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Viva ‘Vis-viva’

JOHN D. MAHONY

Introduction
Long live the vis-viva equation.  There is sometimes more than one way

of telling a story with the same ending, and this is particularly true in the
field of applied mathematics where there are often different ways of
obtaining the same result to a given problem, so that what might be lost or
not appreciated in one approach can be found and appreciated in another.  It
is the purpose here to illustrate this by presenting a well-known example
drawn from the field of orbital dynamics, namely the development of what
is called the Vis-viva equation.  This equation is simply an expression
relating the square of the velocity of an orbiting object, for example a planet
orbiting a sun, to orbit parameters and scientific constants.  It is a standard
workhorse equation that is used extensively today by orbit control
specialists wishing to determine and affect velocities of spacecraft orbiting
significantly larger masses, and it was developed from work carried out
centuries ago by Gottfried Leibniz (1646 – 1716).  The first story will
simply acknowledge the equation and how it arose.  The second story will
present an alternative approach based on calculus, trigonometry, algebra and
computations set against the backdrop of an ellipse geometry.  This second
story leads to the vis-viva equation in disguise, so to speak, and examples of
the speeds of two planets, Earth and Mercury, orbiting the Sun will be
discussed.  Where relevant, the nomenclature of orbit dynamics will be
acknowledged.  The discussion will involve primarily a planet's orbit
velocity of translation and detailed considerations will not be given to
effects due to its speed of rotation.

The first story
The vis-viva equation arose from considerations of energy conservation

and Kepler's laws of planetary motion.  Googling the words ‘vis-viva
equation’ will produce a raft of connections to the subject in addition to
YouTube videos of lectures on the topic.  It is

V2 =
GM

a ( 2
ρs

− 1) , (1)

where  denotes the orbit velocity in metres per second ( .  The
parameter  (‘big G’) is a universal gravitational constant and  is the mass
of the Sun.  Values for them can be found on internet web sites such as
Wikipedia.  The parameter  (in metres) is the length of the semi-major axis
of the elliptical orbit and  is the normalised length of the radius vector
from the Sun to the orbit point of interest; it is normalised with respect to the
length .  If the length is stated in kilometres, its magnitude in (1) must be
multiplied by 1000. With respect to values for the parameters  and ,
there is a consensus about the former which indicates that

V m/s)
G M

a
ρs

a
M G
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 kg.  However, the value recommended by NIST (USA:
National Institute of Standards and Technology) for the latter seems to vary
in time, for example, from between about  (1973)
and  (2018) [1].  Whatever the improving status
about its true value, due perhaps to an increase in sophistication of
measurement set-ups to determine it, experimentalists will doubtless
continue with efforts to further refine its status.  A value for the parameter
in (1) can be found from perihelion and aphelion data shown in a Table
later.  It is .  For a circular orbit,  in (1) and
then reduces to the form .  With the above higher value for the
universal gravitational constant and with values for the mass of the Sun and
the said radius, it follows that .  If instead, the lower value
for  is assumed, a value for  of  is obtained.  This is the value
for the mean orbital velocity cited in [1].  The issue of determining an
appropriate value for big  will be raised again later.  The product  is
sometimes denoted by the single parameter , known as the ‘standard
gravitational parameter’, not to be confused with its later notational use
here.

M = 1.9885 × 1030

6.672 × 10−11 Nm2/ kg2

6.6743 × 10−11 Nm2/ kg2

a

1.495975 × 1011 m ρs = 1 V
GM / a

V = 29.79 km/s
G V 29.78 km/s

G GM
μ

If eccentricity effects are to be considered, so that the orbit is not
circular, the parameter  in (1) will vary with orbit position.  Such matters
will be considered hereunder to determine a representative description of a
planet's speed throughout its orbit, which brings us to the next story.

ρs

The second story
To start this story, it is pertinent first to determine, by another very

simple appreciation, the velocity of the Earth about the Sun were the orbit to
be circular.  By Kepler's law, the radius vector from the Sun, then at the
centre of a circle whose radius is given above, will sweep out equal areas in
equal times and thus the orbital speed is everywhere the same, i.e. a simple
constant velocity figure of magnitude ( , i.e.

