{p}(c)$, and $\sigma^{a} v_{p}(b)=v_{p}(a+b) / v_{p}(a)$. We prove (1) by induction on i, which is clear when $i=0$. Assuming the result for i, then

$$
\begin{aligned}
N_{\mathbb{Q}(\sqrt{p}) / \mathbb{Q}} \bar{v}_{p}(i+1) & =N_{\mathbb{Q}\left(\zeta_{p}\right)^{+} / \mathbb{Q}} v_{p}(i+1) \\
& =\prod_{\alpha=0}^{2 t-1} \frac{v_{p}(i+1+\alpha)}{v_{p}(\alpha)} \\
& =\frac{\prod_{\alpha=0}^{2 t-2} v_{p}(i+1+\alpha)}{\prod_{\alpha=0}^{2 t-1} v_{p}(\alpha)} v_{p}(i+2 t) \\
& =-\prod_{\beta=0}^{2 t-1} \frac{v_{p}(i+\beta)}{v_{p}(\beta)} \\
& =-N_{\mathbb{Q}(\sqrt{p}) / \mathbb{Q}} \bar{v}_{p}(i) .
\end{aligned}
$$

We omit the proof of (2) since it is similar to that of (1).
3.1. $\boldsymbol{p} \equiv \boldsymbol{q} \equiv 1(\bmod 4)$. Let σ_{q} be the Frobenius automorphism of $\mathbb{Q}\left(\zeta_{p}\right)$ for q, and l_{q} an integer such that $\sigma_{q^{-1}}=\sigma^{l_{q}}$. Then $N_{F / \mathbb{Q}\left(\zeta_{p}\right)}\left(\left(1-\zeta_{n}\right) \zeta_{n}^{-1 / 2}\right)=v_{p}\left(l_{q}\right)^{-1}$. By interchanging the roles of p and q, we have $N_{F / \mathbb{Q}\left(\zeta_{q}\right)}\left(\left(1-\zeta_{n}\right) \zeta_{n}^{-1 / 2}\right)=v_{q}\left(l_{p}\right)^{-1}$. Note that $2 \mid l_{p}$ if and only if $p^{(q-1) / 2} \equiv 1(\bmod q)$, that is, $(p / q)=1$. Since $p \equiv q \equiv 1(\bmod 4)$, $(p / q)=(q / p)$. Thus $2 \mid l_{p}$ if and only if $2 \mid l_{q}$. Similarly $4 \mid l_{p}$ if and only if $p^{(q-1) / 4} \equiv$ $1(\bmod q)$, that is, $(p / q)_{4}=1$.

Let $L=\mathbb{Q}\left(\zeta_{p}\right)^{+} \mathbb{Q}\left(\zeta_{q}\right)^{+}$, and $e_{L}=\left(1-\zeta_{n}\right)\left(1-\zeta_{n}^{J_{2}}\right) \zeta_{n}^{-\left(1+J_{2}\right) / 2}$. It is easy to see that e_{L} is fixed by J_{1} and J_{2}, so that $e_{L} \in L$. Note that $N_{F / L}\left(\delta_{F}\right)=e_{L}^{2}$ and

$$
e_{L}=N_{F / \mathbb{Q}\left(\zeta_{p}\right) \mathbb{Q}\left(\zeta_{q}\right)^{+}}\left(1-\zeta_{n}\right) \zeta_{n}^{-1 / 2}=-N_{F / \mathbb{Q}\left(\zeta_{p}\right)^{+} \mathbb{Q}\left(\zeta_{q}\right)}\left(1-\zeta_{n}\right) \zeta_{n}^{-1 / 2}
$$

Put

$$
e_{K}=N_{L / K}\left(e_{L}\right), e_{k}=N_{K / k}\left(e_{K}\right) \quad \text { and } \quad \mathcal{E}_{k}=e_{K}^{\sigma+\tau} .
$$

Since $\mathcal{E}_{k}^{\sigma \tau}=e_{K}^{(\sigma+\tau) \sigma \tau}=e_{K}^{\sigma+\tau}=\mathcal{E}_{k}, \mathcal{E}_{k}$ is fixed by $\operatorname{Gal}(K / k)$. Thus $\mathcal{E}_{k} \in k$. In fact, $\mathcal{E}_{k}=e_{k}^{\sigma}=e_{k}^{\tau}$. We express \mathcal{E}_{k} as

$$
\mathcal{E}_{k}=e_{K}^{\sigma+\tau}=e_{K}^{1+\sigma} \cdot e_{K}^{1+\tau} \cdot e_{K}^{-2}
$$

