jYCMS

http://dx.doi.org/10.4153/CMB-2015-079-6 ISMC

Canad. Math. Bull. Vol. 59 (3), 2016 pp. 599-605 J
© Canadian Mathematical Society 2016

Small Prime Solutions to Cubic
Diophantine Equations

Zhixin Liu

Abstract. Let ay, ..., a9 be non-zero integers and n any integer. Suppose that a; + .-+ a9 = n

(mod 2) and (a;,a;) =1for1< i< j<9. In this paper we prove that

(i) if a; are not all of the same sign, then the cubic equation a1p; + -+ + agpj = n has prime
solutions satisfying p; < a3 + max{|a;|}3*¢;

(ii) ifall a; are positive and n > max{|a;|}?>*¢, then ayp; +---+agp3 = n is soluble in primes p;.

}14+£

These results improve our previous results with the bounds max{|a;| and max{|a;|}***¢ in

place of max{|a;|}®** and max{|a;|}*5*¢ above, respectively.

1 Introduction

Let n be an integer, and let a,, ..., ag be non-zero integers. We consider cubic equa-
tions in the form

(1.1) aipy+---+agpy =1,

where p; are prime variables. A necessary condition for the solubility of (1.1) is
(1.2) aj+---+ag=n (mod 2).

We also suppose

(1.3) (ainaj)=1, 1<i<j<9,

and write A = max{2, |ay|,...,|as|}. The main results in this paper are the following
two theorems.

Theorem 1.1  Suppose (1.2) and (1.3). If ay, . .., ag are not all of the same sign, then
(L1) has solutions in primes p; satisfying p; << |n|'/* + A%+, where the implied constant
depends only on e.

Theorem 1.2 Suppose (1.2) and (1.3). If ai, . . ., ag are all positive, then (1.1) is soluble
whenever n >> A*>*¢, where the implied constant depends only on e.

Theorem 1.2 with a; = --- = a9 = 1is a classical result of Hua [3] in 1938. Theorems
1.1 and 1.2 improve our previous results in [4] with the bounds A*¢ and A*? + ¢ in
the place of A**¢ and A*>*¢, respectively. Our investigation on (L.1) is also motivated
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by the linear and quadratic relative problems. (See [1] and [2] and their references for
the linear and quadratic relative problems, respectively).

Most of the arguments are similar to those in [4] and we therefore only sketch the
proof in this note. We refer the reader to [4] for all the details and only emphasize the
main difference between the arguments.

2 Outline of the Method

As in [4], we denote by r(n) the weighted number of solutions of (L.1), i.e.,
r(n)=" 3, (logpy)--(logpo),

3 3
n=a,pi+-tagpy
M<|aj|p}<N

where M = N/200. We will investigate r(n) by the circle method. To this end, we set
N;j=(N/a;)/? and
21) P=(N/A)¥®, Q=N"2pP7', and L-=IogN.

By Dirichlet’s lemma on rational approximation, each « € [1/Q,1+1/Q] may be writ-
ten in the form

(2.2) a=alqg+A, [M<1/(qQ)

for some integers a, g with 1 < a < g < Q, and (a, q) = 1. We denote by M1(a, q) the
set of « satisfying (2.2), and define the major arcs 9t and the minor arcs m as follows:
1 1 1

(2.3) M=MP)=J U M(a,q), m=[—=,1+—=] M.

q<P a=1 Q Q

(a,q)=1
It follows from 2P < Q that the major arcs M(a, q) are mutually disjoint. Let
Si(a)= 3 (logple(a;p’a).

Mc<|a;|p3<N
Then we have r(n) = fol Si(a)---So(a)e(—na)da = fyn + [,

The integral on the major arcs 9t causes the main difficulty, which is solved by
Theorem 2.1 and Lemmas 2.3-2.4 in [4]. We state these here.