, which agrees with the above figure obtained from the Vis-viva
equation with an appropriate value for .  It should be appreciated that a
sidereal year of length 365.256 Gregorian days has been assumed.  The
figure of 365.256 days is the time taken for planet Earth to orbit the Sun just
once when its position is referenced to distant fixed stars.  It is different to
the figure of 365 days that is assumed commonly in the Gregorian calendar.
If the latter figure is used in the calculations, a slightly different result will
be obtained.

2πa/365.256 km/ day)
29.78 km/ s

G

If orbit eccentricity  is considered, the simple approach must
be eschewed.  To this end, it is appropriate to consider first the typical
schematic for a general elliptic orbit, such as that of Figure 1, where lengths
have been normalised to that of the semi-major axis.  In this Figure, the
point  represents a planet on an elliptic path at the end of a radius vector
from the focus, where the Sun is positioned.  The usual rectangular
Cartesian coordinate system ( -horizontal, -vertical) is assumed.

e (= sin α)

P

x y
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At any instant, the radius vector (RV) from the Sun subtends an angle
with respect to the ellipse semi-major axis and the normalised length of this
vector is, as before, denoted by .  In this notation, the usual parametric
representation for the point  on the ellipse will be, in normalised form,

. In the nomenclature of orbital mechanics, the parameter
angle  is known as the eccentric anomaly and the angle  is known as the
true anomaly.

φ

ρs
P

(cos θ, cos α sin θ)
θ φ

Coincidentally, a normal (N) through the point  is shown, and this
subtends similarly an angle .  An appreciation of this normal is required
because the radius of curvature (of length  say) of the ellipse is centred on
this line, and the orbit speed at  will then be , which it is the purpose
here to determine in the light of Kepler's second law.  In this respect the
treatment here differs from that normally associated with the development
of the vis-viva equation, where velocity considerations are not usually
addressed via a radius of curvature approach.  This facilitates the
development of an alternative expression for the velocity of , one that
involves the sidereal period.

P
ψ

R
P Rdψ

dt

P

P

RVN

θ ψ
S

φ

FIGURE 1:  Normalised ellipse plus auxiliary circle showing a planet at point 
on the ellipse with a radius vector ( ) to the Sun at a focus , an inward normal ( )

and associated angles of interest

P
RV S N

Before exploiting Kepler's 2nd law, it will be necessary to highlight
some relationships between the ellipse parameters that will be required later.
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Ellipse parameters relationships and preliminary results
Various equations relating the ellipse quantities evidenced in Figure 1

will be required for use later in expressions involving the planet's velocity.
They can be established using standard trigonometric principles and are

(2)
ρS = 1 − sin α cos θ,

tan φ =
cos α sin θ

cos θ − sin α
.

With reference to Figure 1, the first equation in (2) can be derived by
applying Pythagoras's theorem to the right-angled triangle formed by the
hypotenuse line ( ), the perpendicular line from  to the semi-major axis
and the relevant portion of that axis enclosed by these two lines.  The second
equation arises from trigonometric relationships in the aforesaid triangle.
From the second equation in (2), it is possible to express the ellipse
parameter  explicitly in terms of  and  by invoking half-angle formulae
to obtain a quadratic equation in  which can be solved to produce the
two roots

RV P

θ α φ
tan 1

2θ

tan
θ
2

= μτ and
−μ
τ

(3)

where  and .μ =
1 − tan 1

2α
1 + tan 1

2α
τ = tan 1

2φ

The root of interest here is the first one as it refers to the top half of the
ellipse (as shown in the Figure).  The second root is simply the first one
modified, with  replaced by , and it refers to the bottom half of the
ellipse where the radius vector can be extended to meet the ellipse again at
some point.

φ (φ − π)

It remains to determine expressions for the radius of curvature of the
ellipse and the slope of the normal at the point , both of which will be used
later.  An expression for the former can be found on the internet by googling
the words radius of curvature at a point on an ellipse.  Otherwise, it can be
established from first principles.  Whichever, it can be secured in a form that
involves only the ellipse parameter  together with the usual ellipse
dimensions  and , and if it is denoted by , it is

P

θ
a b R

R =
(b2 cos2 θ + a2 sin2 θ)3/2

ab
.

If lengths are normalised, as proposed here, to that of the semi-major axis ,
this expression can be rewritten in the form

a

R
a

=
(1 − sin2 α cos2 θ)3/2

cos α
.

