A Forcing Axiom Deciding the Generalized Souslin Hypothesis

Chris Lambie-Hanson and Assaf Rinot

Abstract. We derive a forcing axiom from the conjunction of square and diamond, and present a few applications, primary among them being the existence of super-Souslin trees. It follows that for every uncountable cardinal λ, if λ^{++}is not a Mahlo cardinal in Gödel's constructible universe, then $2^{\lambda}=\lambda^{+}$entails the existence of a λ^{+}-complete λ^{++}-Souslin tree.

1 Introduction

1.1 Trees

A tree is a partially ordered set $\left(T,<_{T}\right)$ with the property that for every $x \in T$, the downward cone $x_{\downarrow}:=\left\{y \in T \mid y<_{T} x\right\}$ is well-ordered by $<_{T}$. The order type of $\left(x_{\downarrow},<_{T}\right)$ is denoted by $\operatorname{ht}(x)$, and the α-th level of the tree is the set

$$
T_{\alpha}:=\{x \in T \mid \operatorname{ht}(x)=\alpha\} .
$$

The tree $\left(T,<_{T}\right)$ is said to be χ-complete if for every chain $C \subseteq T$ of size less than χ, there is $x \in T$ such that $C \subseteq x_{\downarrow} \cup\{x\}$.

If κ is a regular uncountable cardinal, then a κ-Aronszajn tree is a tree of size κ having no chains or levels of size κ, and a κ-Souslin tree is a tree of size κ having no chains or antichains of size κ. As tree levels are antichains, any κ-Souslin tree is a κ-Aronszajn tree.

In 1920, Mikhail Souslin [24] asked whether every ccc, dense, complete linear ordering with no endpoints is isomorphic to the real line. (Here, $c c c$ is a consequence of separability, asserting that every pairwise-disjoint family of open intervals is countable.) In [12], Kurepa showed that a negative answer to Souslin's question is equivalent to the existence of an \aleph_{1}-Souslin tree. Attempts to settle the question by constructing an \aleph_{1}-Souslin tree proved unsuccessful but did lead to Aronszajn's construction of an \aleph_{1}-Aronszajn tree, which is described in [12]. The question remained open until it was proved in $[9,11,23,26]$ that, in contrast to the existence of \aleph_{1}-Aronszajn trees, the existence of \aleph_{1}-Souslin trees is independent of the usual axioms of set theory (ZFC).

As these objects proved incredibly useful and important, a systematic study of their consistency and interrelation was carried out. Following standard conventions, we let TP_{κ} stand for the nonexistence of κ-Aronszajn trees (the tree property at κ), SH_{κ} stand

[^0]for the nonexistence of κ-Souslin trees (the Souslin Hypothesis at κ), and CH_{λ} stand for $2^{\lambda}=\lambda^{+}$. Two early results read as follows.

Theorem 1.1 (Specker [25]) For every cardinal $\lambda, \mathrm{CH}_{\lambda}$ implies the failure of $\mathrm{TP}_{\lambda^{++}}$.
By a cardinal, we always mean an infinite cardinal.
Theorem 1.2 (Jensen [10]) In Gödel's constructible universe, L, for every regular uncountable cardinal κ, the following are equivalent:

- TP_{κ};
- SH_{κ};
- κ is a weakly compact cardinal.

We remind the reader that a cardinal κ is weakly compact if and only if it is uncountable and Ramsey's theorem holds at the level of κ, i.e., every graph of size κ contains a clique or an anticlique of size κ.

Ever since Jensen's result, the general belief has been that the consistency of SH_{κ} for κ of the form λ^{++}requires the consistency of a weakly compact cardinal. This conjecture is supported by the following later results.

Theorem 1.3 (Mitchell and Silver [15]) The existence of a regular cardinal λ for which $\mathrm{TP}_{\lambda^{+}}$holds is equiconsistent with the existence of a weakly compact cardinal. In particular, the consistency of a weakly compact cardinal gives the consistency of $\neg \mathrm{CH}_{\lambda}$ together with $\mathrm{SH}_{\lambda^{++}}$.

Theorem 1.4 (Laver and Shelah [14]) For every cardinal λ, if there is a weakly compact cardinal above λ, then there is a forcing extension by a λ^{+}-directed closed forcing notion in which CH_{λ} and $\mathrm{SH}_{\lambda^{++}}$both hold.

Theorem 1.5 (Rinot [17]) For every cardinal λ, if $\mathrm{CH}_{\lambda}, \mathrm{CH}_{\lambda^{+}}$, and $\mathrm{SH}_{\lambda^{++}}$all hold, then λ^{++}is a weakly compact cardinal in L.

Whether the hypotheses of Theorem 1.5 are mutually consistent, relative to any large cardinal assumption, is a major open problem.

In this paper, we are interested in a possible converse for Theorem 1.4. As of now, the best result in this direction gives a lower bound of an inaccessible cardinal. Recall that a cardinal κ is inaccessible if it is regular, uncountable, and strong limit, and Mahlo if it is inaccessible and has stationarily-many inaccessible cardinals below it. Note also that any weakly compact cardinal has stationarily-many Mahlo cardinals below it.

Theorem 1.6 (Shelah and Stanley [20]) For every cardinal λ, if CH_{λ} and $\mathrm{SH}_{\lambda^{++}}$both hold, then λ^{++}is an inaccessible cardinal in L.

Here, we establish the following theorem.
Theorem A For every uncountable cardinal λ, if CH_{λ} and $\mathrm{SH}_{\lambda^{++}}$both hold, then λ^{++} is a Mahlo cardinal in L.

The following table provides a clear summary of these results.

Theorem	λ	CH_{λ}	$\mathrm{CH}_{\lambda^{+}}$	$\mathrm{SH}_{\lambda^{++}}$	lower bound	upper bound
1.3	regular	\boldsymbol{X}	\checkmark	\checkmark		weakly compact
1.5	arbitrary	\checkmark	\checkmark	\checkmark	weakly compact	
1.4	arbitrary	\checkmark	\boldsymbol{X}	\checkmark		weakly compact
1.6	arbitrary	\checkmark	\boldsymbol{x}	\checkmark	inaccessible	
A	uncountable	\checkmark	\boldsymbol{x}	\checkmark	Mahlo	

1.2 Combinatorial Constructions

In order to prove Theorem A, we develop a general framework for carrying out combinatorial constructions. It turns out that, in this and other applications, it is often desirable to be able to construct an object of size κ^{+}, where κ is a regular uncountable cardinal, using approximations to that object of size less than κ. When one attempts to carry out such a construction using only the axioms of ZFC, though, one naturally runs into problems: the construction seems to require κ^{+}steps, but the approximations may become too large after only κ steps.

The usual way to attempt to overcome this problem is to assume, in addition to ZFC, certain nice combinatorial features of κ or κ^{+}. One such feature, whose definition is motivated by precisely such constructions, is the existence of a ($\kappa, 1$)-morass (see [4, §4] or [5, Chapter VIII]). Velleman [30] and Shelah and Stanley [20] present frameworks for carrying out constructions of objects of size κ^{+}using a ($\kappa, 1$)-morass. In both instances, these frameworks take the form of forcing axioms that turn out to be equivalent to the existence of morasses.

Another combinatorial assumption that can be helpful in these constructions is the existence of a diamond sequence. In a series of papers on models with second order properties, culminating in a general treatment in [19], Shelah et al. developed a technique for using $\diamond(\kappa)$ to build objects of size κ^{+}out of approximations of size $<\kappa$. Ideas from these papers were used by Foreman, Magidor, and Shelah [7] to prove, assuming the consistency of a huge cardinal, the consistency of the existence of an ultrafilter \mathcal{U} on ω_{1} such that $\left|\omega^{\omega_{1}} / \mathcal{U}\right|=\aleph_{1}$, and later by Foreman [6] to prove, again assuming the consistency of a huge cardinal, the consistency of the existence of an \aleph_{1}-dense ideal on \aleph_{2}.

In this paper, we present a framework for constructions of objects of size κ^{+}using $\diamond(\kappa)$ and \square_{κ}^{B}, a weakening of \square_{κ} that, unlike \square_{κ} itself, is implied by the existence of a $(\kappa, 1)$-morass. As in $[20,30]$, our framework takes the form of a forcing axiom. Specifically, in Section 2, we isolate a class of forcing notions \mathcal{P}_{κ}, introduce the notion of a sharply dense system, and formulate a forcing axiom, $\operatorname{SDFA}\left(\mathcal{P}_{\kappa}\right)$, that asserts that for every \mathbb{P} from the class \mathcal{P}_{κ} and every sequence $\left\langle\mathcal{D}_{i} \mid i<\kappa\right\rangle$ of sharply dense systems, there is a filter G on \mathbb{P} that meets each \mathcal{D}_{i} everywhere.

The last two sections of the paper are devoted to the proof of the following theorem.

Theorem B For every regular uncountable cardinal κ, if $\diamond(\kappa)$ and \square_{κ}^{B} both hold, then so does $\operatorname{SDFA}\left(\mathcal{P}_{\kappa}\right)$.

In Section 3, we give a few simple applications of the forcing axiom $\operatorname{SDFA}\left(\mathcal{P}_{\kappa}\right)$. We open by pointing out that the Cohen forcing $\operatorname{Add}\left(\kappa, \kappa^{+}\right)$is a member of the class \mathcal{P}_{κ}. Then we show that $\operatorname{SDFA}\left(\mathcal{P}_{\kappa}\right)$ entails $\kappa^{<\kappa}=\kappa$ and \square_{κ}^{B}. This has three consequences. First, it shows that our square hypothesis in Theorem B is optimal.

Theorem $B^{\prime} \quad$ Suppose that κ is a regular uncountable cardinal and $\diamond(\kappa)$ holds. Then the following are equivalent:

- \square_{κ}^{B} holds;
- $\operatorname{SDFA}\left(\mathcal{P}_{\kappa}\right)$ holds.

Second, by Shelah's theorem [18] stating that CH_{λ} entails $\diamond\left(\lambda^{+}\right)$for every uncountable cardinal λ, it gives cases in which the diamond hypothesis is optimal, as well:

Theorem $B^{\prime \prime} \quad$ For every successor cardinal $\kappa>\aleph_{1}$, the following are equivalent:

- $\diamond(\kappa)$ and \square_{κ}^{B} both hold;
- $\operatorname{SDFA}\left(\mathcal{P}_{\kappa}\right)$ holds.

Third, it implies that $\operatorname{SDFA}\left(\mathcal{P}_{\kappa}\right)$ entails the existence of a strong stationary coding set, i.e., a stationary subset of $\left[\kappa^{+}\right]^{<\kappa}$ on which the map $x \mapsto \sup (x)$ is injective. This is of interest because the existence of such a set was previously obtained by Shelah and Stanley [21] from their forcing axiom $S_{\kappa}(\diamond)$, which is equivalent to the existence of a $(\kappa, 1)$-morass with a built-in diamond sequence, and later (though earlier in terms of publication date) by Velleman [29] from the existence of a stationary simplified ($\kappa, 1$)-morass.

Section 4 is dedicated to the study of super-Souslin trees. For a cardinal λ, a $\lambda^{++}{ }^{+}$ super-Souslin tree is a λ^{++}-tree $\left(T,<_{T}\right)$ with a certain highly absolute combinatorial property that ensures that $\left(T,<_{T}\right)$ has a λ^{++}-Souslin subtree in any ZFC extension W of the universe V that satisfies $\mathcal{P}^{W}(\lambda)=\mathcal{P}^{V}(\lambda)$ and $\left(\lambda^{++}\right)^{W}=\left(\lambda^{++}\right)^{V}$. These trees were introduced in a paper by Shelah and Stanley [20], where the existence of super-Souslin trees provided the primary application of the forcing axiom isolated in that paper. In particular, they proved that the existence of a λ^{++}-super-Souslin tree follows from the existence of a $\left(\lambda^{+}, 1\right)$-morass together with CH_{λ}. In $[21,30]$ the same hypotheses are shown to entail the existence of a λ^{++}-super-Souslin tree that is also λ^{+}-complete. Here, we prove the following analogous result.

Theorem $C \quad$ For every cardinal $\lambda, \operatorname{SDFA}\left(\mathcal{P}_{\lambda^{+}}\right)$entails the existence of a λ^{+}-complete λ^{++}-super-Souslin tree.

By Theorems B and C and the fact that for any super-Souslin tree $\left(T,<_{T}\right)$, there exists some $x \in T$ such that $\left(x^{\uparrow},<_{T}\right)$ is Souslin, we obtain the following corollary.

Corollary 1.7 For every cardinal λ, if $\diamond\left(\lambda^{+}\right)$and $\square_{\lambda^{+}}^{B}$ both hold, then there is a λ^{+}-complete λ^{++}-Souslin tree.

Recalling Jensen's theorem [10] stating that if \square_{κ} fails, then κ^{+}is a Mahlo cardinal in L, and Shelah's theorem [18] stating that CH_{λ} entails $\diamond\left(\lambda^{+}\right)$for every uncountable cardinal λ, we see that Theorem A follows from Corollary 1.

We also obtain a corollary concerning partition relations. Recall that, for ordinals α, β, and γ, the statement $\alpha \rightarrow(\beta, \gamma)^{2}$ asserts that for every coloring $c:[\alpha]^{2} \rightarrow\{0,1\}$, either there exists $B \subseteq \alpha$ of order type β that is 0 -monochromatic, or there exists $C \subseteq \alpha$ of order type γ that is 1-monochromatic. By a recent theorem of Raghavan and Todorcevic [16], the existence of a κ^{+}-Souslin tree entails $\kappa^{+} \nrightarrow\left(\kappa^{+}, \log _{\kappa}\left(\kappa^{+}\right)+2\right)^{2}$, where $\log _{\kappa}\left(\kappa^{+}\right)$denotes the least cardinal v such that $\kappa^{v}>\kappa$. We thus obtain the following corollary.

Corollary 1.8 Suppose that λ is an uncountable cardinal. If CH_{λ} and

$$
\lambda^{++} \rightarrow\left(\lambda^{++}, \lambda^{+}+2\right)^{2}
$$

both hold, then λ^{++}is a Mahlo cardinal in L.
Note that by a theorem of Erdős and Rado, CH_{λ} entails $\lambda^{++} \rightarrow\left(\lambda^{++}, \lambda^{+}+1\right)^{2}$.

