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UNIFICATION IN VARIETIES OF GROUPS: 
NILPOTENT VARIETIES 

MICHAEL H. ALBERT AND JOHN LAWRENCE 

ABSTRACT. In this paper we show that any system of equations over a free nilpotent 
group of class c is either unitary or miliary. In fact, such a system either has a most 
general solution (akin to the most general solution of a system of linear dipohantine 
equations), or every solution has a proper generalization. In principle we provide an 
algorithm for determining whether or not a most general solution exists, and exhibiting 
it if it does. 

1. Introduction. The process of solving equations is central to much of algebra. 
In a general setting, there are two questions to answer when presented with an equation: 
"Does a solution exist?", and "If so, what is the most general form of a solution?". In this 
paper we address these questions in the context of nilpotent groups. Before we begin, a 
discussion of the exact meaning of the second question is in order. 

We work in a variety V (of groups—though the following remarks can be applied in 
a more general context.) A system £ of equations in the variables x = x\,X2, • •. ,xn is a 
finite set of elements of the form: 

t(x) = 1 

where ris a term in the language of groups, and 1 denotes the identity element. A solu
tion of £ in a group G G V is a sequence of elements a = a\ia2,...,an from G such 
that f(a) = l G for each element of X. Another way to put this is that if Fy(x) is the rela
tively free group in V with generators x, then a solution of £ is a homomorphism r from 
Fy(x) to G whose kernel contains each of the terms t which appear on the left hand side 
of the equations in £. The group in which we search for solutions will be the countably 
generated relatively free group of V—which we will generally denote F. Although for
mally solutions are homomorphisms, we will often make an informal statement of the 
type "x = a is a solution" by which we mean "the homomorphism a which sends X[ to ai 
for each / is a solution". Although it is not critical, we assume that each of the variables 
in x actually appears in some equation in £ (if this is not the case, any extra variables are 
"free" and play no role in the search for most general solutions.) 

Notice that the equations we consider do not contain any parameters from the group 
in which we will be solving them. In particular the sequence all of whose elements are 
the identity will always be a solution to any system of equations, so the existence of a 
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1136 M. H. ALBERT AND J. LAWRENCE 

solution is never in doubt. See the remarks at the end of this section for a brief discussion 
of what is known if parameters are allowed. 

Given two solutions n and TI of Z we say that T\ is at least as general as TI, and 
write r\ < T2 if there is an endomorphism a: F^ —> F^ such that ar\ = T2. Clearly < 
is a transitive and reflexive relation; however it need not be anti-symmetric. There is a 
naturally associated equivalence relation ~ defined by: 

a ~T<=$> a <r and r < a 

and a partial order on the equivalence classes of this relation which is induced by <. 
This définition of generalization is one which has been arrived at in the study of res

olution methods of theorem proving, and term rewriting systems (where "solving equa
tions" goes by the name of "unification".) It corresponds to the natural understanding of 
generalization as the following simple example illustrates: 

Consider the single equation 

2x + 3 y + 6z = 0 

in the variety of abelain groups. One solution is given by: 

x = 0, y = 2a, z = —a 

for any generator a of the free abelian group. Another solution is given by: 

x = 3b, y = —2b + 2c, z = —c, 

for generators b and c. It is clear that the second solution is more general than the first, 
and this is witnessed by any endomorphism which maps b to 0 and c to a. In fact the 
second solution is a most general solution to the equation: it is at least as general as any 
solution to the equation (for any other solution x = s, y = t, z = u, an endomorphism 
which sends c to — u and b to —t—2u establishes this.) In fact, any system of equations in 
the variety of abelian groups has such a most general solution—which amounts to a gen
eral solution of the same system viewed as homogeneous linear diophantine equations. 
Simple Gaussian elimination (avoiding fractions) can be used to find such solutions but 
may lead to a "blow up" in the size of coefficients at intermediate points in the calcu
lation. This problem can be avoided and polynomial time algorithms for solving such 
systems are known; see for example [3] and [2]. 