Finally, by observation of Figure 1, the slope of the normal of the
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ellipse at the point  is .  However, from analytical geometry, the
equation to the normal is well known and the slope from using the

parameters adopted here is simply .  These two forms for the slope

must be the same, and so it follows that .  As the point

moves around the ellipse, the parameters  and  will vary with time,  say,
and this equivalent slope equation can be differentiated with respect to time
to obtain the result

P tan ψ

tan θ
cos α

tan ψ =
tan θ
cos α

P

θ φ t

dψ
dt

=
cos α

1 − sin2 α cos2 θ
 
dθ
dt

.

This result can be combined with the above radius of curvature expression

to obtain an expression  for the tangential velocity :V R 
dψ
dt

V = a 1 − sin2 α cos2 θ 
dθ
dt

. (4)

Having secured preliminary results, attention now will turn to the
ramifications of Kepler's 2nd law.

Kepler's 2nd law
This law states that the radius vector (  of Figure 1) sweeps out equal

areas in equal times as the planet point  traverses its elliptic path around the
Sun.  Thus it is necessary to develop first a formula for the normalised area
(normalised to the square of the semi-major axis length) swept out by the
radius vector of Figure 1, starting when  is at the perihelion end of the semi-
major axis and finishing where it is as shown in the Figure.  Symbolically,
this can be written

RV
P

A

P

A = ∫
φ

0

ρ2
s

2
 dφ = ∫

UL

LL

ρ2
s

2
 
dφ
dθ

 dθ

where the limits of integration for the variable ,  and , can be
obtained from (3).  For example, when ,  and for the upper
limit, .  With respect to the -integration, the term

 in the integrand can be determined by differentiation of the first equation

in (3), leading to the result

θ LL UL
φ = 0 LL = 0

UL = 2 tan−1 (μ tan 1
2φ) θ

dφ
dθ

dφ
dθ

=
cos α

1 − sin α cos θ
.

The other term in the integrand, , can be replaced by its expression given
in the first equation of (2) to produce the result

ρ2
s

A =
cos α

2 ∫
 θ

0
(1 − sin α cos θ)2 1

1 − sin α cos θ
dθ.
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This integrates to

A =
cos α

2
[θ − sin α sin θ] . (5)

Since , this equation can also be presented in an
alternative form that involves implicitly the radius vector angle .  It allows
for the calculation of the ellipse parameter angle  (and hence ) relevant to
a specified swept out area.  For example, the area of an ellipse, here
normalised to the square of its semi-major axis, is simply .  Thus, for

the Earth say, the area swept out in one sidereal day is , according

to Kepler's 2nd law.  Therefore, after  such days the area swept out is

 and the corresponding -value can be determined from (5),

written now in the more general form

θ = 2 tan−1 (μ tan (1
2φ))

φ
θ φ

π cos α

( π cos α
365.256)

t

(πt cos α
365.256 ) θ

[θ − sin α sin θ] =
2πt
N

, (6)

where  denotes the number of days in the sidereal year for whichever
planet is under consideration.  In astrophysics and orbital dynamics,
equation (6) is known as Kepler's time equation.  It relates the terms
involving the eccentric anomaly on the left-hand side to a term on the right-
hand side involving the time variable  with, in this case, a planet's number
of days in a sidereal year. 

N

t

If  is a uniformly spaced input, this equation can be solved numerically
to find the corresponding non-uniformly spaced -value.  The business is
tedious but straightforward for a given planet, and it is well suited to
manipulations on a spreadsheet, where numerical routines such as a
Newton-Raphson method or any other iterative method can be employed.  In
this way it is possible to compile a day-by-day picture of -values that
correspond to regular -values throughout the year.  It seems also to be the
route that astrophysicists adopt in their investigations.  However, if

  is the regularly spaced input, a corresponding value
for  is determined directly from (6) without recourse to iterative procedures.
In this way it is possible to compile a picture of -values throughout the year
but such values will not generally be uniformly spaced.

t
θ

θ
t

θ (0° ≤ θ ≤ 360°)
t

t

If the ellipse eccentricity is small, it is possible to develop small
argument approximations to the parameters of interest.  These are quoted in
the appendix but only some of them will be used in the later commentary.