1.3 Notation and Conventions

If x is a set, π is a function, and $x \subseteq \operatorname{dom}(\pi)$, then $\pi^{\prime \prime} x$ denotes the set $\{\pi(y) \mid y \in x\}$. We write c.o.i. as a shorthand for "continuous, order-preserving injection." In particular, a c.o.i. is a map π from a set of ordinals into the ordinals such that π is continuous, order-preserving, and injective, and, moreover, $\operatorname{dom}(\pi)$ is closed in its supremum. Thus, when we write, for example, " $\pi: y \rightarrow \kappa^{+}$is a c.o.i.", it is implicit that y is closed in its supremum. For ordinals $\theta<\mu$, let $\binom{\mu}{\theta}:=\{\operatorname{Im}(\pi) \mid \pi: \theta \rightarrow \mu$ is a c.o.i. $\}$; i.e., $\binom{\mu}{\theta}$ consists of all closed copies of θ in μ.

For a set of ordinals $x, \operatorname{otp}(x)$ denotes the order type of x and, for all $i<\operatorname{otp}(x)$, $x(i)$ denotes the unique element α of x such that $\operatorname{otp}(x \cap \alpha)=i$. We write

$$
\begin{aligned}
\operatorname{ssup}(x) & :=\sup \{\alpha+1 \mid \alpha \in x\}, & \operatorname{acc}(x) & :=\{\alpha \in x \mid \sup (x \cap \alpha)=\alpha>0\} \\
\operatorname{nacc}(x) & :=x \backslash \operatorname{acc}(x), & \operatorname{acc}^{+}(x) & :=\{\alpha<\operatorname{ssup}(x) \mid \sup (x \cap \alpha)=\alpha>0\}, \\
\operatorname{cl}(x) & :=x \cup \operatorname{acc}^{+}(x) . & &
\end{aligned}
$$

By convention, $\operatorname{ssup}(\varnothing)=\sup (\varnothing)=0$. For sets of ordinals x and y, we write $x \sqsubseteq y$ if and only if y is an end-extension of x, i.e., $y \cap \operatorname{ssup}(x)=x$. For cardinals $\lambda<$ μ, let $E_{\lambda}^{\mu}:=\{\alpha<\mu \mid \operatorname{cf}(\alpha)=\lambda\}$, let $E_{<\lambda}^{\mu}:=\{\alpha<\mu \mid \operatorname{cf}(\alpha)<\lambda\}$, let $[\mu]^{<\lambda}:=$ $\left\{x \subseteq \mu||x|<\lambda\}\right.$, and let $[\mu]^{2}:=\{(\alpha, \beta) \mid \alpha<\beta<\mu\}$. Also, let H_{μ} denote the collection of all sets of hereditary cardinality less than μ.

Throughout the paper, κ stands for an arbitrary regular uncountable cardinal. For simplicity, the reader can assume that $\kappa=\aleph_{1}$.

2 The Forcing Axiom

We begin by introducing the class \mathcal{P}_{κ} of forcing notions that will be of interest.

Definition $2.1 \mathcal{P}_{\kappa}$ consists of all triples $\left(\mathbb{P}, \leq_{\mathbb{P}}, \mathbb{Q}\right)$ such that $\left(\mathbb{P}, \leq_{\mathbb{P}}\right)$ is a forcing notion, $\mathbb{1}_{\mathbb{P}} \in \mathbb{Q} \subseteq \mathbb{P}$, and all of the following requirements hold.
(1) (Realms) For all $p \in \mathbb{P}$, there is a unique $x_{p} \in\left[\kappa^{+}\right]^{<\kappa}$, which we refer to as the realm of p. The map $p \mapsto x_{p}$ is a projection from $\left(\mathbb{P}, \leq_{\mathbb{P}}\right)$ to $\left(\left[\kappa^{+}\right]^{<\kappa}, \supseteq\right)$:
(a) $x_{\mathbb{1}_{\mathbb{P}}}=\varnothing$;
(b) for all $q \leq \mathbb{P} p$, we have $x_{q} \supseteq x_{p}$;
(c) for all $p \in \mathbb{P}$ and $x \in\left[\kappa^{+}\right]^{<\kappa}$ with $x \supseteq x_{p}$, there is $q \leq_{\mathbb{P}} p$ with $x_{q}=x$.
(2) (Scope) For all $y \subseteq \kappa^{+}$, let $\mathbb{P}_{y}:=\left\{p \in \mathbb{P} \mid x_{p} \subseteq y\right\}$ and $\mathbb{Q}_{y}:=\mathbb{Q} \cap \mathbb{P}_{y}$. Then $\mathbb{P}_{\varnothing}=\left\{\mathbb{1}_{\mathbb{P}}\right\}$ and $\mathbb{P}_{\kappa} \subseteq H_{\kappa}$.
(3) (Actions of c.o.i.'s) For every $y \subseteq \kappa^{+}$and every c.o.i. $\pi: y \rightarrow \kappa^{+}, \pi$ acts on \mathbb{P}_{y} in such a way that, for all $p, q \in \mathbb{P}_{y}$:
(a) $\pi . p$ is in \mathbb{P} with $x_{\pi . p}=\pi^{\prime \prime} x_{p}$, and if $p \in \mathbb{Q}_{y}$, then $\pi . p$ is in \mathbb{Q};
(b) $\pi \cdot q \leq_{\mathbb{P}} \pi \cdot p$ if and only if $q \leq_{\mathbb{P}} p$;
(c) if π is the identity map, then $\pi \cdot p=p$;
(d) if $\pi^{\prime}: y^{\prime} \rightarrow \kappa^{+}$is a c.o.i. with $\operatorname{Im}(\pi) \subseteq y^{\prime}$, then $\pi^{\prime} .(\pi . p)=\left(\pi^{\prime} \circ \pi\right) . p$;
(e) if $\pi^{\prime}: y^{\prime} \rightarrow \kappa^{+}$is a c.o.i. with $x_{p} \subseteq y^{\prime}$, then $\pi \upharpoonright x_{p}=\pi^{\prime} \upharpoonright x_{p}$ implies that $\pi . p=$ $\pi^{\prime} . p$.
(4) (Restrictions) For all $p \in \mathbb{P}$ and $\alpha<\kappa^{+}$, there is a unique $\leq_{\mathbb{P}}$-least condition r such that $x_{r}=x_{p} \cap \alpha$ and $p \leq_{\mathbb{P}} r$. This condition r is referred to as $p \vDash \alpha$. Moreover:
(a) if $p \in \mathbb{Q}$, then $p \neq \alpha \in \mathbb{Q}$;
(b) if $q \leq_{\mathbb{P}} p$, then $q \vDash \alpha \leq_{\mathbb{P}} p \vDash \alpha$.
(5) (Vertical limits) Suppose that $\xi<\kappa$ and $\left\langle p_{\eta} \mid \eta<\xi\right\rangle$ is a sequence of conditions from \mathbb{P} such that, for all $\eta<\eta^{\prime}<\xi$, we have $p_{\eta}=p_{\eta^{\prime}} \uparrow \operatorname{ssup}\left(x_{p_{\eta}}\right)$. Then there is a unique condition $p \in \mathbb{P}$ such that $x_{p}=\bigcup_{\eta<\xi} x_{p_{\eta}}$ and, for all $\eta<\xi$, $p_{\eta}=$ $p \vDash \operatorname{ssup}\left(x_{p_{\eta}}\right)$. Moreover, if $p_{\eta} \in \mathbb{Q}$ for all $\eta<\xi$, then $p \in \mathbb{Q}$.
(6) (Sharpness) For all $q \in \mathbb{Q}, x_{q}$ is closed in its supremum. Moreover, for all $p \in \mathbb{P}$, there is $q \leq_{\mathbb{P}} p$ with $x_{q}=\operatorname{cl}\left(x_{p}\right)$ such that $q \in \mathbb{Q}$.
(7) (Controlled closure) Suppose that $\xi<\kappa$ and $\left\langle q_{\eta} \mid \eta<\xi\right\rangle$ is a decreasing sequence of conditions from \mathbb{Q}. Let $x:=\bigcup_{\eta<\xi} x_{q_{\eta}}$. Suppose that $\alpha<\operatorname{ssup}(x)$ and that $r \in \mathbb{Q}_{\operatorname{ssup}(x \cap \alpha)}$ is a lower bound for $\left\langle q_{\eta} \vDash \alpha \mid \eta<\xi\right\rangle$. Then there is $q \in \mathbb{Q}$ such that
(a) $q \vDash \operatorname{ssup}(x \cap \alpha)=r$;
(b) $x_{q}=\operatorname{cl}\left(x_{r} \cup x\right)$;
(c) q is a lower bound for $\left\langle q_{\eta} \mid \eta<\xi\right\rangle$.
(8) (Amalgamation) For all $p \in \mathbb{Q}, \alpha<\operatorname{ssup}\left(x_{p}\right)$, and $q \in \mathbb{P}_{\alpha}$ with $q \leq \mathbb{P} p \vDash \alpha$, we have that p and q have a unique $\leq_{\mathbb{P}}$-greatest lower bound r. Moreover, it is the case that $x_{r}=x_{q} \cup x_{p}$ and $r \vDash \alpha=q$.

We now introduce the class of families of dense sets that we will be interested in meeting.

Definition 2.2 (Sharply dense set) Suppose that $\left(\mathbb{P}, \leq_{\mathbb{P}}, \mathbb{Q}\right) \in \mathcal{P}_{\kappa}$ and D is a nonempty subset of \mathbb{P}. Denote $x_{D}:=\bigcap\left\{x_{p} \mid p \in D\right\}$. We say that D is sharply dense if and only if for every $p \in \mathbb{P}$, there is $q \in D$ with $q \leq \mathbb{P} p$ such that $x_{q}=\operatorname{cl}\left(x_{p} \cup x_{D}\right)$.

Definition 2.3 (Sharply dense system) Suppose that $\left(\mathbb{P}, \leq_{\mathbb{P}}, \mathbb{Q}\right) \in \mathcal{P}_{\kappa}$. We say that $\mathcal{D} \subseteq \mathcal{P}(\mathbb{P})$ is a sharply dense system if and only if there exists an ordinal $\theta_{\mathcal{D}}<\kappa$ such that \mathcal{D} is of the form $\left\{D_{x} \left\lvert\, x \in\binom{\kappa^{+}}{\theta_{\mathcal{D}}}\right.\right\}$, where for all $x \in\binom{\kappa^{+}}{\theta_{\mathcal{D}}}$:

- D_{x} is sharply dense with $x_{D_{x}}=x$;
- for every $p \in \mathbb{P}$, and every c.o.i. $\pi: y \rightarrow \kappa^{+}$with $x \subseteq x_{p} \subseteq y$, we have $p \in D_{x}$ if and only if $\pi . p \in D_{\pi^{\prime} x}$.

Definition 2.4 Suppose that $\left(\mathbb{P}, \leq_{\mathbb{P}}, \mathbb{Q}\right) \in \mathcal{P}_{\kappa}$ and \mathcal{D} is a sharply dense system. We say that a filter G on \mathbb{P} meets \mathcal{D} everywhere if and only if, for all $D \in \mathcal{D}, G \cap D \neq \varnothing$.

We are now ready to formulate our forcing axiom for sharply dense systems.
Definition 2.5 $\operatorname{SDFA}\left(\mathcal{P}_{\kappa}\right)$ is the assertion that, for every $(\mathbb{P}, \leq \mathbb{P}, \mathbb{Q}) \in \mathcal{P}_{\kappa}$ and every collection $\left\{\mathcal{D}_{i} \mid i<\kappa\right\}$ of sharply dense systems, there exists a filter G on \mathbb{P} such that, for all $i<\kappa, G$ meets \mathcal{D}_{i} everywhere.

3 Applications

In this section we present a few applications of $\operatorname{SDFA}\left(\mathcal{P}_{\kappa}\right)$. First, let us point out two features of members of the class \mathcal{P}_{κ}.

Proposition 3.1 Suppose that $\left(\mathbb{P}, \leq_{\mathbb{P}}, \mathbb{Q}\right) \in \mathcal{P}_{\kappa}$.
(i) Then $\left(\mathbb{Q}, \leq_{\mathbb{P}}\right)$ is κ-closed.
(ii) For all $x \subseteq \kappa^{+}$, denote $D_{x}:=\left\{q \in \mathbb{Q} \mid x_{q} \supseteq x\right\}$. Then for all $\theta<\kappa,\left\{D_{x} \left\lvert\, x \in\binom{\kappa^{+}}{\theta}\right.\right\}$ is a sharply dense system.

Proof (i) Suppose that $\xi<\kappa$ and $\vec{q}=\left\langle q_{\eta} \mid \eta<\xi\right\rangle$ is a decreasing sequence of conditions from \mathbb{Q}. Note that if $x:=\bigcup_{\eta<\xi} x_{q_{\eta}}$ is empty, then $\mathbb{1}_{\mathbb{P}}$ is a lower bound for \vec{q}, so we may assume that x is nonempty. Since $\mathbb{1}_{\mathbb{P}} \in \mathbb{Q}$ and $\mathbb{P}_{0}=\left\{\mathbb{1}_{\mathbb{P}}\right\}$, we infer from clause (4) (of Definition 2.1) that $\left\{q_{\eta} \vDash 0 \mid \eta<\xi\right\}=\mathbb{Q}_{0}=\left\{\mathbb{1}_{\mathbb{P}}\right\}$. So, by clause (7), using $\alpha:=0$ and $r:=\mathbb{1}_{\mathbb{P}}$, we infer that \vec{q} admits a lower bound.

Part (ii) can be inferred from clauses (3a) and (6) of Definition 2.1.
Next, we show that the actions of c.o.i.'s behave as expected with respect to the restriction operation.

Proposition 3.2 Suppose that $\left(\mathbb{P}, \leq_{\mathbb{P}}, \mathbb{Q}\right) \in \mathcal{P}_{\kappa}, p \in \mathbb{P}, \alpha \in x_{p}$, and $\pi: y \rightarrow \kappa^{+}$is a c.o.i. with $x_{p} \subseteq y \subseteq \kappa^{+}$. Then π. $(p \vDash \alpha)=(\pi . p) \vDash \pi(\alpha)$.