Here

$$
\begin{aligned}
e_{K}^{1+\sigma} & =N_{K / \mathbb{Q}(\sqrt{q})}\left(e_{K}\right) \\
& =N_{K / \mathbb{Q}(\sqrt{q})} N_{L / K}\left(e_{L}\right) \\
& =N_{K / \mathbb{Q}(\sqrt{q})} N_{L / K}\left(-N_{F / \mathbb{Q}\left(\zeta_{p}\right)+\mathbb{Q}\left(\zeta_{q}\right)}\left(\left(1-\zeta_{n}\right) \zeta_{n}^{-1 / 2}\right)\right) \\
& =N_{\mathbb{Q}\left(\zeta_{q}\right)^{+} / \mathbb{Q}(\sqrt{q})}\left(v_{q}\left(l_{p}\right)^{-1}\right) \\
& =\bar{v}_{q}\left(l_{p}\right)^{-1} .
\end{aligned}
$$

Similarly,

$$
e_{K}^{1+\tau}=\bar{v}_{p}\left(l_{q}\right)^{-1} .
$$

Hence

$$
\mathcal{E}_{k}=\bar{v}_{q}\left(l_{p}\right)^{-1} \cdot \bar{v}_{p}\left(l_{q}\right)^{-1} \cdot e_{K}^{-2}
$$

It is possible that $e_{K} \in k$. Let us examine when this happens. Note that $e_{K} \in k$ if and only if $e_{K}^{\sigma \tau}=e_{K}$. This is equivalent to $e_{K}^{1+\sigma}=e_{K}^{1+\tau}$. Hence

$$
e_{K} \in k \text { if and only if } l_{p} \equiv l_{q} \equiv 0(\bmod 2), \text { and }(-1)^{l_{p} / 2}=(-1)^{l_{q} / 2}
$$

We also have

$$
N_{k / \mathbb{Q}}\left(\mathcal{E}_{k}\right)=e_{K}^{1+\sigma+\tau+\sigma \tau}=e_{K}^{(1+\sigma)(1+\tau)}=N_{\mathbb{Q}(\sqrt{q}) / \mathbb{Q}}\left(\bar{v}_{q}\left(l_{p}\right)^{-1}\right)= \begin{cases}1 & \text { if } 2 \mid l_{p} \\ -1 & \text { if } 2 \nmid l_{p} .\end{cases}
$$

Theorem 3.2. Let $k=\mathbb{Q}(\sqrt{p q})$ with $p \equiv q \equiv 1(\bmod 4)$. Then:
(1) if $(q / p)=(p / q)=-1$, then $2 \mid h_{k}, 4 \nmid h_{k}$, and $N_{k / \mathbb{Q}}\left(\eta_{k}\right)=-1$;
(2) if $(p / q)_{4} \cdot(q / p)_{4}=-1$, then $2 \mid h_{k}, 4 \nmid h_{k}$, and $N_{k / \mathbb{Q}}\left(\eta_{k}\right)=1$;
(3) if $(p / q)_{4}=(q / p)_{4}=-1$, then $4 \mid h_{k}, 8 \nmid h_{k}$, and $N_{k / \mathbb{Q}}\left(\eta_{k}\right)=-1$;
(4) if $(p / q)_{4}=(q / p)_{4}=1$, then $4 \mid h_{k}$.

Proof. Let $C(k)=\left\langle-1, \mathcal{E}_{k}\right\rangle$. Since $N_{F / L}\left(\delta_{F}\right)=e_{L}^{2}, C_{S}(k)=\left\langle-1, e_{k}^{2}\right\rangle$. Thus $C_{S}(k)=$ $\left\langle-1,\left(e_{k}^{\sigma}\right)^{2}\right\rangle=\left\langle-1, \mathcal{E}_{k}^{2}\right\rangle$. Hence $\left[C(k): C_{S}(k)\right]=2$. In case (1), l_{p} (hence l_{q} as well) is odd. So $N_{k / \mathbb{Q}}\left(\mathcal{E}_{k}\right)=-1$, which implies that $2 \nmid[E(k): C(k)]$ and $N_{k / \mathbb{Q}}\left(\eta_{k}\right)=-1$. Since