The generalization relation need not always behave so nicely. For example consider 
the equation: 

xyx~ly~l = 1 

in the variety of all groups. It is known that all solutions to this equation in a free group 
are of the form: 

* = /", y = r 

for some t and integers n and m. Any solution is generalized by one in which t is a 
generator and n and m are relatively prime. Among these more general solutions none 
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has any strict generalization, but any two such solutions which differ in the exponents 
(by anything other than a sign change) are incomparable. Therefore, this single equation 
has an infinite set of most general solutions. 

In the variety of all groups it can be shown using the Nielsen-Schreier theorem, and 
the fact that free groups of finite rank are Hopfian, that any system of equations has a 
set of most general solutions. The argument is quite straightforward. Given a solution a, 
we call the rank of the image of a (as a free group), the rank of a. We can certainly find 
0 < a such that 0 has the same rank as a and the image of/? is a free factor of F (just by 
considering a as a map onto its range, and taking an isomorphism from the range of a to 
a free factor of F.) Call a solution whose range is a free factor of F, "good". If 0\ < 02 
and both 0\ and 02 are good solutions then the rank of 0\ must be greater than or equal 
to the rank of 02- Also, if the ranks are equal the two solutions are equivalent. Since the 
rank of a solution is at most the number of variables in the set of equations, this shows 
that among the good solutions there is a set of most general solutions, and every solution 
is generalized by one of these. 

Let us make our terminology a little more precise. A most general solution a of X is 
one which has no proper generalization (i.e. if r < a then a < r). We say that £ is unitary 
if there is a single most general solution which generalizes every solution (this solution 
need not be unique); finitary if there are finitely many most general solutions, such that 
every solution is generalized by at least one of them; infinitary if there is an infinite 
family of most general solutions of this type; and nullary if none of the preceding cases 
occurs, which means that there is at least one solution which is not generalized by any 
most general solution. In terms of the partial order obtained from < above, X is unitary 
if the order has a smallest element, finitary (infinitary) if the set of minimal elements is 
finite (infinite) and every element lies above a minimal element, and nullary if there is 
some element which does does not lie above a minimal element. 

We will see that for each c > 1 every system of equations in the variety of all nilpotent 
groups of class c is either unitary of nullary. In fact, if a system is nullary, then we will 
prove that every solution has a strict generalization. The proof will implicitly specify 
an algorithm which either finds the most general solution to a system of equations, or 
establishes that no such solution exists. The algorithm can be made polynomial, and in 
fact quite practical, at least for small values of c (we give some examples for the case 
c = 2.) 

If systems of equations which contain parameters from the free nilpotent group are 
allowed, then the situation is much more complex. First of all of course there is no longer 
a guarantee that any solution will exist. In [8] it is shown that the unification problem in 
the free nilpotent group of class c > 9 is undecidable. Subsequently [7] and [1] lowered 
this to c > 5, and very recently, [9] to c > 3. It seems likely that for c = 2 the unification 
problem is decidable. However, it must be stressed that in all these results, the presence 
of parameters in the equations is critical. 

We hope that this paper will be accessible to a wide audience, and so we have at
tempted to make it as self-contained as possible. In particular Section 2.1 contains a 
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great deal of basic material. There is no doubt that an acquaintance with the material on 
nilpotent groups which can be found in [6] would be of more than a little value. The re
sults and definitions which we require from this reference are collected at the beginning 
of the next section. 

2. Results. 
2.1 Preliminaries. The language of groups contains symbols for multiplication, inverse, 
and the identity element (which we denote 1). To this language we add the commutator 
bracket: 

[a,b]=a~lb-lab 

and the "left-normed commutators of weight c + 1" defined inductively by: 

[*1,X2,.. -,Xc+\] = [[*1,*2>- • . ,Xc],JCc+i J. 

A group G is said to be nilpotent of class c (c > 1) if for all g\, gi,..., gc+\ £ G, 

[gi ,g 2 , . . . ,gc+i] = 1. 

So the groups which are nilpotent of class 1 are just abelian groups. 
For any c, the nilpotent groups of class c form a variety of groups denoted 5\£, i.e. a 

class of groups closed under the formation of subgroups, quotient groups, and Cartesian 
products. In 9^ (more generally in any variety), there exists, for every set X, a free group 
F(X) generated by X, with the following universal mapping property: 

for every G G 9^ and every function / : X —* G there is a group homo-
morphism/: F(X) —• G which extends/. 