Proof Let $r:=\pi$. $(p \notin \alpha)$. Since $p \leq_{\mathbb{P}} p \vDash \alpha$, clause (3b) (of Definition 2.1) implies that $\pi . p \leq_{\mathbb{P}} r$. In addition, by clauses (2a) and (4), and since $\alpha \in y$, we have:

$$
x_{r}=\pi^{\prime \prime} x_{p \nmid \alpha}=\pi^{" \prime}\left(x_{p} \cap \alpha\right)=\pi^{\prime \prime} x_{p} \cap \pi^{\prime "} \alpha=\pi^{\prime \prime} x_{p} \cap \pi(\alpha)=x_{\pi . p} \cap \pi(\alpha) .
$$

This shows that r is a candidate for being $(\pi \cdot p) \vDash \pi(\alpha)$. To finish the proof, fix an arbitrary $q \in \mathbb{P}$ such that $x_{q}=x_{\pi . p} \cap \pi(\alpha)$ and $\pi . p \leq_{\mathbb{P}} q$. We have to verify that $r \leq \mathbb{P} q$.

Let $\pi^{\prime}:=\{(\delta, \varepsilon) \mid(\varepsilon, \delta) \in \pi\}$, so that π^{\prime} is a c.o.i. and $\pi^{\prime} \circ \pi$ and $\pi \circ \pi^{\prime}$ are the identity maps on their respective domains. Since $\pi . p \leq_{\mathbb{P}} q$ and $x_{q} \subseteq \operatorname{Im}(\pi)$, and by
clauses (3c) and (3d), we have $p=\pi^{\prime} .(\pi \cdot p) \leq \mathbb{P} \pi^{\prime} . q$. Moreover, $x_{\pi^{\prime} . q}=x_{p} \cap \alpha$, so, by clause (4), $p \neq \alpha \leq \mathbb{P} \pi^{\prime}$.q. Now another application of clauses (3b) and (3c) yields $r \leq \mathbb{P} q$.

3.1 A Warm-up Example

Let us point out that $\mathbb{P}:=\operatorname{Add}\left(\kappa, \kappa^{+}\right)$belongs to the class \mathcal{P}_{κ}. Specifically, $p \in \mathbb{P}$ if and only if p is a function from a subset of $\kappa^{+} \times \kappa$ to 2 and $|p|<\kappa$. Let $p \leq_{\mathbb{P}} q$ if and only if $p \supseteq q$. Let $x_{p}:=\left\{\beta \in \kappa^{+} \mid \exists \eta[(\beta, \eta) \in \operatorname{dom}(p)]\right\}$. Let $\mathbb{Q}:=\{p \in \mathbb{P} \mid$ $\left.x_{p}=\operatorname{cl}\left(x_{p}\right)\right\}$. Whenever π is a c.o.i. from a subset of κ^{+}to κ^{+}and $p \in \mathbb{P}_{\mathrm{dom}(\pi)}$, we let $\pi . p:=\{((\pi(\beta), \eta), i) \mid((\beta, \eta), i) \in p\}$. We also let $p \neq \alpha:=\{((\beta, \eta), i) \in p \mid \beta<\alpha\}$. The reader is now encouraged to verify that, with this definition, $(\mathbb{P}, \leq \mathbb{P}, \mathbb{Q}) \in \mathcal{P}_{\kappa}$.

3.2 Cardinal Arithmetic

In this subsection, we identify a simple member of \mathcal{P}_{κ} and use it to prove that $\operatorname{SDFA}\left(\mathcal{P}_{\kappa}\right)$ implies $\kappa^{<\kappa}=\kappa$.

Definition 3.3 \mathbb{P} consists of all pairs $p=(x, f)$ such that the following hold:
(1) $x \in\left[\kappa^{+}\right]^{<\kappa}$;
(2) f is a function satisfying
(a) $|f|<\kappa$;
(b) $\operatorname{dom}(f) \subseteq x \times \kappa$;
(c) $f(\beta, \eta) \subseteq \beta \cap x$ for all $(\beta, \eta) \in \operatorname{dom}(f)$.

The coordinates of a condition $p \in \mathbb{P}$ will often be identified as x_{p} and f_{p}, respectively.

Definition 3.4 For all $p, q \in \mathbb{P}$, we let $q \leq \mathbb{P} p$ if and only if $x_{q} \supseteq x_{p}$ and $f_{q} \supseteq f_{p}$.
Definition 3.5 $\mathbb{Q}:=\left\{p \in \mathbb{P} \mid x_{p}=\operatorname{cl}\left(x_{p}\right)\right\}$.
Definition 3.6 Suppose that π is a c.o.i. from a subset of κ^{+}to κ^{+}. For each $p \in$ $\mathbb{P}_{\mathrm{dom}(\pi)}$, we let $\pi . p$ be the condition (x, f) such that
(1) $x=\pi^{\prime \prime} x_{p}$;
(2) $f=\left\{\left((\pi(\beta), \eta), \pi^{\prime \prime} z\right) \mid((\beta, \eta), z) \in f_{p}\right\}$.

Definition 3.7 Suppose that $p \in \mathbb{P}$ and $\alpha<\kappa^{+}$. Then we define $p \vDash \alpha$ to be the condition (x, f) such that
(1) $x=x_{p} \cap \alpha$;
(2) $f=\left\{((\beta, \eta), z) \in f_{p} \mid \beta<\alpha\right\}$.

It is readily verified that, with these definitions, $\left(\mathbb{P}, \leq_{\mathbb{P}}, \mathbb{Q}\right)$ is a member of \mathcal{P}_{κ}.
Theorem 3.8 Suppose $\kappa^{<\kappa}>\kappa$. Then $(\mathbb{P}, \leq \mathbb{P}, \mathbb{Q})$ witnesses that $\operatorname{SDFA}\left(\mathcal{P}_{\kappa}\right)$ fails.
Proof We commence with a simple observation.

Claim 3.8.1 There exists a cardinal $\lambda<\kappa$ for which $\left|\binom{\lambda}{\lambda}\right|>\kappa$.
Proof Since κ is regular, we have $\kappa^{<\kappa}=\sum_{\lambda<\kappa} \lambda^{\lambda}$. So, since $\kappa^{<\kappa} \geq \kappa^{+}$and κ^{+}is regular, we can fix a cardinal $\lambda<\kappa$ such that $\lambda^{\lambda} \geq \kappa^{+}$. For every $A \subseteq \lambda$, let

$$
C_{A}:=\operatorname{acc}(\lambda) \cup\{\alpha+1 \mid \alpha \in A\} .
$$

Then $A \mapsto C_{A}$ is an injection from $\mathcal{P}(\lambda)$ to $\binom{\lambda}{\lambda}$, and we are done.
Fix a cardinal $\lambda<\kappa$ such that $\left|\binom{\lambda}{\lambda}\right|>\kappa$. For each $x \in\binom{\kappa^{+}}{\lambda+1}$, let D_{x} be the set of all conditions $\left(x_{p}, f_{p}\right) \in \mathbb{P}$ satisfying

- $x \subseteq x_{p}$;
- there is $\eta<\kappa$ with $(\max (x), \eta) \in \operatorname{dom}\left(f_{p}\right)$ such that

$$
f_{p}(\max (x), \eta)=x \cap \max (x)
$$

Evidently, $\mathcal{D}:=\left\{D_{x} \left\lvert\, x \in\binom{\kappa^{+}}{\lambda+1}\right.\right\}$ is a sharply dense system.
Towards a contradiction, suppose that $\operatorname{SDFA}\left(\mathcal{P}_{\kappa}\right)$ holds. In particular, there exists a filter G on \mathbb{P} that meets \mathcal{D} everywhere. Let $f:=\bigcup_{p \in G} f_{p}$ so that f is a function from a (possibly proper) subset of $\kappa^{+} \times \kappa$ to $\mathcal{P}\left(\kappa^{+}\right)$. Put

$$
\Lambda:=\{f(\lambda, \eta) \mid \exists \eta<\kappa[(\lambda, \eta) \in \operatorname{dom}(f)]\}
$$

Clearly, $|\Lambda| \leq \kappa$. Finally, let $C \in\binom{\lambda}{\lambda}$ be arbitrary. Since $C \cup\{\lambda\} \in\binom{\kappa^{+}}{\lambda+1}$, we have $G \cap D_{C \cup\{\lambda\}} \neq \varnothing$, and hence $C \in \Lambda$. It follows that $\binom{\lambda}{\lambda} \subseteq \Lambda$, contradicting the fact that $\left|\binom{\lambda}{\lambda}\right|>\kappa \geq|\Lambda|$.

Corollary 3.9 $\operatorname{SDFA}\left(\mathcal{P}_{\kappa}\right)$ entails $\kappa^{<\kappa}=\kappa$.

3.3 Baumgartner's Square

In unpublished work, Baumgartner introduced the principle \square_{κ}^{B}, which is a natural weakening of Jensen's \square_{κ} principle.

Definition 3.10 $\mathrm{A} \square_{\kappa}^{B}$-sequence is a sequence $\left\langle C_{\beta} \mid \beta \in \Gamma\right\rangle$ that satisfies
(1) $E_{\kappa}^{\kappa^{+}} \subseteq \Gamma \subseteq \operatorname{acc}\left(\kappa^{+}\right)$;
(2) for all $\beta \in \Gamma, C_{\beta}$ is club in β and $\operatorname{otp}\left(C_{\beta}\right) \leq \kappa$;
(3) for all $\beta \in \Gamma$ and all $\alpha \in \operatorname{acc}\left(C_{\beta}\right)$, we have $\alpha \in \Gamma$ and $C_{\alpha}=C_{\beta} \cap \alpha$.

The principle \square_{κ}^{B} asserts the existence of a \square_{κ}^{B}-sequence. ${ }^{1}$
Some basic facts about \square_{κ}^{B} can be found in [30], where it goes by the name "weak \square_{κ}." In particular, it is shown in [30] that \square_{κ}^{B} follows from the existence of a $(\kappa, 1)$-morass.

Theorem 3.11 Suppose that $\operatorname{SDFA}\left(\mathcal{P}_{\kappa}\right)$ holds. Then so does \square_{κ}^{B}.

[^1]The rest of this subsection is devoted to proving Theorem 3.11. We must first identify a relevant member of \mathcal{P}_{κ}, which will be a slight modification of the poset used to $\operatorname{add} \square_{\kappa}^{B}$ in $[30, \$ 1.3]$.

Definition 3.12 \mathbb{P} consists of all pairs $p=(x, f)$ satisfying the following:
(1) $x \in\left[\kappa^{+}\right]^{<\kappa}$;
(2) f is a function from x to $\mathcal{P}(x)$ such that for all $\beta \in x$:
(a) $f(\beta)$ is a closed subset of β (we say that c is a closed subset of β if and only if $c \subseteq \beta$ and for every $\alpha<\beta, c \cap \alpha \neq \varnothing \Rightarrow \sup (c \cap \alpha) \in c)$;
(b) for all $\alpha \in \operatorname{acc}(f(\beta))$, we have $f(\alpha)=f(\beta) \cap \alpha$.

The coordinates of a condition $p \in \mathbb{P}$ will often be identified as x_{p} and f_{p}, respectively.

Definition 3.13 For all $p, q \in \mathbb{P}$, we let $q \leq \mathbb{P} p$ if and only if:

- $x_{p} \subseteq x_{q}$;
- for all $\beta \in x_{p}$, we have $f_{p}(\beta) \subseteq f_{q}(\beta)$;
- for all $\beta \in x_{p}$, if $\sup \left(x_{p} \cap \beta\right)=\beta$, then $f_{q}(\beta)=f_{p}(\beta)$.

Definition 3.14 \mathbb{Q} is the set of all conditions $p \in \mathbb{P}$ such that
(1) $x_{p}=\operatorname{cl}\left(x_{p}\right)$;
(2) for all $\beta \in \operatorname{nacc}\left(x_{p}\right) \backslash\left\{\min \left(x_{p}\right)\right\}$, we have $\max \left(f_{p}(\beta)\right)=\max \left(x_{p} \cap \beta\right)$.

In order to show that $\left(\mathbb{P}, \leq_{\mathbb{P}}, \mathbb{Q}\right) \in \mathcal{P}_{\kappa}$, we must define the actions of c.o.i.'s on \mathbb{P} and a restriction operation.

Definition 3.15 Suppose that π is a c.o.i. from a subset of κ^{+}to κ^{+}. For each $p \in$ $\mathbb{P}_{\mathrm{dom}(\pi)}$, we define $\pi . p$ to be the condition $(x, f) \in \mathbb{P}$ such that
(1) $x=\pi " x_{p}$;
(2) for all $\alpha \in x_{p}$, we have $f(\pi(\alpha))=\pi^{\prime \prime} f_{p}(\alpha)$.

Definition 3.16 Suppose that $p \in \mathbb{P}$ and $\alpha<\kappa^{+}$. Then $p \vDash \alpha$ is the condition $(x, f) \in$ \mathbb{P} such that $x=x_{p} \cap \alpha$ and $f=f_{p} \upharpoonright x$.

Naturally, for each $p \in \mathbb{P}$, we let x_{p} denote the realm of p. With these definitions, it is immediate that $(\mathbb{P}, \leq \mathbb{P}, \mathbb{Q})$ satisfies clauses (1)-(5) of Definition 2.1 . We now verify clauses (6)-(8), in order.

Lemma 3.17 If $p \in \mathbb{P}$, then there is $q \in \mathbb{Q}$ with $q \leq \mathbb{P} p$ such that $x_{q}=\operatorname{cl}\left(x_{p}\right)$.
Proof Set $x_{q}:=\operatorname{cl}\left(x_{p}\right)$, so that $\operatorname{nacc}\left(x_{q}\right)=\operatorname{nacc}\left(x_{p}\right)$ and $\operatorname{acc}\left(x_{q}\right) \supseteq \operatorname{acc}\left(x_{p}\right)$. Next, define $f_{q}: x_{q} \rightarrow \mathcal{P}\left(x_{q}\right)$ by

$$
f_{q}(\alpha):= \begin{cases}f_{p}(\alpha) \cup\left\{\max \left(x_{q} \cap \alpha\right)\right\} & \text { if } \alpha \in \operatorname{nacc}\left(x_{q}\right) \backslash\left\{\min \left(x_{q}\right)\right\} \\ \varnothing & \text { if } \alpha \in x_{q} \backslash x_{p} \\ f_{p}(\alpha) & \text { otherwise }\end{cases}
$$

It is clear that $q:=\left(x_{q}, f_{q}\right)$ is as desired.
Lemma 3.18 Suppose that $\xi<\kappa$ and $\left\langle q_{\eta} \mid \eta<\xi\right\rangle$ is a decreasing sequence of conditions from \mathbb{Q}. Let $x:=\bigcup_{\eta<\xi} x_{q_{\eta}}$, and suppose that $\alpha<\operatorname{ssup}(x)$ and $r \in \mathbb{Q}_{\operatorname{ssup}(x \cap \alpha)}$ is a lower bound for $\left\langle q_{\eta} \vDash \alpha \mid \eta<\xi\right\rangle$. Then there is $q \in \mathbb{Q}$ such that
(1) $q \vDash \operatorname{ssup}(x \cap \alpha)=r$;
(2) $x_{q}=\operatorname{cl}\left(x_{r} \cup x\right)$;
(3) q is a lower bound for $\left\langle q_{\eta} \mid \eta<\xi\right\rangle$.