$$
h_{k}=\left[E(k): C_{S}(k)\right]=[E(k): C(k)]\left[C(k): C_{S}(k)\right],
$$

we get the results as asserted. Next, we suppose that $(p / q)_{4} \cdot(p / q)_{4}=-1$. We may assume that $(p / q)_{4}=-1$ and $(q / p)_{4}=1$. Then $l_{q}=4 m_{1}$ and $l_{p}=4 m_{2}+2$, for some m_{1} and m_{2}. In this case $\mathcal{E}_{k}=-e_{K}^{-2}$ and $e_{K} \notin k$. Hence $2 \nmid[E(k): C(k)]$, for otherwise $\eta_{k}^{2 m}= \pm \mathcal{E}_{k}=e_{K}^{-2}$ would imply that $e_{K}^{-1}= \pm \eta_{k}^{m} \in k$. Since $N_{k / \mathbb{Q}}\left(\mathcal{E}_{k}\right)=1$, we also have $N_{k / \mathbb{Q}}\left(\eta_{k}\right)=1$. Therefore $2 \mid h_{k}, 4 \nmid h_{k}$ and $N_{k / \mathbb{Q}}\left(\eta_{k}\right)=1$. In case (3), l_{p} and l_{q} are of the forms $l_{p}=4 m_{1}+2$ and $l_{q}=4 m_{2}+2$. Thus $e_{K}^{1+\sigma}=e_{K}^{1+\tau}=-1, \mathcal{E}_{k}=e_{K}^{-2}$, and $e_{K} \in k$. Put $C^{\prime}=\left\langle-1, e_{K}\right\rangle$. Then

$$
\left[C^{\prime}: C_{S}(k)\right]=\left[C^{\prime}: C(k)\right]\left[C(k): C_{S}(k)\right]=4
$$

Moreover, $N_{k / \mathbb{Q}}\left(e_{K}\right)=e_{K}^{1+\sigma}=-1$. Therefore $2 \nmid\left[E(k): C^{\prime}\right]$ and $N_{k / \mathbb{Q}}\left(\eta_{k}\right)=-1$, and we obtain the desired results. Finally, condition (4) says that both l_{1} and l_{2} are multiples of 4 . So $e_{K} \in k$ and thus $4=\left[C^{\prime}: C_{S}(k)\right] \mid h_{k}$. This concludes the proof.

Remark 3.3. In case (4) of this theorem, both 1 and -1 can be the value of $N_{k / \mathbb{Q}}\left(\eta_{k}\right)$. When $k=\mathbb{Q}(\sqrt{5 \cdot 101})$ or $k=\mathbb{Q}(\sqrt{29 \cdot 181})$, for instance, $N_{k / \mathbb{Q}}\left(\eta_{k}\right)=1$, while $N_{k / \mathbb{Q}}\left(\eta_{k}\right)=-1$ when $k=\mathbb{Q}(\sqrt{5 \cdot 461})$. If $N_{k / \mathbb{Q}}\left(\eta_{k}\right)=-1$, then $8 \mid h_{k}$ since $2 \mid\left[E(k): C^{\prime}\right]$. Indeed, the class number of $\mathbb{Q}(\sqrt{5 \cdot 461})$ is 16 . And even if $N_{k / \mathbb{Q}}\left(\eta_{k}\right)=1, h_{k}$ can be a multiple of 8. For example, $\mathbb{Q}(\sqrt{5 \cdot 101})$ has the class number 4 , while $\mathbb{Q}(\sqrt{29 \cdot 181})$ has the class number 8 .
3.2. $\boldsymbol{p} \equiv \mathbf{1}(\bmod 4)$, and $\boldsymbol{q}=2$. Put $L=\mathbb{Q}(\sqrt{2}) \mathbb{Q}\left(\zeta_{p}\right)^{+}$and $K=\mathbb{Q}(\sqrt{2}, \sqrt{p})$ as before. Let

$$
e_{L}=\left(1-\zeta_{8 p}\right)\left(1-\zeta_{8 p}^{J_{2}}\right) \zeta_{16 p}^{-\left(1+J_{2}\right)}
$$

Since $J_{2} \equiv-1(\bmod 16), e_{L} \in F$. Furthermore, since J_{1} and J_{2} fix e_{L} then $e_{L} \in L$. As in the previous case, put $e_{K}=N_{L / K}\left(e_{L}\right), e_{k}=N_{K / k}\left(e_{K}\right)$, and $\mathcal{E}_{k}=e_{K}^{\sigma+\tau}$. Then since $N_{F / L}\left(\delta_{F}\right)=e_{L}^{2}, C_{S}(k)=\left\langle-1, e_{k}^{2}\right\rangle=\left\langle-1, e_{k}^{2 \sigma}\right\rangle$. Now we analyse each term of the product

$$
\mathcal{E}_{k}=e_{K}^{\sigma+\tau}=e_{K}^{1+\sigma} \cdot e_{K}^{1+\tau} \cdot e_{K}^{-2}
$$

First,

$$
e_{K}^{1+\sigma}=N_{L / \mathbb{Q}(\sqrt{2})}\left(e_{L}\right)=N_{\mathbb{Q}\left(\zeta_{16 p}\right) / \mathbb{Q}\left(\zeta_{16}\right)}\left(\left(1-\zeta_{8 p}\right) \zeta_{16 p}^{-1}\right)=\frac{1-\zeta_{8}}{1-\zeta_{8}^{p^{-1}}} \zeta_{16}^{p^{-1}-1}
$$

where p^{-1} is the inverse of $p(\bmod 16)$. Hence

$$
e_{K}^{1+\sigma}= \begin{cases}1 & \text { if } p \equiv 1(\bmod 16) \\ -1 & \text { if } p \equiv 9(\bmod 16) \\ \pm(\sqrt{2}-1) & \text { if } p \equiv 5(\bmod 8)\end{cases}
$$