Theorem 2.1  Assume (1.3). Let I be as in (2.3) with P, Q determined by (2.1). Then
we have

1 N N?
S $1(00 - So(@e(-na)da = 5&(n Y + O( (o).

where &(n, P) and J(n) are defined in (2.4) and (2.5), respectively.

To derive Theorem 2.1, we need to bound &(n, P) and J(n) from below. For y
mod g, we define

Cpa) - th_jx(h)e( “Z), Cgra) = C(x° a).
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If 1,..., xo are characters mod g, then we write

a hn
B(I’l,q>X1,...,X9): Z e(_?)C(Xlialh)"'C(X9,a9h),
(-1
B(n,q)
B(n,q)=B(n,q.x°,.... %), A(n,q) = :
! bAoA RAeY
and
(24) &(n,P) = ) A(n,q).

q<P

Lemma 2.2  Assuming (1.2), we have &(n, P) > (loglogA)~¢ for some constant
c>0.

Lemma 2.3  Suppose (1.3) and

(i) ay,...,aq are not all of the same sign and N > 27|n|; or
(ii) ay,---,aq are positive and n = N.

Then we have

NZ
~ -2/3
(25) J(]’[) = Z (ml"'mg) / X71/3'
aymy+-+agmo=n |a1 e a9|
M<|ajlm;<N
Now we turn to the estimation of /. In section 4, we will prove
47/24+¢

N
S ...S do K ——————
J I So(@lde < T

Thus,

1 NZ N47/24+€
T’(l’l):?’gG(i’l,P)s(l’l)+O( )

Then we conclude that r(n) > |a; - a9|—1/3N2 (loglog N), provided that
N47/24+e N2

<
|a1...a9|47/216 |a1--~a9|1/3L’

or equivalently N >> A?**¢, Theorems 1.1 and 1.2 follow from this and the argument
leading in [4]. Details are therefore omitted.

3 Some Lemmas

We derive estimates for the generating functions appearing in the proof from esti-
mates for the exponential sum

(1) S(a)= > (logp)e(ap’),

X<p<2X
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which are given in terms of the rational approximation
a .
a=—+A, withl<a<gq, (a,q)=1
q
We start by quoting the result of Zhao [6].

Lemma 3.1  Suppose that o € R and that exist a € Z and q € N satisfying
1<q<Q, (a,q)=1 |qa—a|<Q"

with X2 < Q < X3/, Then for any fixed € > 0,

X1+£

3/\/(1+ X?la — a/q])’

where the implied constant depends at most on k and e.

S(a) « X12re

The next lemma generalizes Lemma 3.1 to S(ba), with b a non-zero integer.

Lemma 3.2 Let b be a non-zero integer and let S( ) be defined by (3.1). Suppose that
there exist a € Z and q € N satisfying

(32) 1<q<|b|X’P™Y, (a,q)=1, |qa-a|<P/(|p|X?),
with P subject to

(3.3) 20b| X% < P< X.

Then for any fixed € > 0, we have

(3.4) S(bar) « XM12+e . x1req Og ()12

where ®(a) =1+ |b|X?|a — a/q| and g1 = q/(b, q).

Proof By Dirichlet’s theorem, there exist integers a; and g; such that
IS LZI < Q) (alx ql) = 1) |Q1b“ - al| < Q71)

with some Q satisfying X'/? < Q < X*/2. Hence, by Lemma 3.1 with & = ba, q = g1,
and a = a;,

X1+8

qi/6\/1+ X3|q1b06 - 611| '

If g > X2 or |q1ba — @] > X7/, the first term on the right-hand side of (3.5)
dominates the second and (3.4) follows. Otherwise, recalling (3.2) and (3.3), we get

(3.5) S(ba) « X"W/12+e 4

|q1ba — qai| < qbl|qa — a| + g|q1ba — ai
< PX732 4 |p|xYoP < 1.