Proof We will construct a condition $q=\left(x_{q}, f_{q}\right)$ as desired. We are required to let $x_{q}:=\operatorname{cl}\left(x_{r} \cup x\right)$ and to ensure that $f_{q} \upharpoonright x_{r}:=f_{r}$. As $x_{r} \subseteq x_{q}$, it remains to determine $f_{q} \upharpoonright\left(x_{q} \backslash \operatorname{ssup}(x \cap \alpha)\right)$. We will define $f_{q}(\beta)$ by recursion on $\beta \in\left(x_{q} \backslash \operatorname{ssup}(x \cap \alpha)\right)$, maintaining the hypothesis that $\left(x_{q} \cap(\beta+1), f_{q} \upharpoonright(\beta+1)\right)$ is an element of \mathbb{Q} and a lower bound for $\left\langle q_{\eta} \uparrow(\beta+1) \mid \eta<\xi\right\rangle$. For notational ease, if $\beta \in \operatorname{nacc}\left(x_{q}\right) \backslash\left\{\min \left(x_{q}\right)\right\}$, then let $\beta^{-}:=\max \left(x_{q} \cap \beta\right)$.
\rightarrow If $\beta \in \operatorname{acc}(x)$, then fix $\eta_{\beta}<\xi$ such that $\beta \in x_{q_{\eta_{\beta}}}$, and let $f_{q}(\beta):=\bigcup_{\eta \in\left[\eta_{\beta}, \xi\right)} f_{q_{\eta}}(\beta)$. There are two possibilities to consider here. If there is $\eta^{*} \in\left[\eta_{\beta}, \xi\right)$ such that $\sup \left(x_{q_{\eta^{*}}} \cap\right.$ $\beta)=\beta$, then it follows from Definition 3.13 that $f_{q}(\beta)=f_{q_{\eta^{*}}}(\beta)$.

If, on the other hand, there is no such η^{*}, then the fact that each $x_{q_{\eta}}$ is closed in its supremum implies that, for all $\eta \in\left[\eta_{\beta}, \xi\right)$, we have $\beta \in \operatorname{nacc}\left(x_{q_{\eta}}\right)$ and hence $\max \left(f_{q_{\eta}}(\beta)\right)=\max \left(x_{q_{\eta}} \cap \beta\right)$. Since $\beta \in \operatorname{acc}(x)$, it then follows that $f_{q}(\beta)$ is club in β.

- If $\beta \in \operatorname{acc}^{+}(x) \backslash x$, then let $\gamma:=\min (x \backslash(\beta+1))$. There is $\eta_{\beta}<\xi$ such that for all $\eta \in\left[\eta_{\beta}, \xi\right)$, we have $\gamma \in x_{q_{\eta}}$ and $x_{q_{\eta}} \cap \beta \neq \varnothing$. For all such η, let $\delta_{\eta}:=\max \left(x_{q_{\eta}} \cap \beta\right)$. It follows that $\sup \left\{\delta_{\eta} \mid \eta \in\left[\eta_{\beta}, \xi\right)\right\}=\beta$ and, for all $\eta \in\left[\eta_{\beta}, \xi\right)$, we have $\max \left(f_{q_{\eta}}(\gamma)\right)=$ δ_{η}. We can therefore let $f_{q}(\beta):=\bigcup_{\eta \in\left[\eta_{\beta}, \xi\right)} f_{q_{\eta}}(\gamma)$.
- If $\beta \in \operatorname{nacc}(x)$ and $\beta^{-} \notin x$, then, by the construction in the previous case, we have $f_{q}\left(\beta^{-}\right)=\cup_{\eta<\xi} f_{q_{\eta}}(\beta)$. We can therefore let $f_{q}(\beta):=f_{q}\left(\beta^{-}\right) \cup\left\{\beta^{-}\right\}$.
- If $\beta \in \operatorname{nacc}(x)$ and $\beta^{-} \in x$, then there is $\eta_{\beta}<\xi$ such that $\left\{\beta, \beta^{-}\right\} \subseteq x_{q_{\eta_{\beta}}}$. But then, for all $\eta \in\left[\eta_{\beta}, \xi\right)$, we have $f_{q_{\eta}}(\beta)=f_{q_{\eta_{\beta}}}(\beta)$ and $\max \left(f_{q_{\eta}}(\beta)\right)=\beta^{-}$. We can therefore let $f_{q}(\beta):=f_{q_{\eta_{\beta}}}(\beta)$.

It is easily verified that q, constructed in this manner, is as desired.
Lemma 3.19 Suppose that $p \in \mathbb{Q}, \alpha<\operatorname{ssup}\left(x_{p}\right), q \in \mathbb{P}_{\alpha}$, and $q \leq \mathbb{P} p \vDash \alpha$. Then p and q have $a \leq_{\mathbb{P}}$-greatest lower bound, r. Moreover, we have $x_{r}=x_{p} \cup x_{q}$ and $r \vDash \alpha=q$.

Proof Let $x_{r}:=x_{p} \cup x_{q}$, so that $x_{r} \cap \alpha=x_{q}$. Define $f_{r}: x_{r} \rightarrow \mathcal{P}\left(x_{r}\right)$ by

$$
f_{r}(\beta):= \begin{cases}f_{q}(\beta) & \text { if } \beta<\alpha \\ f_{p}(\beta) & \text { otherwise }\end{cases}
$$

To see that $r:=\left(x_{r}, f_{r}\right)$ is a condition, we fix arbitrary $\beta \in x_{r}$ and $\gamma \in \operatorname{acc}\left(f_{r}(\beta)\right)$, and verify that $f_{r}(\gamma)=f_{r}(\beta) \cap \gamma$. To avoid trivialities, suppose that $\beta \geq \alpha>\gamma$. Since $f_{r}(\beta)=f_{p}(\beta) \subseteq x_{p}$, we have $\sup \left(x_{p} \cap \gamma\right)=\gamma$, so, since $q \leq_{\mathbb{P}} p \vDash \alpha$, we infer that $f_{q}(\gamma)=f_{p}(\gamma)=f_{p}(\beta) \cap \gamma$, i.e., $f_{r}(\gamma)=f_{r}(\beta) \cap \gamma$.

It is now readily checked that r has the desired properties.

It follows that $(\mathbb{P}, \leq \mathbb{P}, \mathbb{Q}) \in \mathcal{P}_{\kappa}$. For each $x \in\binom{\kappa^{+}}{3}$, let $D_{x}:=\left\{p \in \mathbb{Q} \mid x_{p} \supseteq x\right\}$. By Proposition 3.1(ii), $\mathcal{D}:=\left\{D_{x} \left\lvert\, x \in\binom{\kappa^{+}}{3}\right.\right\}$ is a sharply dense system, so we can apply $\operatorname{SDFA}\left(\mathcal{P}_{\kappa}\right)$ to obtain a filter G on \mathbb{P} that meets \mathcal{D} everywhere. For all $\beta \in E_{\kappa}^{\kappa^{+}}$, let $C_{\beta}:=\bigcup\left\{f_{p}(\beta) \mid p \in G, \beta \in x_{p}\right\}$. Note that for all $p \in G$ and $\beta \in x_{p}$, we have $\left|f_{p}(\beta)\right| \leq\left|x_{p}\right|<\kappa$.

Claim 3.20 Suppose that $\beta, \gamma \in E_{\kappa}^{\kappa^{+}}$. Then the following hold.
(i) C_{β} is club in β and $\operatorname{otp}\left(C_{\beta}\right)=\kappa$;
(ii) For all $\alpha \in \operatorname{acc}\left(C_{\beta}\right) \cap \operatorname{acc}\left(C_{\gamma}\right)$, we have $C_{\beta} \cap \alpha=C_{\gamma} \cap \alpha$.

Proof (i) By the definition of \mathbb{P} and the fact that G is a filter, it follows that C_{β} is a subset of β, closed in its supremum, such that every proper initial segment of C_{β} has size $<\kappa$. It thus suffices to verify that C_{β} is unbounded in β. To this end, fix $\alpha<\beta$. Since G meets \mathcal{D} everywhere, we can find $p \in G \cap D_{\{\alpha, \beta, \beta+1\}}$. Since $\operatorname{cf}(\beta)=\kappa$ and $\left|x_{p}\right|<\kappa$, we have $\beta \in \operatorname{nacc}\left(x_{p}\right)$. Therefore, since $p \in \mathbb{Q}$, we have $\max \left(f_{p}(\beta)\right)=$ $\max \left(x_{p} \cap \beta\right) \geq \alpha$, so $C_{\beta} \cap[\alpha, \beta) \neq \varnothing$.
(ii) Given $\alpha \in \operatorname{acc}\left(C_{\beta}\right) \cap \operatorname{acc}\left(C_{\gamma}\right)$, we fix $p \in G \cap D_{\{\alpha, \beta, \gamma\}}$. As in the previous case, we have $\max \left(f_{p}(\beta)\right) \geq \alpha$ and $\max \left(f_{p}(\gamma)\right) \geq \alpha$. Consequently, $C_{\beta} \cap \alpha=f_{p}(\beta) \cap \alpha$ and $C_{\gamma} \cap \alpha=f_{p}(\gamma) \cap \alpha$. By the definition of \mathbb{P}, it then follows that $C_{\beta} \cap \alpha=f_{p}(\alpha)=$ $C_{\gamma} \cap \alpha$.

Let $\Gamma:=E_{\kappa}^{\kappa^{+}} \cup \bigcup\left\{\operatorname{acc}\left(C_{\beta}\right) \mid \beta \in E_{\kappa}^{\kappa^{+}}\right\}$. For each $\alpha \in \Gamma \backslash E_{\kappa}^{\kappa^{+}}$, find $\beta \in E_{\kappa}^{\kappa^{+}}$such that $\alpha \in \operatorname{acc}\left(C_{\beta}\right)$, and let $C_{\alpha}:=C_{\beta} \cap \alpha$. By the preceding Claim, this is independent of the choice of β. It follows that $\left\langle C_{\alpha} \mid \alpha \in \Gamma\right\rangle$ is a \square_{κ}^{B}-sequence, thus completing the proof of Theorem 3.11.

3.4 Strong Stationary Coding Sets

In [21], Shelah and Stanley derive a stationary coding set from the existence of a $(\kappa, 1)$-morass with built-in \diamond. Specifically, they obtain a stationary subset \mathcal{S} of $\left[\kappa^{+}\right]^{<\kappa}$ on which the map $x \mapsto \sup (x)$ is one-to-one. By Theorem 3.11 and the next proposition, this also follows from the forcing axiom $\operatorname{SDFA}\left(\mathcal{P}_{\kappa}\right)$.

Proposition 3.21 (Folklore) If \square_{κ}^{B} holds, then there exists a stationary subset of $\left[\kappa^{+}\right]^{<\kappa}$ on which the map $x \mapsto \sup (x)$ is one-to-one.

Proof Let $\left\langle C_{\beta} \mid \beta \in \Gamma\right\rangle$ be a \square_{κ}^{B}-sequence. Enlarge it to a sequence $\vec{C}=\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$ by letting, for all limit $\beta \in \kappa \backslash \Gamma, C_{\beta}$ be an arbitrary club in β of order type $\operatorname{cf}(\beta)$, and letting $C_{\beta+1}:=\{\beta\}$ for all $\beta<\kappa$.

Let $\rho_{1}^{\vec{C}}:\left[\kappa^{+}\right]^{2} \rightarrow \kappa$ denote the associated maximal weight function from [27, $\left.\S 6.2\right]$. For each $\beta<\kappa^{+}$, let $\rho_{1 \beta}: \beta \rightarrow \kappa$ denote the fiber map $\rho_{1}^{\vec{C}}(\cdot, \beta)$. Note that

- for all $\beta<\kappa^{+}, \rho_{1 \beta}\left[C_{\beta}\right]=\operatorname{otp}\left(C_{\beta}\right)$;
- for all $\beta<\kappa^{+}, \rho_{1 \beta}$ is $(<\kappa)$-to-1;
- for all $\beta \in \Gamma$ and $\alpha \in \operatorname{acc}\left(C_{\beta}\right)$, we have $\rho_{1 \alpha} \subseteq \rho_{1 \beta}$.

In particular, for every $\beta \in E_{<\kappa}^{\kappa^{+}}$, we have that

$$
x_{\beta}:=\left(\rho_{1 \beta}\right)^{-1}\left[\operatorname{otp}\left(C_{\beta}\right)\right]
$$

is a cofinal subset of β of size $<\kappa$. Thus, we are left with proving the following claim.
Claim 3.22 $\left\{x_{\beta} \mid \beta \in E_{<\kappa}^{\kappa^{+}}\right\}$is stationary in $\left[\kappa^{+}\right]^{<\kappa}$.
Proof Given a function $f:\left[\kappa^{+}\right]^{<\omega} \rightarrow \kappa^{+}$, let us fix some $\gamma \in E_{\kappa}^{\kappa^{+}}$such that $f^{\text {"c }}[\gamma]^{<\omega} \subseteq$ γ. Define $g: \kappa \rightarrow \kappa$ by letting

$$
g(\varepsilon):=\sup \left(\rho_{1 \gamma} " f^{\prime \prime}\left[\rho_{1 \gamma}^{-1}[\varepsilon]\right]^{<\omega}\right) \text { for all } \varepsilon<\kappa .
$$

Fix $\epsilon \in \operatorname{acc}(\kappa)$ such that $g[\epsilon] \subseteq \epsilon$. Put $\beta:=C_{\gamma}(\epsilon)$, so that $\operatorname{otp}\left(C_{\beta}\right)=\epsilon$ and $\rho_{1 \beta} \subseteq \rho_{1 \gamma}$. To see that $f^{"}\left[x_{\beta}\right]^{<\omega} \subseteq x_{\beta}$, let $\left\{\alpha_{i} \mid i<n\right\} \in\left[x_{\beta}\right]^{<\omega}$ be arbitrary. Since $x_{\beta}=\left(\rho_{1 \beta}\right)^{-1}[\epsilon]$ and $\rho_{1 \beta} \subseteq \rho_{1 \gamma}$, we have

$$
\left\{\rho_{1 \gamma}\left(\alpha_{i}\right) \mid i<n\right\}=\left\{\rho_{1 \beta}\left(\alpha_{i}\right) \mid i<n\right\} \in[\epsilon]^{<\omega}
$$

Fix a large enough $\varepsilon<\epsilon$ such that $\left\{\alpha_{i} \mid i<n\right\} \in\left[\rho_{1 \gamma}^{-1}[\varepsilon]\right]^{<\omega}$. Since $g(\varepsilon)<\epsilon$, we then have $f\left(\left\{\alpha_{i} \mid i<n\right\}\right) \in x_{\beta}$.