The second term $e_{K}^{1+\tau}$ is the same as before. Namely,

$$
e_{K}^{1+\tau}=\bar{v}_{p}\left(l_{2}\right)^{-1}= \begin{cases}1 & \text { if } p \equiv 1(\bmod 8) \text { and }\left(\frac{2}{p}\right)_{4}=1 \\ -1 & \text { if } p \equiv 1(\bmod 8) \text { and }\left(\frac{2}{p}\right)_{4}=-1 \\ \pm \bar{v}_{p}(1)^{-1} & \text { if } p \equiv 5(\bmod 8) .\end{cases}
$$

For the last term, $e_{K} \in k$ if and only if either $p \equiv 1(\bmod 16)$ and $(2 / p)_{4}=1$, or $p \equiv 9(\bmod 16)$ and $(2 / p)_{4}=-1$. Hence $e_{K} \in k$ if and only if $p \equiv 1(\bmod 8)$ and $(-1 / p)_{8} \cdot(2 / p)_{4}=1$. Also note that

$$
N_{k / \mathbb{Q}}\left(\mathcal{E}_{k}\right)=N_{\mathbb{Q}(\sqrt{2}) / \mathbb{Q}}\left(e_{K}^{1+\sigma}\right)= \begin{cases}1 & \text { if } p \equiv 1(\bmod 8) \\ -1 & \text { if } p \equiv 5(\bmod 8)\end{cases}
$$

Theorem 3.4. Let $k=\mathbb{Q}(\sqrt{2 p})$ with $p \equiv 1(\bmod 4)$. Then:
(1) if $(-1 / p)_{4}=-1$, then $2 \mid h_{k}, 4 \nmid h_{k}$, and $N_{k / \mathbb{Q}}\left(\eta_{k}\right)=-1$;
(2) if $(-1 / p)_{8} \cdot(2 / p)_{4}=-1$, then $2 \mid h_{k}, 4 \nmid h_{k}$, and $N_{k / \mathbb{Q}}\left(\eta_{k}\right)=1$;
(3) if $(-1 / p)_{8}=(2 / p)_{4}=-1$, then $4 \mid h_{k}, 8 \nmid h_{k}$, and $N_{k / \mathrm{Q}}\left(\eta_{k}\right)=-1$;
(4) if $(-1 / p)_{8}=(2 / p)_{4}=1$, then $4 \mid h_{k}$.

Proof. This can be proved in a similar way to Theorem 3.2.
Remark 3.5. As in case (4) of Theorem 3.2, both 1 and -1 occur as the value of $N_{k / \mathbb{Q}}\left(\eta_{k}\right)$ when $(-1 / p)_{8}=(2 / p)_{4}=1$. For example, $N_{k / \mathbb{Q}}\left(\eta_{k}\right)=1$ when k is $\mathbb{Q}(\sqrt{2 \cdot 257})$ or $\mathbb{Q}(\sqrt{2 \cdot 1217})$. The class numbers are 4 and 8 , respectively. And when $k=$ $\mathbb{Q}(\sqrt{2 \cdot 113}), N_{k / \mathbb{Q}}\left(\eta_{k}\right)=-1$ and $h_{k}=8$, a multiple of 8 as it should be.

4. $\mathbb{Q}(\sqrt{p q})$ with $p \equiv 1(\bmod 4)$ and $q \equiv 3(\bmod 4)$

In this case, the conductor of $k=\mathbb{Q}(\sqrt{p q})$ is $n=4 p q$. Let J_{1} and J_{2} be such that $\zeta_{p}^{J_{1}}=\zeta_{p}^{-1}, \zeta_{8 q}^{J_{1}}=\zeta_{8 q}$, and $\zeta_{p}^{J_{2}}=\zeta_{p}, \zeta_{8 q}^{J_{2}}=\zeta_{8 q}^{-1}$. As in the previous section, σ is a fixed generator of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right)$, or its natural extension to $\mathbb{Q}\left(\zeta_{8 p q}\right)$ such that $\zeta_{8 q}^{\sigma}=\zeta_{8 q}$. And τ is a fixed generator of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{q}\right) / \mathbb{Q}\right)$ or its extension to $\mathbb{Q}\left(\zeta_{8 p q}\right)$ such that $\zeta_{8 p}^{\tau}=\zeta_{8 p}$. Then $\tau(\sqrt{-q})=-\sqrt{-q}$ and $\tau(\sqrt{q})=-\sqrt{q}$, and thus $\operatorname{Gal}(\mathbb{Q}(\sqrt{q}) / \mathbb{Q})=\{1, \tau\}$. Let $L=\mathbb{Q}\left(\zeta_{4 q}\right)^{+} \mathbb{Q}\left(\zeta_{p}\right)^{+}$, and $e_{L}=\left(1-\zeta_{n}\right)\left(1-\zeta_{n}^{J_{2}}\right) \zeta_{2 n}^{-\left(1+J_{2}\right)}$. Since $J_{2} \equiv-1(\bmod 8 q)$ and since e_{L} is fixed by J_{1} and $J_{2}, e_{L} \in L$. Let