Given a free group F in a variety, any subset X of F which generates F and has the above 
universal mapping property is referred to as a free generating set of F. 

When we speak of "the" free group in a variety we will mean a countably gener
ated free group on an unspecified generating set (from which we will occasionally pull 
elements.) 

The center of a free group of fA£ is the group generated by all commutators of weight 
c. This group is free abelian, and if the generating set is linearly ordered, has a basis 
consisting of all the basic weight c commutators. It is not absolutely essential to know 
what a basic commutator is, but the curious reader should consult [6] p. 79. By "general 
nonsense" the quotient of a free group of J\£ by its commutator subgroup is also a free 
abelian group, generated by the images of the generators of the original group. 

The following specializes Theorem 42.31 of [6] to the situation at hand. 

PROPOSITION 1. Let Abe a subset of a free group F in 3\£. If the image of A under 
the natural homomorphismfrom F to F/Ff is independent and generates a direct factor 
ofFJF1 then A can be extended to a free generating set ofF. 

Finally we need the following fact, related to results of J. Lawrence in [4] whose proof 
we defer until Section 2.4. 
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LEMMA 2. Let F be the free group in 9\[Q, let r be a positive integer, and let p be a 
prime which is not a divisor of r. Then for all positive integers k there exists a positive 
integer <j>{k) such that, for any M > <f>(k), and any subset {w,; : 1 < / < M, 1 <j<c} 
ofcM distinct elements of a free generating set the equation: 

k ,M y 

zp n [•*/•> »•] = ( n ["/I > w < 2 , . . . , uic] ) 
;=1 \=1 ' 

has no solution in F. 

2.2 Unification in nilpotent class c groups. Let Z be any finite set of group equations. 
First consider a most general solution v to this system in the variety of abelian groups 
which uses the smallest possible number of free parameters 

Z = Z i , Z 2 , . . . , Z * . 

In particular k is the dimension (over Q) of the null space of the matrix associated to X, 
and we will call this the dimension of E. Moreover, there are terms t\, ^ , . . . , h such that 
if 

b = bub2,...,bn 

is any solution to Z in a torsion free abelian group then: 

bi = wi(tl(b)j2(b\...,tk(b)). 

So we may write: 

j/(Xi) = W/(Z) 

tj(v(x)) = Zj. 

For illustrative purposes, consider the example in the introduction (variable names 
changed for consistency): 

2x\ + 3*2 + 6x3 = 0. 

Here we may take: 

i/(x\) = 3zi, i/(x2) = -2z\ + 2z2, l/fa) = -zi 

and 

t\ (X\, X2, X3) = X\ + X2 + 2X3, t2(X\, X2, X3) = -X3. 

Fix X, the w/ and the tj for the remainder of this section. Now consider X in the variety 5\£. 
Suppose that a is a solution to X in 3\£. We will let aab be the corresponding solution 
in the variety of abelian groups, obtained by factoring the composition of a with the 
projection from F to F/F' through Fn/F'n. 
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PROPOSITION 3. If IL has a solution a in 9^ such that aat, is a most general solution 
in the variety ofabelian groups, then a generalizes every solution in 5\£. 

PROOF. The proof is by induction on the nilpotency class c. The result is of course 
trivial in the case that c = 1. So assume that c > 1 and that the result holds for all smaller 
nilpotency classes. 

We suppose that aab is the solution v discussed above. The image of a modulo F' 
is a free abelian group of rank k which is a direct summand of F/Ff. Now using Theo
rem 42.35 of [6] it follows that the elements: 

tl(a(xj),t2(oc(x)),...Jk(a(xj) 

can be identified with a subset of the free generating set of F. 
Let /3 be any other solution of X in fA£. We must show that a < /?. Let â and J3 be the 

corresponding solutions in fA -̂i i.e.: 

à:Fn/Z(Fn)-+F/Z(F) 

is such that an = 7ra, where n represents the projection from a group G to G/Z(G). 
By the inductive hypothesis there exists 8: F/Z(F) —> F/Z(F) such that 

M = $. 