This completes the proof of Proposition 3.21.
Note that, by $[8, \S 3]$, strong stationary coding sets can be seen as a GCH-free version of \diamond. For more information on stationary coding sets, see [31].

4 Super-Souslin Trees

Throughout this section, λ denotes an arbitrary cardinal.
The notion of a λ^{++}-super-Souslin tree was isolated by Shelah in response to work by Laver on trees with ascent paths. Ascent paths provide obstacles to a tree being special; super-Souslin trees are designed to present a similar obstacle that entails the existence not only of a nonspecial tree but of a Souslin one. In Subsection 4.1, we provide, as a means of helping to motivate and provide context for the definition of super-Souslin trees, some remarks on the connection between these notions. In Subsection 4.2 , we will prove the following theorem.

Theorem $C \quad$ Suppose that $\operatorname{SDFA}\left(\mathcal{P}_{\lambda^{+}}\right)$holds. Then there exists a λ^{+}-complete $\lambda^{++}{ }_{-}$ super-Souslin tree.

4.1 Introduction to Super-Souslin Trees

A tree $\left(T,<_{T}\right)$ is said to be a κ-tree if for every $\alpha<\kappa, T_{\alpha}$ is a nonempty set of size less than κ and $T_{\kappa}=\varnothing$. The tree is said to be splitting if every node in the tree admits at least two immediate successors. It is said to be normal if, for all $\alpha<\beta<\kappa$ and all $u \in T_{\alpha}$, there is $v \in T_{\beta}$ such that $u<_{T} v$. It is said to be Hausdorff if for all limit $\alpha<\kappa$ and all $u, v \in T_{\alpha}$, the equality $u_{\downarrow}=v_{\downarrow}$ implies $u=v$. For convenience, we will not require that a tree be Hausdorff. Note, however, that any splitting (resp. normal) tree ($T,<_{T}$) can easily be turned into a splitting (resp. normal) Hausdorff tree ($T^{\prime},<_{T^{\prime}}$)
by shifting all levels T_{α} to be $T_{\alpha+1}^{\prime}$ and, for limit $\alpha<\kappa$, letting T_{α}^{\prime} consist of unique limits of all branches through $\cup_{\beta<\alpha} T_{\beta}$ that are continued in T_{α}.

Definition 4.1 Let θ be an arbitrary cardinal. For each $\alpha<\kappa$, let T_{α}^{θ} denote the collection of all injections $a: \theta \rightarrow T_{\alpha}$. Let T^{θ} denote $\bigcup_{\alpha<\kappa} T_{\alpha}^{\theta}$.

An element of T^{θ} will be referred to as a θ-level sequence from T (or, simply, a level sequence from T). For $a, b \in T^{\theta}$, we abuse notation and write $a<_{T} b$ if and only if, for all $i<\theta, a(i)<_{T} b(i)$. Likewise, $a \leq_{T} b$ if and only if $a(i) \leq_{T} b(i)$ for all $i<\theta$.

Definition $4.2 \quad\left[T^{\theta}\right]^{2}:=\left\{(a, b) \in T^{\theta} \times T^{\theta} \mid a<_{T} b\right\}$.
Definition 4.3 (Shelah [20]) A λ^{++}-super-Souslin tree is a normal, splitting λ^{++}-tree $\left(T,<_{T}\right)$ for which there exists a function $F:\left[T^{\lambda}\right]^{2} \rightarrow \lambda^{+}$satisfying the following condition: for all $a, b, c \in T^{\lambda}$ with $a<_{T} b, c$, if $F(a, b)=F(a, c)$, then there is $i<\lambda$ such that $b(i)$ and $c(i)$ are $<_{T}$-comparable.

Fact 4.4 (Shelah [20]) Suppose $\left(T,<_{T}\right)$ is a λ^{++}-super-Souslin tree. If W is an outer model of V with the same $\mathcal{P}(\lambda)$ and λ^{++}, then, in W, there exists some $x \in T$ such that $\left(x^{\uparrow},<_{T}\right)$ is a λ^{++}-Souslin tree.

The next lemma shows that the two-dimensional function F witnessing that a tree $\left(T,<_{T}\right)$ is λ^{++}-super-Souslin cannot be replaced by a one-dimensional function.

Lemma 4.5 Suppose that $\left(T,<_{T}\right)$ is a normal splitting κ-tree, and θ, μ are cardinals less than κ (e.g., $\kappa=\lambda^{++}, \mu=\lambda^{+}$, and $\theta=\lambda$.) There exists no function $F: T^{\theta} \rightarrow \mu$ such that, for every $a, b \in T^{\theta}$, if $F(a)=F(b)$, then there is $i<\theta$ such that $a(i)$ and $b(i)$ are $<_{T}$-comparable.

Proof Suppose for sake of contradiction that there is such a function F. We first argue that $\left(T,<_{T}\right)$ is a κ-Souslin tree.

Claim 4.5.1 Suppose W is an outer model of V in which κ is not collapsed. Then $\left(T,<_{T}\right)$ is a κ-Souslin tree in W.

Proof Work in V. As the proof of [3, Claim A.7.1] makes clear, the fact that $\left(T,<_{T}\right)$ is normal and splitting implies that for every $u \in T$, we can find some $a_{u} \in T^{\theta}$ such that $u<_{T} a_{u}(i)$ for all $i<\theta$. Next, let us work in W, where W is an outer model of V in which κ is not collapsed. Since $\left(T,<_{T}\right)$ is a splitting κ-tree, to show that $\left(T,<_{T}\right)$ is κ-Souslin, it suffices to show that it has no antichains of size κ. Towards a contradiction, suppose that $U:=\left\{u_{\alpha} \mid \alpha<\kappa\right\}$ is an antichain. While it is possible that $U \in W \backslash V$, we nevertheless have $\left\{a_{u_{\alpha}} \mid \alpha<\kappa\right\} \subseteq V$. Since κ is not collapsed, we can find ordinals $\alpha<\beta<\kappa$ such that $F\left(a_{u_{\alpha}}\right)=F\left(a_{u_{\beta}}\right)$. Pick $i<\theta$ such that $a_{u_{\alpha}}(i)$ and $a_{u_{\beta}}(i)$ are $<_{T}$-comparable. Then u_{α} and u_{β} are $<_{T}$-comparable. This is a contradiction.

Now force over V with the forcing notion $\mathbb{P}:=\left(T,>_{T}\right)$ (i.e., the order of \mathbb{P} is the reverse of the tree order). As $\left(T,<_{T}\right)$ is a κ-Souslin tree in V, we have that \mathbb{P} has the κ-c.c. and does not collapse κ. Therefore, the preceding claim implies that $\left(T,<_{T}\right)$ is a κ-Souslin tree in $V^{\mathbb{P}}$, contradicting the fact that \mathbb{P} adds a cofinal branch through ($T,<_{T}$).

The next lemma shows that the range of the function F witnessing that a tree $\left(T,<_{T}\right)$ is λ^{++}-super-Souslin cannot be smaller than λ^{+}. In particular, there is no straightforward generalization of the notion of super-Souslin tree to inaccessible cardinals.

Lemma 4.6 Suppose that $\left(T,<_{T}\right)$ is a normal, splitting κ-tree, and θ, μ are cardinals less than κ. If $\mu^{+}<\kappa$, then there exists no function $F:\left[T^{\theta}\right]^{2} \rightarrow \mu$ such that, for all $a, b, c \in T^{\theta}$ with $a<_{T} b, c$, if $F(a, b)=F(a, c)$, then there is $i<\theta$ such that $b(i)$ and $c(i)$ are $<_{T}$-comparable.

Proof Suppose that F is a counterexample. Fix an arbitrary $a \in T^{\theta}$. As the proof of [3, Claim A.7.1] makes clear, the fact that $\left(T,<_{T}\right)$ is normal and splitting implies that there exists some large enough $\beta<\kappa$ and an injection $b: \mu^{+} \times \theta \rightarrow T_{\beta}$ such that for all $\eta<\mu^{+}$and all $i<\theta, a(i)<_{T} b(\eta, i)$. For each $\eta<\mu^{+}$, define $b_{\eta}: \theta \rightarrow T_{\beta}$ by stipulating $b_{\eta}(i):=b(\eta, i)$. Now, find $\eta<\zeta<\mu^{+}$such that $F\left(a, b_{\eta}\right)=F\left(a, b_{\zeta}\right)$. Then there must exist some $i<\theta$ such that $b_{\eta}(i)$ and $b_{\zeta}(i)$ are $<_{T}$-comparable, contradicting the fact that $b_{\eta}(i)$ and $b_{\zeta}(i)$ are two distinct elements of T_{β}.

Now, we move on to deal with the notion of an ascent path.
Definition 4.7 (Laver) Suppose that θ is a cardinal $<\kappa$ and \mathcal{F} is a family satisfying $\theta \in \mathcal{F} \subseteq \mathcal{P}(\theta)$. An \mathcal{F}-ascent path through a κ-tree $\left(T,<_{T}\right)$ is a sequence $\vec{f}=\left\langle f_{\alpha} \mid \alpha<\kappa\right\rangle$ such that for all $\alpha<\beta<\kappa$:
(1) f_{α} is a function from θ to T_{α};
(2) $\left\{i<\theta \mid f_{\alpha}(i)<_{T} f_{\beta}(i)\right\} \in \mathcal{F}$.

Definition 4.8 For every cardinal θ, write $\mathcal{F}_{\theta}^{\text {fin }}:=\{Z \subseteq \theta| | \theta \backslash Z \mid<\omega\}, \mathcal{F}_{\theta}^{\text {bd }}:=$ $\{Z \subseteq \theta \mid \sup (\theta \backslash Z)<\theta\}$, and $\mathcal{F}_{\theta}:=\mathcal{P}(\theta) \backslash\{\varnothing\}$.

By [22], if $\left(T,<_{T}\right)$ is a special λ^{+}-tree that admits an $\mathcal{F}_{\theta}^{\text {bd }}$-ascent path, then $\mathrm{cf}(\theta)=$ $\operatorname{cf}(\lambda)$. By [28], if λ is regular and $\left(T,<_{T}\right)$ is a special λ^{+}-tree that admits an \mathcal{F}_{θ}-ascent path, then $\theta=\lambda$. A construction of a special λ^{+}-tree with an $\mathcal{F}_{\mathrm{cf}(\lambda)}^{\mathrm{bd}}$-ascent path may be found in [13]. Constructions of κ-Souslin trees with $\mathcal{F}_{\theta}^{\text {fin }}$-ascent paths may be found in [3].

Proposition 4.9 (Folklore) Any λ^{++}-super-Souslin tree $\left(T,<_{T}\right)$ admits an \mathcal{F}_{λ}-ascent path.

Proof Suppose $\left(T,<_{T}\right)$ is a λ^{++}-super-Souslin tree and $F:\left[T^{\lambda}\right]^{2} \rightarrow \lambda^{+}$is a witnessing map. Fix an arbitrary $a \in T^{\lambda}$. Let ϵ be such that $a \in T_{\epsilon}^{\lambda}$. By normality of $\left(T,<_{T}\right)$, for each $\beta \in \lambda^{++} \backslash \epsilon$, we may fix $a_{\beta} \in T_{\beta}^{\lambda}$ with $a \leq_{T} a_{\beta}$. Pick a cofinal
subset $B \subseteq \lambda^{++} \backslash \epsilon$ on which the map $\beta \mapsto F\left(a, a_{\beta}\right)$ is constant. Then $\left\langle a_{\beta} \mid \beta \in B\right\rangle$ induces an \mathcal{F}_{θ}-ascent path $\vec{f}=\left\langle f_{\alpha} \mid \alpha<\lambda^{++}\right\rangle$, as follows. For every $\alpha<\lambda^{++}$, let $\beta(\alpha):=\min (B \backslash \alpha)$, and define $f_{\alpha}: \lambda \rightarrow T_{\alpha}$ by letting $f_{\alpha}(i)$ be the unique element of T_{α} such that $f_{\alpha}(i) \leq_{T} a_{\beta(\alpha)}(i)$.

Aiming for an $\mathcal{F}_{\lambda}^{\mathrm{bd}}$-ascent path, one may want to strengthen Definition 4.3 to assert that for all $a, b, c \in T^{\lambda}$ with $a<_{T} b, c$, if $F(a, b)=F(a, c)$, then

$$
I(b, c):=\left\{i<\lambda \mid b(i) \text { and } c(i) \text { are }<_{T} \text {-comparable }\right\}
$$

is in $\mathcal{F}_{\lambda}^{\text {bd }}$. However, this is impossible, by the following result.
Lemma 4.10 Suppose $\left(T,<_{T}\right)$ is a normal, splitting λ^{++}-tree, $F:\left[T^{\lambda}\right]^{2} \rightarrow \lambda^{+}$, and \mathcal{F} is a proper filter on λ. Then there are $(a, b),(a, c) \in\left[T^{\lambda}\right]^{2}$ with $F(a, b)=F(a, c)$ such that $I(b, c) \notin \mathcal{F}$.

Proof Towards a contradiction, suppose that for all $(a, b),(a, c) \in\left[T^{\lambda}\right]^{2}$ with $F(a, b)=F(a, c)$, we have $I(b, c) \in \mathcal{F}$. For all $a \in T^{\lambda}$ and $\eta<\lambda^{+}$, let $U_{a}:=\{b \in$ $\left.T^{\lambda} \mid a \leq_{T} b\right\}$ and $U_{a}^{\eta}:=\left\{b \in U_{a} \mid F(a, b)=\eta\right\}$. Now, fix some $a \in T^{\lambda}$ arbitrarily, and, for every $\eta<\lambda^{+}$, let $U^{\eta}:=\left\{b \in U_{a} \mid U_{b} \cap U_{a}^{\eta} \neq \varnothing\right\}$ be the downward closure of U_{a}^{η} within U_{a}.