$$
K=\mathbb{Q}(\sqrt{p}, \sqrt{q}), e_{K}=N_{L / K}\left(e_{L}\right), e_{k}=N_{K / k}\left(e_{K}\right)
$$

and $\mathcal{E}_{k}=e_{K}^{\sigma+\tau}$ as before. Note that

$$
N_{F / L}\left(1-\zeta_{n}\right)=e_{L}^{2}, \quad\left(\left(1-\zeta_{n}\right) \zeta_{2 n}^{-1}\right)^{1+J_{2}}=e_{L}
$$

and $\left(\left(1-\zeta_{n}\right) \zeta_{2 n}^{-1}\right)^{1+J_{1}}=-e_{L}$. We analyse each term in the product

$$
\mathcal{E}_{k}=e_{K}^{\sigma+\tau}=e_{K}^{1+\sigma} \cdot e_{K}^{1+\tau} \cdot e_{K}^{-2}
$$

First,

$$
\begin{aligned}
e_{K}^{1+\sigma} & =N_{L / \mathbb{Q}(\sqrt{q})}\left(e_{L}\right) \\
& =N_{L / \mathbb{Q}(\sqrt{q})}\left(-\left(\left(1-\zeta_{n}\right) \zeta_{2 n}^{-1}\right)^{1+J_{1}}\right) \\
& =N_{\mathbb{Q}\left(\zeta_{4 q}\right)^{+} / \mathbb{Q}(\sqrt{q})}\left(\left(N_{F / \mathbb{Q}\left(\zeta_{4 q}\right)}\left(1-\zeta_{n}\right)\right) \cdot\left(N_{\mathbb{Q}\left(\zeta_{8 q q}\right) / \mathbb{Q}\left(\zeta_{8 q}\right.} \zeta_{2 n}^{-1}\right)\right) \\
& =N_{\mathbb{Q}\left(\zeta_{4 q}\right)^{+} / \mathbb{Q}(\sqrt{q})}\left(\frac{1-\zeta_{4 q}}{1-\zeta_{4 q}^{p^{-1}} \zeta_{8 q}^{p^{-1}-1}}\right) \\
& =N_{\mathbb{Q}\left(\zeta_{4 q}\right) / \mathbb{Q}\left(\zeta_{4}, \sqrt{-q}\right)}\left(\frac{1-\zeta_{4 q}}{1-\zeta_{4 q}^{p^{-1}}}\right) \cdot N_{\mathbb{Q}\left(\zeta_{8 q}\right) / \mathbb{Q}\left(\zeta_{8}, \sqrt{-q}\right)}\left(\zeta_{8 q}^{p^{-1}-1}\right),
\end{aligned}
$$

where p^{-1} is the inverse of $p(\bmod 8 q)$. Put $\zeta_{8 q}=\zeta_{8}^{x} \zeta_{q}^{y}$. Then we have

$$
N_{\mathbb{Q}\left(\zeta_{8 q}\right) / \mathbb{Q}\left(\zeta_{8}, \sqrt{-q}\right)}\left(\zeta_{8 q}^{p^{-1}-1}\right)=\zeta_{8}^{x\left(p^{-1}-1\right)(q-1) / 2}= \begin{cases}1 & \text { if } p \equiv 1(\bmod 8) \\ -1 & \text { if } p \equiv 5(\bmod 8)\end{cases}
$$

Now we look at $u=N_{\mathbb{Q}\left(\zeta_{4 q}\right) / \mathbb{Q}\left(\zeta_{4}, \sqrt{-q}\right)}\left(\left(1-\zeta_{4 q}\right) /\left(1-\zeta_{4 q}^{p^{-1}}\right)\right)$. We have $\zeta_{4 q}=\zeta_{4}^{x} \zeta_{q}^{2 y}$. If $(p / q)=1$, then the automorphism sending ζ_{q} to $\zeta_{q}^{p^{-1}}$ permutes the elements of $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{4 q}\right) / \mathbb{Q}\left(\zeta_{4}, \sqrt{-q}\right)\right)$, which implies that $u=1$. Suppose that $(p / q)=-1$. We can write u as