Choose any 8: F —> F such that the corresponding map is 6. It need not be the case that 
6a = /3. However, 

/?(*,-) = ea(Xi)Ci 

where Q E Z(F) for I < i < n. Since both 8a and f3 are solutions of X, and the C, are 
central, an easy computation establishes that r where 

r(xi) — C[ 1 <i <n 

is also a solution of E, and since aab is a most general solution for abelian groups, we 
may choose ip: F —> F whose range is contained in Z(F) such that: 

ipa(xi) = Ct. 

But now we define the homomorphism 7 from F to F on the generators z by: 

7fe) = 6{z)m 

then 
7(w(z)) = 0(w(z))i/>(w(z)) 

for any term w (since the range of ip is contained in the center of F), and hence: 

7a = /3. 

So a is indeed a most general solution. • 
What happens in the case where X does not have a solution a such that aab is as 

general as possible? 
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PROPOSITION 4. Let a be a solution of^in9{c{c>\) such that aab is not a most 
general general abelian solution. Then a has a proper generalization. 

PROOF. Let 

at = a(xi). 

From the most general abelian solution to X we see that: 

at = Wi(b)Q 

bj = tj(a) and C, € F'. However, it cannot be the case that b freely generates a direct 
summand of F JF' since aab is not most general abelian. So without loss of generality, 
there exists an integer r > 0, a primep not dividing r, integers À2, A3,... , A*, and C € F' 
such that: 

b\ = b%b\' • • • b\kVPC. 

Here we use the fact that if a sequence d in a free abelian group does not generate a 
direct summand then there must be a prime p and some integer combination of d whose 
coefficients are not all multiples of/? but whose value is a multiple of p. 

But now we consider a new sequence of elements: 

m 

c\ = b\ nty«+i»3;c5+2> • • • ,yCs+c-\\ 

Cj = bj (2<j<k) 

where the y are free generators which do not occur in any of b, nor in D nor C. Then 

a\ — w/(c)C/ for 1 < / < n 

is still a solution to Z, with corresponding homomorphism od. Moreover: 

Cj = tj(*'). 

This solution a' is at least as general as a since we may obtain a from it by mapping all 
the v-generators to 1. However, any homomorphism r which sent at to a • for 1 < / < n 
would send bj to q for 1 <j <k since Cj = //(a7) and bj = /,(a). In particular we would 
have: 

cr
l=42c^'"CX

k
kr(Dfr(Q. 

Hence: 
m 

Il\ycs+uycs+2,.. • ,yCs+c-iY = CT1D-PT(DYT(C). 
s=0 

This last equation can be rewritten as: 

m t 

n \ycs+\ » y«+2,.. •, yc,+c-i ]
r = 2? I IK» y ; ] 

where 
Z,Xi, X2,..., Xr, Fi, Y2» • • • > Fir-
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are certain elements of F, and most importantly, t is independent of m. In fact we can 
manage with 

t = p + 1 + 2 (number of commutators in C). 

But by Lemma 2 if m is chosen sufficiently large, no such elements exist, and hence a' 
is strictly more general than a. • 

These two propositions give: 

THEOREM 5. Let I, be a set of equation over fA£. If there is a solution to X in fA£ 
which induces a most general abelian solution to X (via the quotient by Fr) then Z is 
unitary. Otherwise Z is nullary, and in fact every solution has a proper generalization. 

2.3 Examples. We consider here a few examples which we hope will help to clear up 
the details in the proofs above. As a first example consider the equation: 

(1) [x,y] = 1 

in 5\£. As usual F denotes the countably generated free group in this variety. The "abelian-
ized" version of this equation is: 

0;c + 0y = 0 

and accordingly has dimension 2. We take the terms 

t\ (X\, X2) = JCi t2(X\, # 2 ) = X2 

W\ (X\, X2) = X\ W2(X), X2) = X2. 

However it is impossible for any solution to equation (1) in 5\£ to generate a free group 
of rank 2, so according to the theorem above every solution to this equation must have a 
proper generalization. Generically a solution a will look like: 

a(x) = akCi a(y) = alC2 

for some element a E F integers k and /, and elements C\ and C2 of F'. Clearly we may 
assume that the greatest common divisor oik and / is 1, and that k ^ 0. In the notation 
of the proof, we have b\ = akC\, b2 = alC2 and so: 

b\ = b\C 

where 

C = &2C-{1. 