Claim 4.10.1 Suppose that $\eta<\lambda^{+}$and $b, c \in U^{\eta}$. Then $I(b, c) \in \mathcal{F}$.
Proof Pick $b^{\prime} \in U_{b} \cap U_{a}^{\eta}$ and $c^{\prime} \in U_{c} \cap U_{a}^{\eta}$. Since $F\left(a, b^{\prime}\right)=\eta=F\left(a, c^{\prime}\right)$, and by assumption, we have that $I\left(b^{\prime}, c^{\prime}\right) \in \mathcal{F}$.

Let $\beta, \beta^{\prime}, \gamma, \gamma^{\prime}$ be such that $b \in T_{\beta^{\prime}}^{\lambda}, b^{\prime} \in T_{\beta^{\prime}}^{\lambda}, c \in T_{\gamma}^{\lambda}$, and $c^{\prime} \in T_{\gamma^{\prime}}^{\lambda}$. Without loss of generality, $\beta^{\prime} \leq \gamma^{\prime}$. Now, there are two relevant configurations of the other ordinals to consider.

Case 1: $\beta \leq \beta^{\prime}<\gamma$. In this case, for all $i \in I\left(b^{\prime}, c^{\prime}\right)$, we have $b(i) \leq_{T} b^{\prime}(i)$ and $b^{\prime}(i), c(i) \leq_{T} c^{\prime}(i)$, so $b(i)$ and $c(i)$ are $<_{T}$-comparable.
Case 2: $\beta, \gamma \leq \beta^{\prime}$. In this case, for all $i \in I\left(b^{\prime}, c^{\prime}\right)$, we have $b(i), c(i) \leq_{T} b^{\prime}(i)$ and again, $b(i)$ and $c(i)$ are $<_{T}$-comparable.

For any two distinct ordinals η, ζ below λ^{+}, let $\delta_{\eta, \zeta}$ denote the least ordinal δ below λ^{++}such that there are $b \in U^{\eta} \cap T_{\delta}^{\lambda}$ and $c \in U^{\zeta} \cap T_{\delta}^{\lambda}$ for which $I(b, c)=\varnothing$, if such an ordinal exists; otherwise, leave $\delta_{\eta, \zeta}$ undefined.

Claim 4.10.2 Suppose $\delta_{\eta, \zeta}$ is defined. Then $U^{\eta} \cap U^{\zeta} \subseteq \cup\left\{T_{\beta}^{\lambda} \mid \beta<\delta_{\eta, \zeta}\right\}$.
Proof Towards a contradiction, suppose that $d \in U^{\eta} \cap U^{\zeta} \cap T_{\beta}^{\lambda}$ for some $\beta \geq \delta_{\eta, \zeta}$. Since U^{η} and U^{ζ} are downward closed, we can simply assume that $\beta=\delta_{\eta, \zeta}$.

Using the fact that $\beta=\delta_{\eta, \zeta}$, fix $b \in U^{\eta} \cap T_{\beta}^{\lambda}$ and $c \in U^{\zeta} \cap T_{\beta}^{\lambda}$ such that $I(b, c)=\varnothing$. By Claim 4.10.1, since $b, d \in U^{\eta}$ and $c, d \in U^{\zeta}$, we have that $I(b, d)$ and $I(c, d)$ are in \mathcal{F}. In particular, $I(b, d) \cap I(c, d) \neq \varnothing$, contradicting the fact that $I(b, c)=\varnothing$.

As $\lambda^{+}<\lambda^{++}$, let $\beta<\lambda^{++}$be large enough so that, if η, ζ are two distinct ordinals below λ^{+}and $\delta_{\eta, \zeta}$ is defined, then $\delta_{\eta, \zeta}<\beta$. By increasing β if necessary, we can assume that $U_{a} \cap T_{\beta}^{\lambda} \neq \varnothing$. Fix $d \in U_{a} \cap T_{\beta}^{\lambda}$. By the fact that $\left(T,<_{T}\right)$ is splitting, for each $i<\lambda$ we can fix $e_{0}(i) \neq e_{1}(i)$, both in $T_{\beta+1}$, with $d(i)<_{T} e_{0}(i), e_{1}(i)$. Let $\eta:=$ $F\left(a, e_{0}\right)$ and $\zeta:=F\left(a, e_{1}\right)$. Clearly, $I\left(e_{0}, e_{1}\right)=\varnothing$, so that $\delta_{\eta, \zeta}$ is defined. So, by our choice of β, we have $\delta_{\eta, \zeta}<\beta$. However, since $d<_{T} e_{0}, e_{1}$, we have $d \in U^{\eta} \cap U^{\zeta} \cap T_{\beta}^{\lambda}$, contradicting Claim 4.10.2.

4.2 Proof of Theorem C

The rest of this section is devoted to proving Theorem C. We will define a poset $(\mathbb{P}, \leq \mathbb{P}, \mathbb{Q}) \in \mathcal{P}_{\lambda^{+}}$and a collection $\left\{\mathcal{D}_{i} \mid i<\lambda^{+}\right\}$of sharply dense systems such that any filter that meets each \mathcal{D}_{i} everywhere gives rise to a λ^{+}-complete λ^{++}-super-Souslin tree. We intend to construct a tree $\left(T,<_{T}\right)$ with underlying set $\lambda^{++} \times \lambda^{+}$, such that, furthermore, $T_{\alpha}=\{\alpha\} \times \lambda^{+}$for all $\alpha<\lambda^{++}$. We start by defining \mathbb{P}.

Definition 4.11 \mathbb{P} consists of all quintuples $p=\left(x,<^{0}, t,<^{1}, f\right)$ satisfying the following requirements.
(1) $x \in\left[\lambda^{++}\right]^{<\lambda^{+}}$.
(2) $<^{0}$ is a partial ordering on x such that for all $\beta \in x, \operatorname{pred}_{p}^{0}(\beta):=\left\{\alpha \in x \mid \alpha<^{0} \beta\right\}$ is a closed subset of β that is well-ordered by $<^{0}$.
(3) $t \in\left[x \times \lambda^{+}\right]^{<\lambda^{+}}$. In a slight abuse of notation and anticipating the generic object, for all $\alpha \in x$, we let t_{α} denote $t \cap\left(\{\alpha\} \times \lambda^{+}\right)$and t_{α}^{λ} denote the set of injective functions from λ to t_{α}. For each a in $t^{\lambda}:=\bigcup_{\alpha \in x} t_{\alpha}^{\lambda}$, we let $\operatorname{Lev}(a)$ denote the unique ordinal α such that $a \in t_{\alpha}^{\lambda}$.
(4) $<^{1}$ is a tree order on t such that, for all $\beta \in x$ and all $v \in t_{\beta}$, letting $\operatorname{pred}_{p}^{1}(v):=$ $\left\{u \in t \mid u<^{1} v\right\}$, we have $\left\{\alpha \in x \mid \operatorname{pred}_{p}^{1}(v) \cap t_{\alpha} \neq \varnothing\right\}=\operatorname{pred}_{p}^{0}(\beta)$. Let $\left[t^{\lambda}\right]^{2}:=$ $\left\{(a, b) \mid a, b \in t^{\lambda}, a<^{1} b\right\}$, where for $a, b \in t^{\lambda}$, we write $a<^{1} b$ if and only if $a(i)<{ }^{1} b(i)$ for all $i<\lambda$.
(5) f is a partial function from $\left[t^{\lambda}\right]^{2}$ to $\left[\lambda^{+}\right]^{<\lambda^{+}} \backslash\{\varnothing\}$ and $|f| \leq \lambda$.
(6) Suppose that $(a, b),(a, c) \in \operatorname{dom}(f)$. If $f(a, b) \cap f(a, c) \neq \varnothing$ and $\operatorname{Lev}(b) \leq^{0}$ $\operatorname{Lev}(c)$, then $\left|\left\{i<\lambda \mid b(i) \leq^{1} c(i)\right\}\right|=\lambda$.
(7) For all $(a, c) \in \operatorname{dom}(f)$ and all $b \in t^{\lambda}$ such that $a<^{1} b<^{1} c$, we have $(a, b) \in$ $\operatorname{dom}(f)$ and $f(a, b) \supseteq f(a, c)$.

The coordinates of a condition $p \in \mathbb{P}$ will often be identified as $x_{p},<_{p}^{0}, t_{p},<_{p}^{1}$, and f_{p}, respectively.

Definition 4.12 For all $p, q \in \mathbb{P}$, we let $q \leq_{\mathbb{P}} p$ if and only if the following hold:

- $x_{q} \supseteq x_{p}$;
- $<{ }_{q}^{0} \supseteq<{ }_{p}^{0}$;
- $t_{q} \supseteq t_{p} ;$
- $<{ }_{q}^{1} \supseteq<{ }_{p}^{1}$;
- $\operatorname{dom}\left(f_{q}\right) \supseteq \operatorname{dom}\left(f_{p}\right)$;
- for all $(a, b) \in \operatorname{dom}\left(f_{p}\right)$, we have $f_{q}(a, b) \supseteq f_{p}(a, b)$.

Definition 4.13 \mathbb{Q} is the set of all conditions $p \in \mathbb{P}$ such that
(1) $x_{p}=\operatorname{cl}\left(x_{p}\right)$;
(2) $<_{p}^{0}$ is the usual ordinal ordering on x_{p}.

We now show that $\left(\mathbb{P}, \leq_{\mathbb{P}}, \mathbb{Q}\right)$ is in $\mathcal{P}_{\lambda^{+}}$. For $p \in \mathbb{P}, x_{p}$ is the realm of p. We next describe how c.o.i.'s act on \mathbb{P}. In order to make it easier to refer to and manipulate level sequences in our conditions, we introduce the following notation.

Notation $4.14 \operatorname{By} \operatorname{SDFA}\left(\mathcal{P}_{\lambda^{+}}\right)$and Corollary 3.9, CH_{λ} holds. Therefore, we can let $\left\langle\sigma_{\delta} \mid \delta<\lambda^{+}\right\rangle$injectively enumerate ${ }^{\lambda} \lambda^{+}$. For all $\alpha<\lambda^{++}$and $\delta<\lambda^{+}$, let $a_{\alpha, \delta}: \lambda \rightarrow$ $\{\alpha\} \times \lambda^{+}$be defined by stipulating $a_{\alpha, \delta}(i):=\left(\alpha, \sigma_{\delta}(i)\right)$. Note that every level sequence in our desired tree $\left(T,<_{T}\right)$ will be of the form $a_{\alpha, \delta}$ for a unique pair $(\alpha, \delta) \in$ $\lambda^{++} \times \lambda^{+}$.

Definition 4.15 Suppose that π is a c.o.i. from a subset of λ^{++}to λ^{++}. For each $p \in \mathbb{P}_{\mathrm{dom}(\pi)}$, we define $\pi . p$ to be the condition $\left(x,<^{0}, t,<^{1}, f\right) \in \mathbb{P}$ such that
(1) $x=\pi^{\prime \prime} x_{p}$;
(2) $<^{0}=\left\{(\pi(\alpha), \pi(\beta)) \mid(\alpha, \beta) \in<_{p}^{0}\right\}$;
(3) $t=\left\{(\pi(\alpha), \eta) \mid(\alpha, \eta) \in t_{p}\right\}$;
(4) $<^{1}=\left\{((\pi(\alpha), \eta),(\pi(\beta), \zeta)) \mid((\alpha, \eta),(\beta, \zeta)) \in<_{p}^{1}\right\}$;
(5) $f=\left\{\left(\left(a_{\pi(\alpha), \delta}, a_{\pi(\beta), \epsilon}\right), z\right) \mid\left(\left(a_{\alpha, \delta}, a_{\beta, \epsilon}\right), z\right) \in f_{p}\right\}$.

Finally, we describe the restriction operation.
Definition 4.16 Suppose that $p \in \mathbb{P}$ and $\alpha<\lambda^{++}$. Then $p \vDash \alpha$ is the condition $\left(x,<^{0}\right.$ $\left., t,<^{1}, f\right)$ such that

- $x=x_{p} \cap \alpha$;
- $<^{0}=<_{p}^{0} \cap x^{2}$;
- $t=t_{p} \cap\left(\alpha \times \lambda^{+}\right)$;
- $<^{1}=<_{p}^{1} \cap t^{2}$;
- $f=\left\{((a, b), z) \in f_{p} \mid(a, b) \in\left[t^{\lambda}\right]^{2}\right\}$.

With these definitions, it follows easily that $(\mathbb{P}, \leq \mathbb{P}, \mathbb{Q})$ satisfies clauses (1)-(5) of Definition 2.1. We now verify clauses (6)-(8), in order.

Lemma 4.17 Suppose $p \in \mathbb{P}$. Then there is $q \in \mathbb{Q}$ with $q \leq \mathbb{P} p$ such that $x_{q}=\operatorname{cl}\left(x_{p}\right)$.
Proof We need to define $q=\left(x_{q},<_{q}^{0}, t_{q},<_{q}^{1}, f_{p}\right)$. Of course, we let $x_{q}:=\operatorname{cl}\left(x_{p}\right)$ and let $<_{q}^{0}$ be the usual ordinal ordering on x_{q}. Thus, the main task is in finding suitable $t_{q},<_{q}^{q}$ and f_{q}. Our strategy is to define the first two and then derive f_{q} by minimally extending f_{p} so as to satisfy Definition 4.11(7). To be precise, once t_{q} and $<_{q}^{1}$ are determined, we will let

$$
\begin{aligned}
& \operatorname{dom}\left(f_{q}\right):= \operatorname{dom} \\
&\left(f_{p}\right) \\
& \cup\left\{(a, b) \in\left[t_{q}^{\lambda}\right]^{2} \mid \exists c \in t_{p}^{\lambda}\left(a<_{q}^{1} b<_{q}^{1} c \text { and }(a, c) \in \operatorname{dom}\left(f_{p}\right)\right)\right\},
\end{aligned}
$$

and for all $(a, b) \in \operatorname{dom}\left(f_{q}\right)$, we will let

$$
f_{q}(a, b):=f_{p}(a, b) \cup \cup\left\{f_{p}(a, c) \mid(a, c) \in \operatorname{dom}\left(f_{p}\right) \text { and } a<{ }_{q}^{1} b<_{q}^{1} c\right\} .
$$

We now turn to defining t_{q} and $<{ }_{q}^{1}$ to ensure that clauses (4) and (6) of Definition 4.11 hold. By our intended definition of f_{q} and $<_{q}^{0}$, these clauses dictate that, for all $\beta \in x_{q}$ and $\alpha \in x_{q} \cap(\beta+1)$, the following hold:
(4') for all $v \in\left(t_{q}\right)_{\beta}$, there is some $u \in\left(t_{q}\right)_{\alpha}$ with $u \leq_{q}^{1} v$;
(6^{\prime}) for all $(a, b),(a, c) \in \operatorname{dom}\left(f_{p}\right)$ with $f_{p}(a, b) \cap f_{p}(a, c) \neq \varnothing$, if $b \in\left(t_{p}\right)_{\alpha}^{\lambda}$ and $c \in\left(t_{p}\right)_{\beta}^{\lambda}$, then $\left|\left\{i<\lambda \mid b(i) \leq_{q}^{1} c(i)\right\}\right|=\lambda$.
In order to satisfy clause $\left(4^{\prime}\right)$, it is possible that we will have to add new nodes to t_{q}, i.e., that $t_{q} \backslash t_{p} \neq \varnothing$. However, we will do so in such a way that each element of $t_{q} \backslash t_{p}$ will be a $<{ }_{q}^{1}$-predecessor of an element of t_{p}. Consequently, to define t_{q} and $<_{q}^{1}$, it suffices to specify $\operatorname{pred}_{q}^{1}(v)$ for all $v \in t_{p}$.