$$
u=N_{\mathbb{Q}\left(\zeta_{4 q}\right) / \mathbb{Q}\left(\zeta_{4}, \sqrt{-q)}\right.}\left(\frac{\zeta_{4}^{x}\left(\zeta_{4}^{-x}-\zeta_{q}^{2 y}\right)}{\zeta_{4}^{x}\left(\zeta_{4}^{-x}-\zeta_{q}^{2 y p^{-1}}\right)}\right)=\frac{N_{\mathbb{Q}\left(\zeta_{4 q}\right) / \mathbb{Q}\left(\zeta_{4}, \sqrt{-q}\right)}\left(\zeta_{4}^{-x}-\zeta_{q}^{2 y}\right)}{N_{\mathrm{Q}\left(\zeta_{4 q}\right) / \mathbb{Q}\left(\zeta_{4}, \sqrt{-q)}\right.}\left(\zeta_{4}^{-x}-\zeta_{q}^{2 y p^{-1}}\right)}
$$

Let us denote the numerator by A and the denominator by B. In the equation $\left(X^{q}-1\right) /(X-1)=\prod_{1 \leq i \leq q-1}\left(X-\zeta_{q}^{i}\right)$, we substitute ζ_{4}^{-x} for X to obtain $-\zeta_{4}^{-1}=A B$. Therefore $u=A / B$ cannot be 1 or -1 , for otherwise $B= \pm A$ would imply that $A^{2}= \pm \zeta_{4}$, which is impossible since $A \in \mathbb{Q}\left(\zeta_{4}, \sqrt{-q}\right)$. Therefore

$$
e_{K}^{1+\sigma}= \begin{cases}1 & \text { if } p \equiv 1(\bmod 8) \text { and }\left(\frac{p}{q}\right)=1 \\ -1 & \text { if } p \equiv 5(\bmod 8) \text { and }\left(\frac{p}{q}\right)=1 \\ u & \text { if } p \equiv 1(\bmod 8) \text { and }\left(\frac{p}{q}\right)=-1 \\ -u & \text { if } p \equiv 5(\bmod 8) \text { and }\left(\frac{p}{q}\right)=-1\end{cases}
$$

where $u=-\left(\zeta_{8} A\right)^{2}$ is a unit in $\mathbb{Q}(\sqrt{q})$ different from ± 1.

Next, we compute $e_{K}^{1+\tau}$. Note that $\zeta_{2 n}^{1+J_{2}} \in \mathbb{Q}\left(\zeta_{p}\right)$ since $J_{2} \equiv-1(\bmod 8 q)$. So

$$
\begin{aligned}
e_{K}^{1+\tau} & =N_{K / \mathbb{Q}(\sqrt{p})}\left(e_{K}\right) \\
& =N_{L / Q(\sqrt{p})}\left(\left(1-\zeta_{n}\right) \zeta_{2 n}^{-1}\right)^{1+J_{2}} \\
& \left.=N_{\mathbb{Q}\left(\zeta_{p}\right)^{+} / \mathbb{Q}(\sqrt{p})}\left(\left(N_{F / \mathbb{Q}\left(\zeta_{p}\right)}\right)\left(1-\zeta_{n}\right)\right) \cdot\left(\zeta_{2 n}^{-\left(1+J_{2}\right)(q-1)}\right)\right) \\
& =N_{Q\left(\zeta_{p}\right)^{+} / \mathbb{Q}(\sqrt{p})}\left(\frac{\left(\left(1-\zeta_{p}^{(2 q)^{-1}}\right) /\left(1-\zeta_{p}\right)\right) \zeta_{p}^{\left(1-(2 q)^{-1}\right) / 2}}{\left(\left(\left(1-\zeta_{p}^{2-1}\right) /\left(1-\zeta_{p}\right)\right) \zeta_{p}^{\left(1-2^{-1}\right) / 2}\right)\left(\left(\left(1-\zeta_{p}^{\left.\left.\left.q^{-1}\right) /\left(1-\zeta_{p}\right)\right) \zeta_{p}^{\left(1-q^{-1}\right) / 2}\right)}\right)\right.\right.}\right. \\
& =\frac{\bar{v}_{p}\left(l_{2}+l_{q}\right)}{\bar{v}_{p}\left(l_{2}\right) \bar{v}_{p}\left(l_{q}\right)} \\
& = \begin{cases}-\frac{1}{\bar{v}_{p}(1)^{2}} & \text { if } l_{2} \equiv l_{q} \equiv 1(\bmod 2) \\
1 & \text { otherwise. } .\end{cases}
\end{aligned}
$$

