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We study fluctuation dynamo (FD) action in turbulent systems like galaxy-clusters
focusing on the Faraday rotation signature. This is defined as RM = K

∫
L

neB ·dl where
ne is the thermal electron density, B is the magnetic field, the integration is along the
line of sight from the source to the observer, and K = 0.81 rad m−2 cm−3 μG−1 pc−1 .
We directly compute, using the simulation data,

∫
B ·dl, and hence the Faraday rotation

measure (RM) over 3N 2 lines of sight, along each x, y and z-directions. We normalise
the RM by the rms value expected in a simple model, where a field of strength Brms

fills each turbulent cell but is randomly oriented from one turbulent cell to another. This
normalised RM is expected to have a nearly zero mean but a non-zero dispersion, σ̄RM .
We show in Fig. 1a and 1b, that a suite of simulations, on saturation, obtain the value
of σ̄RM = 0.4 − 0.5, and this is independent of PM , RM and the resolution of the run.
This is a fairly large value for an intermittent random field; as it is of order 40%–50%,
of that expected in a model where Brms strength fields volume fill each turbulent cell,
but are randomly oriented from one cell to another. We also find that the regions with a
field strength larger than 2Brms contribute only 15–20% to the total RM (see Fig. 1a).
This shows that it is the general ‘sea’ of volume filling fluctuating fields that contribute
dominantly to the RM produced, rather than the the high field regions.
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Figure 1. Figure (a) on the left shows the effective RM after removing the regions with
|B| > 2Brm s and 1Brm s fields. Fig. (b) in the middle shows RM evolution for runs with different
RM and PM . Fig (c) on the right shows magnetic integral scales in the lower half and velocity
integral scales in the upper half.

Interestingly, the magnetic integral scale, Lint (see Fig. 1c) starts to increase in all the
runs, as Lorentz forces become important to saturate the dynamo. It appears that on
saturation, the magnetic integral scale, Lint tends to a modest fraction 1/2 − 1/3 of the
integral scale of the velocity field for all our runs. Finally, we find that σ̄RM ∼ 0.4 − 0.5
obtained, implies a dimensional σRM ∼ 180 rad m−1 , for parameters appropriate for
galaxy clusters. This is sufficiently large to account for the observed Faraday rotation
seen in these systems.
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