Thus % = “7’1’ and q; = (qib), and (3.5) turns into (3.4). [ ]

The following lemma is Lemma 3.3 in [4] which generalizes Theorem 1.1 in [5].
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Lemma 3.3  Let b be a non-zero integer and let S( ) be defined by (3.1). Suppose that
there exist a € Z and q € N satisfying
1<q<P, (aq)=1 |ga—al<P/(b}X"),
with P < X/2. Then for any fixed € > 0, we have
S(ba) < (XV2®(a)? + X5 + X0 (o) ?) g% log” X,
where ®(a) = q1(1+ |b|X3|a — a/q|) and q1 = q/(b, q).

4 The Estimation of [

Let N be a parameter with N > A?*¢ that also satisfies hypothesis (i) or (ii) of
Lemma 2.3 according as a4y, ..., aq are all positive or not. Now we turn to the esti-
mation of [_.

By Dirichlet’s approximation theorem, when « € m, there exist a € Z and g € N
satisfying (3.2) with b = ag and X = Ny such that g + No|qa — a| > P.

We decompose the minor arcs into three parts, m = m; Um, U m3, where

my = mu {g < Ny[as| and |a - a/q| <1/(gN5*)},
my = mu {q 2 Ny o]},
ms =mu {g < Ny|a| and |a - a/q| 2 1/(qN;"*)}.

When « € my, using Lemma 3.3, we have

So(@) << (Ny*\/qa(1+ |as| N3l - a/q]) + N3°
+ No )q£ log® X
Va1 (1+|ag|N3|a — a/q])

Ny (g, |ag|)"/?
q(1+ Nla —a/q])
Ny (g, |as|)"/?

VP

< N;/zq}/z + Né/z + Ng/s +

<« N§/4|ag|1/2 +

11/12+
< N9/ £

We apply Lemma 3.2 for « € m; and o € m3,

11/12+¢ Ng*e
So(ar) << Ny + 2 -
4" \/1+[ag|N3|a — a/q]
Nl+8
« N;1/12+£ + 19/6
9

Nl+£ o 1/6
« N;l/12+s + 9 | |
q'/s

11/12
< N9/ e
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and

/1246 Ng+e

4)/° /1 +[asIN3loc — a/q]
n/12+e N$+sql/2Ng/4

1/6|a |1/2N3/2

So(a) < Ny

< Ny

N3/ (g s )5 q2

/12+e
<« Ny 7/5]ag| 12
3 4
« N11/12+s +E(q |lag |)1/6 12
4'/6|aq|1/2
NLV/12+e N3/4+£|a |l/6q1/2
K Ny + '/%|as 112
« N11/12+s
Thus, we have
(4.1) max|Sg(oc)| < NH/IZH

We introduce the following notation: T(t) = [ [Se(a)|‘da for t > 1. On consid-
ering the underlying equation and applying Hua’s lemma (see [3])

1
T(8) < f 1So(a)Pda < L® > 1< Ng*e.
0

3 3__3 3
MY+ My =my -+ My

Then by Schwartz’s inequality,
(4.2) T(9) « N3/***T(10)"/2,

By applying Lemmas 2.2 and 3.1 in [6], we obtain

(4.3) T(10) < Ny/***T(16)V4T(9)"/> + NJ/***T(9).
We deduce from (4.1) that
(4.4) T(16) < (Ng/™*)5T(10).

Inserting (4.2) and (4.4) into (4.3), we have T(10) « N;7/8+8 T(10)2, which implies
T(10) « NZ7/**¢,

47/8+¢

This together with (4.2), we have T'(9) < N, . Therefore,

A 1S (a)[? dox < N1+

Similarly, we have [_|S;(a)|’da < N;.U/SH, 1<i<8.

https://doi.org/10.4153/CMB-2015-079-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2015-079-6

Small Prime Solutions to Cubic Diophantine Equations IT 605

Therefore,
1/9 19
f|31(a)...39((x)|doc <<([ |Sl(oc)|9doc) ([ 1So(e0)* dat)
m m m
« (N1~--N9)47/72+£
N47/24+e
<« |ay - ao|47/216”
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