Hence

$$
\mathcal{E}_{k}=e_{K}^{1+\sigma} \cdot e_{K}^{1+\tau} \cdot e_{K}^{-2}= \begin{cases}e_{K}^{-2} & \text { if }\left(\frac{2}{p}\right)=\left(\frac{q}{p}\right)=1 \\ -\left(\zeta_{8} A \cdot e_{K}^{-1}\right)^{2} & \text { if }\left(\frac{2}{p}\right)=1 \text { and }\left(\frac{q}{p}\right)=-1 \\ -e_{K}^{-2} & \text { if }\left(\frac{2}{p}\right)=-1 \text { and }\left(\frac{q}{p}\right)=1 \\ -\left(\zeta_{8} A \cdot \bar{v}_{p}(1)^{-1} \cdot e_{K}^{-1}\right)^{2} & \text { if }\left(\frac{2}{p}\right)=\left(\frac{q}{p}\right)=-1\end{cases}
$$

Note that $e_{K} \in k$ if and only if $e_{K}^{1+\sigma}=e_{K}^{1+\tau}$. And this happens if and only if $(q / p)=$ $(2 / p)=1$.

Theorem 4.1. Let $k=\mathbb{Q}(\sqrt{p q})$ with $p \equiv 1(\bmod 4)$ and $q \equiv 3(\bmod 4)$. Then $N_{k / \mathbb{Q}}\left(\eta_{k}\right)=$ 1, and:
(1) if $(2 / p)=-1$ or $(q / p)=-1$, then $2 \mid h_{k}, 4 \nmid h_{k}$;
(2) if $(2 / p)=(q / p)=1$, then $4 \mid h_{k}$.

Proof. Since $q \equiv 3(\bmod 4), x^{2}-p q y^{2}=-1$ has no integral solution, which implies that $N_{k / \mathbb{Q}}\left(\eta_{k}\right)=1$. We prove the theorem when $(2 / p)=1$ and $(q / p)=-1$. The other cases are similar to this case or to Theorem 3.2. Put $C(k)=\left\langle \pm \mathcal{E}_{k}\right\rangle$. Then $\left[C(k): C_{S}(k)\right]=2$. We have $\mathcal{E}_{k}=-\left(\zeta_{8} A \cdot e_{K}^{-1}\right)^{2}$ in this case. We claim that $\zeta_{8} A \cdot e_{K}^{-1} \notin k$. In fact $\zeta_{8} A \cdot e_{K}^{-1} \notin K$. Suppose, to the contrary, that $\zeta_{8} A \cdot e_{K}^{-1} \in K$. Then $\zeta_{8} A \in K$. So $\zeta_{8} A$ is fixed by $\operatorname{Gal}\left(K\left(\zeta_{8}\right) / K\right)$. Let $\rho \in \operatorname{Gal}\left(K\left(\zeta_{8}\right) / K\right)$ be such that $\rho\left(\zeta_{8}\right)=\zeta_{8}^{5}$ over K. Then $\rho\left(\zeta_{4}\right)=\zeta_{4}$ and $\rho(\sqrt{-q})=\sqrt{-q}$. So $\rho(A)=A$. But $\rho\left(\zeta_{8} A\right)=\zeta_{8}^{5} A \neq \zeta_{8} A$. Hence $\zeta_{8} A \cdot e_{K}^{-1} \notin K$. Therefore $2 \nmid[E(k): C(k)]$, for otherwise, $\eta_{k}^{2 m}= \pm \mathcal{E}_{k}$ would give $\eta_{k}^{m}= \pm \zeta_{8} A \cdot e_{K}^{-1}$ or $\pm \zeta_{4} \zeta_{8} A \cdot e_{K}^{-1}$, both of which are impossible.

Remark 4.2. In case (2) of this theorem, h_{k} can be a multiple of 8 . For example, $h_{k}=4$ when $k=\mathbb{Q}(\sqrt{17 \cdot 19})$, while $h_{k}=8$ when $k=\mathbb{Q}(\sqrt{17 \cdot 47})$.

Remark 4.3. Let $C_{k}(2)$ be the Sylow 2 -subgroup of the ideal class group C_{k} of $k=\mathbb{Q}(\sqrt{p q})$. Then $C_{k}(2)$ is a cyclic group.

Proof. Let $G=\operatorname{Gal}(k / \mathbb{Q})$ and \widehat{H}^{i} be the i th Tate cohomology group. Then we have an exact sequence

$$
0 \longrightarrow \widehat{H}^{-1}(G, E(k)) \longrightarrow I_{k}^{G} / P_{\mathbb{Q}} \longrightarrow C_{k}^{G} \longrightarrow \operatorname{ker}\left(\widehat{H}^{0}(G, E(k)) \rightarrow \widehat{H}^{0}\left(G, k^{\times}\right)\right) \longrightarrow 0
$$