Then we define a new solution 

a\x) = akm[z2s,z2s+i])cl a'(y) = alC2 
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which will be strictly more general than a provided that M is chosen sufficiently large 
(and the z's are generators of F not occuring in a, C\ or C2.) For if ra = od then: 

T(b[)=T(bk
2}r(C) 

f M v / 

K l f e ^ + i l C ! =(alC2)
kr(Q 

v 5=0 J 

M 

U[Z2s,Z2s+l]l = C-lT(Q. 
s=0 

But the right hand side of the last equation is the product of a number of commutators 
which is independent of M, and this equation cannot be satisfied for M sufficiently large. 

Now for an example where/? actually plays a role, consider the equation: 

x2y2z~2 = 1 

again in fAé- The abelian version has dimension two, and we can take: 

w\(b\,b2) = bu w2(bub2) = b2, wi(b\,b2) = b\b2 

and 

fl(*l,*2,*3) =*1> f2(*l,*2,*3) =X2-

Now suppose we have a solution 01, a2j #3. With bi = a\, b2 = a2 we see that: 

«3 = Z?iZ?2C3 

for some C3 E F7. Substituting in the given equation we get: 

b\b\(bxb2y
2C\ = 1 

which simplifies to: 
[bub2r

3C2 = l. 

Again this implies that b\ and b2 cannot freely generate a direct summand of F JF' and 
without loss of generality: 

b\ = bl
2D

2C 

for some odd integer k, D G F and C E Fr. 
Now define a new solution: 

M 

a'(x) = fci nb2s,Z2s+i] 

oc'iy) = b2 
M 

a'{z) = bib2C3 Y[[z2s,Z2s+\l 
s=0 
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Again it is clear that a' < a, and if TO. = a! then: 

T(b\) = T(bl
2)T(D2Q 

m^Z2s+i]) =bl
2r(D2Q 

s=0 J 

( I t o ^ a + i ] ) =C-1D-2T(D2C). 

\=o J 

The right hand side is the product of a perfect square and a number of commutators which 
is independent of M and the exponent k on the left hand side is odd, so for M sufficiently 
large, this equation has no solution and hence af is strictly more general than a. 

Finally consider the equation 
xVz~5 = 1. 

A most general abelian solution is: 

x = a3b 

y = a~2b 

z = b. 

When we compute x2y3z~5 formally in fA£ taking a and b as generators we get: 

x2y\~5 = (a3b)\a-2b)2b-5 = [b,a]~15 

so we can form a solution in 5\£ by taking: 

x = a3b y = a~2b z = b[b,a]3. 

By the theorem above, since the abelianization of this solution is a most general abelian 
solution, this is a most general solution in 9^. 

2.4 An important technical lemma. This section is devoted to the proof of Lemma 2 
which we restate here for convenience: 

LEMMA. For all positive integers k, non-zero integers r and primes p which do not 
divide r, there is a positive integer (j>(k) such that, for any M > </>(&), the equation: 

k ,M y 

zp n [*/' » ' ] = ( n tM«i > w*'2> • • • » uic\ ) 
7=1 \ = 1 J 

has no solution in any free group in 3\£ in which {uu : 1 < / < M, 1 < I < c} is a subset 
of cM elements of a free generating set 

PROOF. The proof is similar to the argument in [4]. We first construct a finite group 
Hc which is a nilpotent class c /7-group, generated by a sequence a\, a2,..., ac, such that 
[a\, #2, • • • » ac\ is n°t a/7-th power. Then we exhibit a homomorphism from the free group 

https://doi.org/10.4153/CJM-1994-064-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-064-8


NILPOTENT GROUPS 1145 

in fA£ to Hc which sends the left hand side of the equation above to [a\, <22,..., ac\ while 
sending each of the commutators on the right to 1. 

Consider the Zp2-algebra generated by x\,X2,...,xc with the following relations: 
1. Any monomial containing more than one occurrence of any variable is 0, 
2. X(Xj = XjXi for all ij 6 {2,3 , . . . , c}. 