Now, by recursion on $\beta \in x_{p}$, we define $\operatorname{pred}_{q}^{1}(v)$ for all $v \in\left(t_{p}\right)_{\beta}$ in a way that ensures that clauses (4^{\prime}) and (6^{\prime}) hold for all $\alpha \in x_{q} \cap(\beta+1)$. Suppose that $\beta \in x_{p}$ and, for all $\alpha \in x_{p} \cap \beta$, we have specified $\operatorname{pred}_{q}^{1}(u)$ for every $u \in\left(t_{p}\right)_{\alpha}$. Let $t_{<\beta}$ denote the underlying set of the tree we have defined thus far, i.e.,

$$
\bigcup_{\alpha \in x_{p} \cap \beta} \bigcup_{u \in\left(t_{p}\right)_{\alpha}}\left(\operatorname{pred}_{q}^{1}(u) \cup\{u\}\right) .
$$

If $\operatorname{pred}_{p}^{0}(\beta)=\varnothing$ and $v \in\left(t_{p}\right)_{\beta}$, then let B be a maximal branch through $t_{<\beta}$. It might be the case that B is bounded below β, i.e., there is $\gamma \in x_{q} \cap \beta$ with $B \cap(\{\gamma\} \times$ $\left.\lambda^{+}\right)=\varnothing$. If this is the case, then, for each such γ, add a new element from $\{\gamma\} \times \lambda^{+}$to t_{q} and require that these new elements, together with B, form a branch whose levels are unbounded in $x_{q} \cap \beta$. Let this unbounded branch be denoted by B^{*}, and set $\operatorname{pred}_{q}^{1}(v):=B^{*}$.

If $\operatorname{pred}_{p}^{0}(\beta)$ is unbounded in β, then, for all $v \in\left(t_{p}\right)_{\beta}$, we are obliged to let $\operatorname{pred}_{q}^{1}(v)$ be precisely $\bigcup_{u \in \operatorname{pred}_{p}^{1}(v)}\left(\operatorname{pred}_{q}^{1}(u) \cup\{u\}\right)$.

It remains to consider the case in which $\operatorname{pred}_{p}^{0}(\beta)$ is nonempty and bounded in β. Put $\beta^{\prime}:=\sup \left(\operatorname{pred}_{p}^{0}(\beta)\right)$. Since $\operatorname{pred}_{p}^{0}(\beta)$ is a closed nonempty subset of β, we have $\beta^{\prime} \in x_{p}$. If there is no $\gamma \in x_{p}$ with $\beta^{\prime}<\gamma<\beta$, then, for all $v \in\left(t_{p}\right)_{\beta}$, we are again obliged to let $\operatorname{pred}_{q}^{1}(v):=\bigcup_{u \in \operatorname{pred}_{p}^{1}(v)}\left(\operatorname{pred}_{q}^{1}(u) \cup\{u\}\right)$. Thus, from now on, suppose that $x_{p} \cap\left(\beta^{\prime}, \beta\right) \neq \varnothing$.

Let $\left\langle\left(a_{\ell}, b_{\ell}, c_{\ell}\right) \mid \ell<\lambda\right\rangle$ enumerate all triples (a, b, c) such that

- $(a, b),(a, c) \in \operatorname{dom}\left(f_{p}\right)$;
- $f_{p}(a, b) \cap f_{p}(a, c) \neq \varnothing$;
- $c \in\left(t_{p}\right)_{\beta}^{\lambda}$ and there is $\alpha \in x_{p} \cap\left(\beta^{\prime}, \beta\right)$ such that $b \in\left(t_{p}\right)_{\alpha}^{\lambda}$.

Moreover, assume that each such triple is enumerated as $\left(a_{\ell}, b_{\ell}, c_{\ell}\right)$ for λ-many $\ell<\lambda$. (If there are no such triples, then simply define $\operatorname{pred}_{q}^{1}(v)$ arbitrarily for each $v \in\left(t_{p}\right)_{\beta}$ subject to the constraint $\operatorname{pred}_{q}^{1}(v) \supseteq \operatorname{pred}_{p}^{1}(v)$.)

Now, by recursion on $\ell<\lambda$, we choose nodes $v_{\ell} \in\left(t_{p}\right)_{\beta}$ and specify $\operatorname{pred}_{q}^{1}\left(v_{\ell}\right)$. Suppose that $\ell<\lambda$ and we have chosen $v_{\ell^{\prime}}$ and $\operatorname{pred}_{q}^{1}\left(v_{\ell^{\prime}}\right)$ for all $\ell^{\prime}<\ell$. Consider the triple $\left(a_{\ell}, b_{\ell}, c_{\ell}\right)$.

Suppose first that $a_{\ell} \in\left(t_{p}\right)_{\beta^{\prime}}$. We have that, for all $i<\lambda, a_{\ell}(i)<{ }_{p}^{1} b_{\ell}(i), c_{\ell}(i)$. In particular, since $\beta^{\prime}=\max \left(\operatorname{pred}_{p}^{0}(\beta)\right)$, we have, for all $i<\lambda, \operatorname{pred}_{q}^{1}\left(b_{\ell}(i)\right) \supseteq$ $\operatorname{pred}_{p}^{1}\left(c_{\ell}(i)\right)$. Choose $i<\lambda$ such that $c_{\ell}(i) \notin\left\{v_{\ell^{\prime}} \mid \ell^{\prime}<\ell\right\}$, set $v_{\ell}:=c_{\ell}(i)$, and let B be a maximal branch through $t_{<\beta}$ with $b_{\ell}(i) \in B$. As in the case in which $\operatorname{pred}_{p}^{0}(\beta)=\varnothing$, extend B, by adding nodes if necessary, to a branch B^{*} whose levels are unbounded in $x_{q} \cap \beta$, and set $\operatorname{pred}_{q}^{1}\left(v_{\ell}\right):=B^{*}$.

Suppose next that $a_{\ell} \in\left(t_{p}\right)_{<\beta^{\prime}}$. Let $c^{\prime} \in\left(t_{p}\right)_{\beta^{\prime}}^{\lambda}$ be the unique level sequence such that $a_{\ell}<{ }_{p}^{1} c^{\prime}<{ }_{p}^{1} c_{\ell}$. Since $p \in \mathbb{P}$, we have

$$
\left(a_{\ell}, c^{\prime}\right) \in \operatorname{dom}\left(f_{p}\right) \quad \text { and } \quad f_{p}\left(a_{\ell}, c^{\prime}\right) \supseteq f_{p}\left(a_{\ell}, c_{\ell}\right)
$$

In particular, $f_{p}\left(a_{\ell}, c^{\prime}\right) \cap f_{p}\left(a_{\ell}, b_{\ell}\right) \neq \varnothing$, so, by our inductive hypothesis, we know that, for λ-many $i<\lambda$, we have $c^{\prime}(i)<{ }_{q}^{1} b_{\ell}(i)$. Choose such an i with $c_{\ell}(i) \notin$ $\left\{v_{\ell^{\prime}} \mid \ell^{\prime}<\ell\right\}$ and let $v_{\ell}:=c_{\ell}(i)$. As in the previous case, by adding nodes if necessary, fix a branch B^{*} whose levels are unbounded in $x_{q} \cap \beta$ with $b_{\ell}(i) \in B^{*}$, and set $\operatorname{pred}_{q}^{1}\left(v_{\ell}\right):=B^{*}$.

At the end of this process, if there are nodes in $\left(t_{p}\right)_{\beta} \backslash\left\{v_{\ell} \mid \ell<\lambda\right\}$, then assign their $<_{q}^{1}$-predecessors arbitrarily. We must verify that we have maintained the inductive hypothesis. To this end, fix (a, b, c) such that

- $(a, b),(a, c) \in \operatorname{dom}\left(f_{p}\right)$;
- $f_{p}(a, b) \cap f_{p}(a, c) \neq \varnothing$;
- $c \in\left(t_{p}\right)_{\beta}^{\lambda}$ and there is $\alpha \in x_{p} \cap \beta$ such that $b \in\left(t_{p}\right)_{\alpha}^{\lambda}$.

Suppose first that $\alpha \leq \beta^{\prime}$. This implies that $a \in\left(t_{p}\right)_{<\beta^{\prime}}^{\lambda}$. Therefore, we can let $c^{\prime} \in\left(t_{p}\right)_{\beta^{\prime}}^{\lambda}$ be the unique level sequence such that $a<_{p}^{1} c^{\prime}<_{p}^{1} c$. Then $f_{p}\left(a, c^{\prime}\right) \supseteq$ $f_{p}(a, c)$, so, by the inductive hypothesis applied at β^{\prime}, we have that, for λ-many $i<\lambda$, $b(i) \leq_{q}^{1} c^{\prime}(i) \leq_{q}^{1} c(i)$, so we are done.

Next, suppose $\beta^{\prime}<\alpha<\beta$. In this case, for λ-many $\ell<\lambda$, we have $(a, b, c)=$ $\left(a_{\ell}, b_{\ell}, c_{\ell}\right)$. For each such ℓ, at stage ℓ of the construction, we chose a distinct $i<\lambda$ and ensured that $b_{\ell}(i)<{ }_{q}^{1} c_{\ell}(i)$, so, for λ-many $i<\lambda$, we have $b(i)<{ }_{q}^{1} c(i)$, as desired.

Lemma 4.18 Suppose that $\xi<\lambda^{+}$and $\left\langle q_{\eta} \mid \eta<\xi\right\rangle$ is a decreasing sequence from \mathbb{Q}. Let $x:=\bigcup_{\eta<\xi} x_{q_{\eta}}$. Suppose that $\alpha<\operatorname{ssup}(x)$ and that $r \in \mathbb{Q}_{\operatorname{ssup}(x \cap \alpha)}$ is a lower bound for $\left\langle q_{\eta} \vDash \alpha \mid \eta<\xi\right\rangle$. Then there is $q \in \mathbb{Q}$ such that

- q is a lower bound for $\left\langle q_{\eta} \mid \eta<\xi\right\rangle$;
- $q \vDash \operatorname{ssup}(x \cap \alpha)=r$;
- $x_{q}=\operatorname{cl}\left(x_{r} \cup x\right)$.

Proof $\quad x_{q}$ and $<{ }_{q}^{0}$ are determined by the requirements of the lemma. We now specify $t_{q},<_{q}^{1}$, and f_{q}. We must let $q \vDash \operatorname{ssup}(x \cap \alpha)=r$, so we only deal with the parts of t_{q}, $<_{q}^{1}$, and f_{q} related to levels at $\operatorname{ssup}(x \cap \alpha)$ or higher.

Fix $\beta \in x_{q} \backslash \operatorname{ssup}(x \cap \alpha)$. If $\beta \in x$, then let $\left(t_{q}\right)_{\beta}:=\bigcup_{\eta<\xi}\left(t_{q_{\eta}}\right)_{\beta}$. If $\beta \notin x$, then let $\gamma:=\min (x \backslash \beta)$, and let $\left(t_{q}\right)_{\beta}:=\left\{(\beta, \zeta) \mid(\gamma, \zeta) \in \bigcup_{\eta<\xi}\left(t_{q_{\eta}}\right)_{\gamma}\right\}$.

We define $<_{q}^{1}$ by specifying $\operatorname{pred}_{q}^{1}(v)$ for all $v \in t_{q}$. This is already done for all $v \in\left(t_{q}\right)_{<\operatorname{ssup}(x \cap \alpha)}$. We take care of the $v \in\left(t_{q}\right)_{\geq \operatorname{ssup}(x \cap \alpha)}$ by recursion on the $\beta \in x_{q}$ such that $v \in\left(t_{q}\right)_{\beta}$. Thus, suppose $\beta \in x_{q} \backslash \operatorname{ssup}(x \cap \alpha)$, and we have defined $\operatorname{pred}_{q}^{1}(u)$ for all $u \in\left(t_{q}\right)_{<\beta}$.

Suppose first that $\beta \notin x$, and let $\gamma:=\min (x \backslash \beta)$. If $v=(\beta, \zeta) \in\left(t_{q}\right)_{\beta}$, let $v^{\prime}:=$ $(\gamma, \zeta) \in\left(t_{q}\right)_{\gamma}$ and let $\operatorname{pred}_{q}^{1}(v)$ be the $<_{q}^{1}$-downward closure of $\cup_{\eta<\xi} \operatorname{pred}_{q_{\eta}}^{1}\left(v^{\prime}\right)$.

Suppose next that $\beta \in x$ and $\beta^{\prime}:=\sup \left(x_{q} \cap \beta\right) \notin x$. If $v=(\beta, \zeta) \in\left(t_{q}\right)_{\beta}$, then let $v^{\prime}:=\left(\beta^{\prime}, \zeta\right) \in\left(t_{q}\right)_{\beta^{\prime}}$, and $\operatorname{pred}_{q}^{1}(v):=\left\{v^{\prime}\right\} \cup \operatorname{pred}_{q}^{1}\left(v^{\prime}\right)$.

Finally, suppose that $\beta \in x$ and $\sup \left(x_{q} \cap \beta\right) \in x$. Then, for all $v \in\left(t_{q}\right)_{\beta}$, let $\operatorname{pred}_{q}^{1}(v)$ be the $<_{q}^{1}$-downward closure of $\cup_{\eta<\xi} \operatorname{pred}_{q_{\eta}}^{1}(v)$.