Velocity considerations
In order to use (4), it will be necessary to determine the time rate of

change of the ellipse parameter angle . This can be obtained by
differentiating equation (6) with respect to time, to obtain the result

θ

dθ
dt

=
2π
N

 · 
1

1 − sin α cos θ
.

https://doi.org/10.1017/mag.2024.63 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2024.63


254 THE MATHEMATICAL GAZETTE

If this is substituted into (4), the square of the tangential velocity can then be
written in the form

V2 = (2πa
N )2 (1 + sin α cos θ

1 − sin α cos θ ) = (2πa
N )2 ( 2

1 − sin α cos θ
− 1) (7)

which, from the first equation in (2), can be rewritten as

V2 = (2πa
N )2 ( 2

ρs
− 1) , (8)

where  is in km and the velocity  is in km/day.  It can be expressed in
 by dividing by .  If a -dependent result for the velocity is

required, it will suffice to replace  in (7) by .  Equation
(8) has been developed without recourse to energy considerations, and its
form is identical to that of (1).  On reconciling the two equations, it follows
that .  Typically,  and  are in metres and seconds
respectively.  This result encapsulates Kepler's 3rd law, namely, that  is
directly proportional to .  It reduces to 

a V
km/s 24 × 3600 φ

θ θ = 2 tan−1 (μ tan φ
2 )

GM = 4π2a3 / N2 a N
N2

a3

GM =
3125
5832

 · 
π2a3

N2
(9)

where  is in kilometres and when  is the number of sidereal days in the
orbit year.  This equation can serve as a useful check on the accuracy of
values assumed for the various input parameters and scientific constants.
For example, in the case of the Earth, if inputs for ,  and  are as
prescribed above, it follows that the numerical value for  should be

.

a N

M N a
G

6.673981 × 10−11

Comparisons of outputs from the two different equations
Data on the orbit parameters of Earth and Mercury can be found on the

internet [2].  This data is shown in Table 1.

Planet Perihelion (km) Aphelion (km) Sidereal Period

Earth 1.47095×108 1.521×108 365.256

Mercury 4.6×107 6.9818×107 87.969
TABLE 1: Planet parameters

The eccentricities  and semi-major axis lengths  are given by

 and , where  and  denote respectively

the distances of aphelion and perihelion shown in Table 1.

e (≡ sin α) a

a = 1
2 (dA + dP) e =

dA − dP

dA + dP
dA dP

Curves showing the calculated orbit speed  for each planet throughout
the sidereal year, based on equations (7) or (8), are shown in Figures 2 and 3
below.
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FIGURE 2: Earth orbit speed per day
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FIGURE 3: Mercury orbit speed per day

Approximations
On replacing  in (8) by the small argument approximation for it given

in the appendix, it is possible to secure an approximate equation for the
velocity on any given sidereal day provided the orbit eccentricity is small.
Quite simply,

ρs

V ≈ (2πa
N ) (1 + α cos λ) (10)

where .  It is a straightforward matter to verify on a spreadsheet

that results from the approximation of (10) serve the purpose very well in
the case of an Earth orbit velocity, because the eccentricity is very small; the
results are in close agreement with those obtained from either (1) or (8).  In

λ =
2πt
N
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the case of Mercury's orbit, it can be appreciated in the same way that the
approximations are not as good but can nonetheless produce “back of the
envelope” results, suitable perhaps when great accuracy is not required.  The
fine details are left as an exercise for the reader to appreciate.

Discussion
A classic example drawn from the realms of applied mathematics

related to the velocity of planets orbiting the Sun has been examined, and
two expressions for orbit speeds were presented.  The first, the Vis-viva
equation, was derived elsewhere from energy considerations, and was
assumed.  The other equation, which led to a similar result, was developed
differently using mathematics that should be familiar to undergraduates and
possibly sixth formers.  This Article has highlighted too the relationship
between various parameters (equation (9)) that can serve as a useful check
on values ascribed to them.  It has been pointed out also that, in the case of
small orbit eccentricities, useful approximations can be employed to
simplify the sums without significantly compromising accuracy.  Whilst
consideration has been given to just two planets in the solar system, it would
be a relatively simple matter to extend the arguments to all planets.  To this
end it would be necessary to secure input information about them, such as
that which can be found, for example, in [2].
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Appendix
Approximations to the parameters ,  (normalised) and  (see the

main body of the text for the expressions involving them and other
associated terms), when the eccentricity of the associated ellipse is assumed
to be small, can be obtained in the usual way by exploiting small argument

expansions.  Specifically, writing , it can be shown that, neglecting

terms .

φ ρs θ

λ =
2πt
N

O (α2)
θ ≈ λ + α sin λ,  φ ≈ 2θ − λ, and ρs ≈ 1 − α cos λ.
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