Observe that in this algebra, if M is a sum of monomials of degree at least one then: 

Mc+l = 0 

since any monomial in Mc+l contains a repeated variable. 
Let Gc be the group of units of this algebra of the form 1 + M where M is a sum of 

monomials of degree at least 1. The group Gc is a /7-group since for any such monomial 
M, if n is such that 

^is,d™sorof(";),("2") (<;) 
then: 

(\+Mf = l + é ( P . )Mj = 1. 

If M and TV are such sums which in addition are homogeneous (of degree 0 or 1) in each 
variable, then (1 — M)_1 = 1 + M and (1 — N)~l = I +N and furthermore: 

(2) [1-M,1 -N] = l+MN-NM. 

Note that MN — NM is also homogeneous in each variable. 
Let: 

ai = \—X[ so a~x = 1 +xi 

and let Hc be the multiplicative subgroup of Gc by a 1,̂ 2» • • • »0C. F° r each u E Hc, 
ua\u~x contains x\ in each of its non-constant monomials, and hence commutes with 
a\ = 1 + x\. Therefore the normal closure A\ of {a\} in Hc is abelian. Certainly the 
subgroup generated by «2»a^ • • • » ac is also abelian since Xj and Xj commute for ij > 1. 

It is clear that: 
[a\,a2,...,ac] ^ 1 

since from (2) it will equal 

i+ E (-i)w(n«,Wn4 
XC{2,3,...,n} V€X / \pt ' 

On the other hand, any commutator of a\, ai,... ,ac of weight greater than c contains a 
repeated symbol, hence is equal to 1. Thus Hc is nilpotent of class c. It remains to show 
that [a\, #2» • • • > CLC] is not a/7-th power. 

Suppose otherwise, namely that for some M which is sum of monomials all of degree 
at least 1 : 

( l+M)P = [fli ,02,. . . ,0c]. 
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We first claim that M contains a monomial of degree less than c whose coefficient is not 
a multiple of p. Otherwise, M = pN + Y where N is a sum of monomials of degree at 
least one, and Y is sum of monomials of degree c, and: 

(pN + Y)2 = p2N2 +pNY + pYN + Y2 = 0. 

Hence: 
(1+pN+Yf = l+p(pN+Y)= 1+pY. 

But none of the coefficients of [a\, ai,..., ac] are multiples of/? so this is not possible. 
So choose a monomial m from M of smallest degree whose coefficient is not a multiple 

of p. Thus: 
M = pA + m + B 

for some A which is a sum of monomials of degree at least one, and B which is a sum of 
monomials not including m whose degree is at least as great as the degree of m. Then: 

(1 +pA + m + Bf = 1 +p(pA + m + B)+ terms of higher degree than m 

= 1 +/?(m + B) + terms of higher degree than m, 

and this cannot equal [a\, #2,. • •, ac] since it contains a monomial of degree less than c. 
Let A be the c-generated relatively free group in the variety generated by Hc (and fix 

generators b\,b2,...,bc of A). Since Hc is finite, so is A (in general the relatively free 
group on finitely many generators in the variety generated by a finite group are finite, 
but in this case we may also note that A is a finitely generated nilpotent group of finite 
exponent.) Let N = | A|. Since Hc is generated by c elements, it is a homomorphic image 
of A. 

Returning finally to our equation: 

^ n [•*/•> yj\ = ( n ["a » MI2» . •. > uic\ ) • 
7=1 V = 1 ' 

k ,M y 
^nip./ ' tf/ ' ] = ( n t ^ i ' ^ 2 , ...,M/c]) » 

1=1 V = i ^ 

n^.»] = (m 
7=1 \ = 1 

Suppose that M > N2k+l. If we have a solution to this equation in the free group of 9^: 

k ,M 

n>.*] = (ni 
7=1 S'=l 

then we may assume thatp\,pi,. ..,Pk and q\,#2> • • • , ^ are contained in the subgroup 
generated by 

{w,7 : 1 < i < M, 1 < / < c}. 