where I_{k} is the ideal group of k, and $P_{\mathbb{Q}}$ is the principal ideal group of \mathbb{Q}, which of course equals $I_{\mathbb{Q}}$. Thus $I_{k}^{G} / P_{\mathbb{Q}} \simeq(\mathbb{Z} / 2 \mathbb{Z})^{r}$, where r is the number of ramified primes of \mathbb{Q} in k. If $N_{k / \mathbb{Q}}\left(\eta_{k}\right)=-1$, then $\widehat{H}^{0}(G, E(k))=0$ and $\widehat{H}^{-1}(G, E(k)) \simeq \mathbb{Z} / 2 \mathbb{Z}$. Thus the above sequence gives

$$
0 \longrightarrow \mathbb{Z} / 2 \mathbb{Z} \longrightarrow(\mathbb{Z} / 2 \mathbb{Z})^{2} \longrightarrow C_{k}^{G} \longrightarrow 0
$$

Hence $C_{k}^{G} \simeq \mathbb{Z} / 2 \mathbb{Z}$.
Suppose that $N_{k / Q}\left(\eta_{k}\right)=1$. Then $\widehat{H}^{0}(G, E(k)) \simeq \mathbb{Z} / 2 \mathbb{Z}$ and $\widehat{H}^{-1}(G, E(k)) \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2}$. So

$$
0 \longrightarrow(\mathbb{Z} / 2 \mathbb{Z})^{2} \longrightarrow(\mathbb{Z} / 2 \mathbb{Z})^{r} \longrightarrow C_{k}^{G} \longrightarrow \operatorname{ker}\left(\widehat{H}^{0}(G, E(k)) \rightarrow \widehat{H}^{0}\left(G, k^{\times}\right)\right) \longrightarrow 0
$$

If $r=2$, then C_{k}^{G} is either trivial or isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$. If $r=3$, then

$$
0 \longrightarrow \mathbb{Z} / 2 \mathbb{Z} \longrightarrow C_{k}^{G} \longrightarrow \operatorname{ker}\left(\widehat{H}^{0}(G, E(k)) \rightarrow \widehat{H}^{0}\left(G, k^{\times}\right)\right) \longrightarrow 0
$$

Note that if $r=3$, then we are in the situation $p \equiv 1(\bmod 4)$ and $q \equiv 3(\bmod 4)$. In this case, the generator -1 of $\widehat{H}^{0}(G, E(k))$ cannot be a norm from k to \mathbb{Q} since $x^{2}-p q y^{2}=-z^{2}$ does not have an integral solution. Thus $\widehat{H}^{0}(G, E(k)) \rightarrow \widehat{H}^{0}\left(G, k^{\times}\right)$is an injection. Hence $C_{k}^{G} \simeq \mathbb{Z} / 2 \mathbb{Z}$.

Note that $C_{k}^{G}=\left\{c \in C_{k} \mid c^{2}=1\right\}$ since $N_{k / \mathbb{Q}}(c)=1$ for every $c \in C_{k}$. Hence C_{k}^{G} consists of elements of order two in $C_{k}(2)$. Therefore $C_{k}(2)$ must be a cyclic group since C_{k}^{G} is either trivial or $\mathbb{Z} / 2 \mathbb{Z}$.

References

[1] E. Brown, 'The class number and fundamental units of $\mathbb{Q}(\sqrt{2 q})$, for $p \equiv 1(\bmod) 16$ a prime', J. Number Theory 16 (1983), 95-99.
[2] P. E. Conner and J. Hurrelbrink, Class Number Parity, Series in Pure Mathematics, 8 (World Science, Singapore, 1988).
[3] K. Dohmae, 'On bases of groups of circular units of some imaginary abelian number fields', J. Number Theory 61 (1996), 343-364.
[4] K. Dohmae, 'A note on Sinnott's index formula', Acta Arith. 82(1) (1997), 57-67.
[5] M. Hirabayashi and K. Yoshino, 'Remarks on unit indices of imaginary abelian fields', Manuscripta Math. 60 (1988), 423-436.
[6] J. Kim and J. Ryu, 'Construction of a certain circular unit and its applications', J. Number Theory 131(4) (2011), 737-744.
[7] R. Kučera, 'On the parity of the class number of a biquadratic field', J. Number Theory $\mathbf{5 2}$ (1995), 43-52.
[8] W. Sinnott, 'On the Stickelberger ideal and the circular units of an abelian field', Invent. Math. 62 (1980), 181-234.

JAE MOON KIM, Department of Mathematics, Inha University, Incheon 402-751, Korea
e-mail: jmkim@inha.ac.kr
JADO RYU, Department of Mathematics, Inha University, Incheon 402-751, Korea e-mail: jdryu@inha.ac.kr

[^0]: This work was supported by INHA UNIVERSITY Research Grant.
 (C) 2012 Australian Mathematical Publishing Association Inc. 0004-9727/2012 \$16.00