This subgroup is of course also free on this set of generators. Consider the homomor-
phisms from this group to A determined as follows: 

\bj if s = i 
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Now define a map X/J: {1,2, . . . , M} —> A2* by: 

# ' ) = («/(Pi), Oifa),...,ft(Pife),fl/(?i),0/fe), • • •, 0,<ft)) for 1 < i < M. 

Since M > N2k+l and TV = |A| there exist Af distinct elements / of {1,2, . . . ,M} for 
which the values xjj(i) are all the same. Since the maps 0, can be permuted by permuting 
our generating set, we may for convenience assume that: 

V>(i) = V(2) = .-- = V(A0. 

Since A is free in the variety generated by Hc and b\, 62, • • •, bc is a sequence of free 
generators for A, for any c-tuple Jc, and for each 1 <j<k: 

Pj(î,..., r,x, f,..., r,...) = p/O,.. . , 1, r, r,. . . ,*,.. .) 
qjih..., r, x, r,.. . , r,...) = qj(h..., r, r, r, . . . , x,...) 

(where Î denotes a c-tuple of l's) provided that both occurrences of Jc are in the first N 
blocks. 

Now consider the homomorphism 7 from the free group in fA£ to Hc defined by: 

(at for 1 < 1 < W, 2 < / < c 
un 1—• I a\ for/ = 1,/ = 1 

11 otherwise. 
Let â = a\, «2» • • • > #o and a = 1, ai,..., ac. Then for 1 <j<k: 

N 

Pj(â,â,...,â,l,"., 1) = p;-(â, 1, . . . , 1,1,...,1)N = 1. 

The first equality follows from the relations above, and the fact that the subgroup of Hc 

generated by ai,... ,an is abelian. The second comes from the fact that N = | A| and Hc 

is a homomorphic image of A. The same calculation yields: 
N 

qj(â,â,.. . ,<3,1,..., 1) = 1. 

Hence, for 1 <j<k9 

N-\ 

~f(Pj) =p7<fl,fl,â,...,â, 1,...,1) GAi 
/V- l 

^(%) = qj(a,â,â,...,â, 1, . . . , 1) e Ai 

since â = â (mod Ai). But since A1 is abelian, this implies that: 

7 

while 

v 7=1 J 

l(j\[uiuUi2,...,uic]J J =[ai ,f l2 , . . . ,ac] r 
, Af 

71 ' 
V I = 1 

which is not a p-th power by the above (recall that p is not a divisor of r.) This contra
diction concludes the proof. • 
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3. Conclusion. We have seen that there is a close connection between solving sys
tems of equations without parameters in nilpotent groups and doing so in abelian groups. 
Similar methods can be used to show that some systems of equations in other varieties of 
groups (particularly those which are generated by a finite group) are also nullary. In fact, 
the proof in this paper applies to any variety of groups which is nilpotent, contains the 
groups Hc used in the technical lemma for each prime p, and such that each free group is 
residually a finite p-group for each/?. A particular variety of this type is the intersection 
of the variety of metabelian groups and f7\£. In fact, the authors have shown that any 
nilpotent non-abelian variety has a nullary system of equations. However, a complete 
classification of systems of equations in an arbitrary variety of groups would seem to be 
very difficult. 

QUESTION 1. Can systems of equations in solvable groups, in particular in 
metabelian groups, be classified as above? 

QUESTION 2. Can the unification type of the variety generated by a finite group G 
be determined? 

The second author has proven that systems of equations over the absolutely free group 
are either infinitary or unitary, with the latter occuring only when there exists a solution 
in the free group whose rank {i.e. the rank of the free group generated by the solution) 
equals the rank of the corresponding abelian system. In particular this implies the well 
known result that if in the free group F: 

a2b2 = c\ 

then a, b, and c commute. For if not, they would generate a free group of rank 2 which 
would induce by the natural quotient map a most general solution to this system in 5\£, 
and we have seen that no such solution exists. In a similar way many of the results in 
Chapter 1 Section 6 of [5] can be proven. The authors hope to explore these ideas in a 
future paper. 

The authors would like to thank J. K. Truss for pointing us towards the literature 
concerning unification for sets of equations with parameters in nilpotent groups. 
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