To finish, we define f_{q}. Suppose that $\beta \in x_{q} \backslash(\operatorname{ssup}(x \cap \alpha) \cup x)$ and $b \in\left(t_{q}\right)_{\beta}^{\lambda}$. Let $\gamma_{\beta}:=\min (x \backslash \beta)$, and let $b^{\prime} \in\left(t_{q}\right)_{\gamma_{\beta}}^{\lambda}$ be given by letting $b^{\prime}(i)$ be the unique $\left(\gamma_{\beta}, \zeta\right)$ such that $b(i)=(\beta, \zeta)$. Note that $b<{ }_{q}^{1} b^{\prime}$. We set

$$
\begin{aligned}
& \operatorname{dom}\left(f_{q}\right):=\operatorname{dom}\left(f_{r}\right) \cup \bigcup_{\eta<\xi} \operatorname{dom}\left(f_{q_{\eta}}\right) \cup \\
& \left\{(a, b) \mid \exists \beta \in x_{q} \backslash(\operatorname{ssup}(x \cap \alpha) \cup x)\left(b \in\left(t_{q}\right)_{\beta}^{\lambda} \text { and }\left(a, b^{\prime}\right) \in \bigcup_{\eta<\xi}^{\cup} \operatorname{dom}\left(f_{q_{\eta}}\right)\right)\right\} .
\end{aligned}
$$

If $(a, b) \in \operatorname{dom}\left(f_{r}\right)$, then we set $f_{q}(a, b):=f_{r}(a, b)$. If $(a, b) \in \cup_{\eta<\xi} \operatorname{dom}\left(f_{q_{\eta}}\right)$, $\operatorname{dom}\left(f_{r}\right)$, then we let $f_{q}(a, b):=\bigcup_{\eta<\xi} f_{q_{\eta}}(a, b)$. If (a, b) is such that $b \in\left(t_{p}\right)_{\beta}^{\lambda}$ for some $\beta \in x_{p} \backslash(\operatorname{ssup}(x \cap \alpha) \cup x)$ and $\left(a, b^{\prime}\right) \in \bigcup_{\eta<\xi} \operatorname{dom}\left(f_{q_{\eta}}\right)$, then let $f_{q}(a, b)=$ $\cup_{\eta<\xi} f_{q_{\eta}}\left(a, b^{\prime}\right)=f_{q}\left(a, b^{\prime}\right)$. It is easily verified that q is as desired.

Lemma 4.19 Suppose $p \in \mathbb{Q}, \alpha<\operatorname{ssup}\left(x_{p}\right)$, and $q \leq p \vDash \alpha$ with $q \in \mathbb{P}_{\alpha}$. Then there is $r \in \mathbb{P}$ that is a greatest lower bound for p and q. Moreover, we have $x_{r}=x_{p} \cup x_{q}$ and $r \vDash \alpha=q$.

Proof We construct such an r by doing as little as possible while still satisfying Definition 4.11 and extending both p and q. Let $x_{r}:=x_{p} \cup x_{q}$, and require that $r \vDash \alpha=q$. Suppose that $\beta \in x_{p} \backslash \alpha$. Let

$$
\operatorname{pred}_{r}^{0}(\beta):=\operatorname{pred}_{p}^{0}(\beta) \cup \underset{\gamma \in \operatorname{pred}_{p}^{0}(\beta) \cap \alpha}{ } \operatorname{pred}_{q}^{0}(\gamma)
$$

Let $t_{r}:=t_{p} \cup t_{q}$. If $v \in t_{p} \backslash t_{q}$, then let $\operatorname{pred}_{r}^{1}(v):=\operatorname{pred}_{p}^{1}(v) \cup \bigcup_{u \in \operatorname{pred}_{p}^{1}(v) \cap t_{q}} \operatorname{pred}_{q}^{1}(u)$. Finally, let $\operatorname{dom}\left(f_{r}\right):=\operatorname{dom}\left(f_{p}\right) \cup \operatorname{dom}\left(f_{q}\right)$. If $(a, b) \in \operatorname{dom}\left(f_{q}\right)$, then let $f_{r}(a, b):=$ $f_{q}(a, b)$. If $(a, b) \in \operatorname{dom}\left(f_{p}\right) \backslash \operatorname{dom}\left(f_{q}\right)$, then let $f_{r}(a, b):=f_{p}(a, b)$.

The only clauses of Definition 4.11 that are nontrivial to check are (6) and (7). Let us first deal with clause (6). To this end, fix $a, b, c \in t_{r}^{\lambda}$ such that $(a, b),(a, c) \in$ $\operatorname{dom}\left(f_{r}\right)$ and $f_{r}(a, b) \cap f_{r}(a, c) \neq \varnothing$. If we have either $(a, b),(a, c) \in \operatorname{dom}\left(f_{q}\right)$ or $(a, b),(a, c) \in \operatorname{dom}\left(f_{p}\right) \backslash \operatorname{dom}\left(f_{q}\right)$, then the conclusion of clause (6) follows from the fact that $p, q \in \mathbb{P}$. Thus, we can assume without loss of generality that $(a, b) \in$
$\operatorname{dom}\left(f_{q}\right)$ and $(a, c) \in \operatorname{dom}\left(f_{p}\right) \backslash \operatorname{dom}\left(f_{q}\right)$. Let $\beta, \gamma \in x_{r}$ be such that $b \in\left(t_{r}\right)_{\beta}^{\lambda}$ and $c \in\left(t_{r}\right)_{\gamma}^{\lambda}$. By assumption, we have $\beta<\alpha \leq \gamma$.

If $\beta \not{ }_{r}^{0} \gamma$, then there is nothing to check. Thus, assume that $\beta \leq_{r}^{0} \gamma$. By the definition of \leq_{r}^{0}, it follows that there is $\beta^{\prime} \in\left(x_{p} \cap \alpha\right)$ such that $\beta \leq_{q}^{0} \beta^{\prime}$ and $\beta^{\prime} \leq_{p}^{0} \gamma$. Let $c^{\prime} \in\left(t_{p}\right)_{\beta^{\prime}}^{\lambda}$ be the unique level sequence such that $a<{ }_{p}^{1} c^{\prime}<{ }_{p}^{1} c$. Since $p \in \mathbb{P}$, it follows that $\left(a, c^{\prime}\right) \in$ $\operatorname{dom}\left(f_{p}\right)$ and $f_{p}\left(a, c^{\prime}\right) \supseteq f_{p}(a, c)$. Since $q \leq p \vDash \alpha$, we must have $\left(a, c^{\prime}\right) \in \operatorname{dom}\left(f_{q}\right)$ and $f_{q}\left(a, c^{\prime}\right) \supseteq f_{p}(a, c)$. Thus, we have $f_{q}\left(a, c^{\prime}\right) \cap f_{q}(a, b) \neq \varnothing$. Since $q \in \mathbb{P}$ and $\beta \leq_{q}^{0} \beta^{\prime}$, we have that, for λ-many $i<\lambda, b(i) \leq_{q}^{1} c^{\prime}(i)$. But then, for all such $i<\lambda$, we also have $b(i) \leq_{r}^{1} c(i)$, as required.

Finally, we check clause (7). Suppose that $(a, c) \in \operatorname{dom}\left(f_{r}\right)$ and $b \in t_{r}^{\lambda}$ is such that $a<_{r}^{1} b<_{r}^{1} c$. If $(a, c) \in \operatorname{dom}\left(f_{q}\right)$, then the conclusion follows from the fact that $q \in \mathbb{P}$. Thus, suppose that $(a, c) \in \operatorname{dom}\left(f_{p}\right) \backslash \operatorname{dom}\left(f_{q}\right)$. Let $\beta \in x_{r}$ be such that $b \in\left(t_{r}\right)_{\beta}^{\lambda}$, and let $\gamma \in x_{p}$ be such that $c \in\left(t_{p}\right)_{\gamma}^{\lambda}$. If $\beta \in x_{p}$, then we have $a<_{p}^{1} b<_{p}^{1} c$, and the conclusion follows from the fact that $p \in \mathbb{P}$. Thus, assume that $\beta \in x_{q} \backslash x_{p}$. Then there is $\beta^{\prime} \in x_{p} \cap \alpha$ such that $\beta \leq_{q}^{0} \beta^{\prime}$ and $\beta^{\prime} \leq_{p}^{0} \gamma$. Let $c^{\prime} \in\left(t_{p}\right)_{\beta^{\prime}}^{\lambda}$, be the unique level sequence such that $a<{ }_{p}^{1} c^{\prime}<{ }_{p}^{1} c$. Since $p \in \mathbb{P}$, we have $\left(a, c^{\prime}\right) \in \operatorname{dom}\left(f_{p}\right)$ and $f_{p}\left(a, c^{\prime}\right) \supseteq f_{p}(a, c)$. Since $q \leq_{\mathbb{P}} p \vDash \alpha$, we have $f_{q}\left(a, c^{\prime}\right) \supseteq f_{p}(a, c)$. Finally, since $q \in \mathbb{P}$ and $a<_{q}^{1} b<_{q}^{1} c^{\prime}$, we have $(a, b) \in \operatorname{dom}\left(f_{q}\right)$ and $f_{q}(a, b) \supseteq f_{q}\left(a, c^{\prime}\right)$. Thus, $(a, b) \in \operatorname{dom}\left(f_{r}\right)$ and $f_{r}(a, b) \supseteq f_{r}(a, c)$, as required.

It now follows that $\left(\mathbb{P}, \leq_{\mathbb{P}}, \mathbb{Q}\right)$ is in $\mathcal{P}_{\lambda^{+}}$. We are thus left with isolating the relevant sharply dense systems. The following are all straightforward.

Lemma 4.20 (Normal and splitting) Suppose $\eta<\lambda^{+}$. For every $\alpha<\beta<\lambda^{++}$, let $D_{\eta,\{\alpha, \beta\}}^{n s}$ be the set of all conditions $p \in \mathbb{Q}$ such that

- $\{\alpha, \beta\} \subseteq x_{p}$;
- $(\alpha, \eta),(\beta, \eta) \in t_{p}$;
- (α, η) has at least two $<_{p}^{1}$-successors in $\left(t_{p}\right)_{\beta}$.

Then $\mathcal{D}_{\eta}^{n s}:=\left\{D_{\eta, x}^{n s} \left\lvert\, x \in\binom{\lambda^{++}}{2}\right.\right\}$ is a sharply dense system.
Lemma 4.21 (Complete) Suppose that $\mu<\lambda^{+}$is a regular cardinal and $g: \mu \rightarrow \lambda^{+}$. For every $x \in\binom{\lambda^{++}}{\mu+1}$, let $D_{g, x}^{\text {com }}$ be the set of all conditions $p \in \mathbb{Q}$ such that

- $x \subseteq x_{p}$;
- for all $i<\mu$, we have $(x(i), g(i)) \in t_{p}$;
- if $\{(x(i), g(i)) \mid i<\mu\}$ forms $a<{ }_{p}^{1}$-chain, then it has $a<{ }_{p}^{1}$-upper bound in $\left(t_{p}\right)_{x(\mu)}$.

Then $\mathcal{D}_{g}^{\text {com }}:=\left\{D_{g, x}^{\text {com }} \left\lvert\, x \in\binom{\lambda^{++}}{\mu+1}\right.\right\}$ is a sharply dense system.
Lemma 4.22 (Super-Souslin) Suppose $\delta, \epsilon<\lambda^{+}$. For all $\alpha<\beta<\lambda^{++}$, let $E_{\delta, \epsilon,\{\alpha, \beta\}}$ be the set of all conditions $p \in \mathbb{Q}$ such that

- $\{\alpha, \beta\} \subseteq x_{p}$;
- $a_{\alpha, \delta}, a_{\beta, \epsilon} \in t_{p}^{\lambda}$;
- if $a_{\alpha, \delta}<{ }_{p}^{1} a_{\beta, \epsilon}$, then $\left(a_{\alpha, \delta}, a_{\beta, \epsilon}\right) \in \operatorname{dom}\left(f_{p}\right)$.

Then $\mathcal{E}_{\delta, \epsilon}:=\left\{E_{\delta, \epsilon, x} \left\lvert\, x \in\binom{\lambda^{++}}{2}\right.\right\}$ is a sharply dense system.

By $\operatorname{SDFA}\left(\mathcal{P}_{\lambda^{+}}\right)$, we can find a filter G on \mathbb{P} such that

- for every $\eta<\lambda^{+}, G$ meets $D_{\eta}^{n s}$ everywhere;
- for every regular cardinal $\mu<\lambda^{+}$and every function $g: \mu \rightarrow \lambda^{+}, G$ meets $\mathcal{D}_{g}^{\text {com }}$ everywhere (recall that by Corollary 3.9, $\operatorname{SDFA}\left(\mathcal{P}_{\lambda^{+}}\right)$implies $\left.\right|^{<\lambda^{+}} \lambda^{+} \mid=\lambda^{+}$);
- for all $\delta, \epsilon<\lambda^{+}, G$ meets $\mathcal{E}_{\delta, \epsilon}$ everywhere.

Now define a tree $\left(T,<_{T}\right)$ as follows. Let $T:=\lambda^{++} \times \lambda^{+}$. Let $(\alpha, \eta)<_{T}(\beta, \xi)$ if and only if there is $p \in G$ such that $(\alpha, \eta),(\beta, \xi) \in t_{p}$ and $(\alpha, \eta)<_{p}^{1}(\beta, \xi)$. The fact that G meets $\mathcal{D}_{\eta}^{n s}$ everywhere for all $\eta<\lambda^{+}$ensures that $\left(T,<_{T}\right)$ is a normal, splitting tree and $T_{\alpha}=\{\alpha\} \times \lambda^{+}$for all $\alpha<\lambda^{++}$. The fact that G meets $\mathcal{D}_{g}^{\text {com }}$ everywhere for all regular $\mu \leq \lambda$ and $g: \mu \rightarrow \lambda^{+}$ensures that $\left(T,<_{T}\right)$ is λ^{+}-complete.

Finally, we define a function $F:\left[T^{\lambda}\right]^{2} \rightarrow \lambda^{+}$witnessing that $\left(T,<_{T}\right)$ is a superSouslin tree. Fix $\alpha<\beta<\lambda^{++}$and $\delta, \epsilon<\lambda^{+}$such that $a_{\alpha, \delta}<_{T} a_{\beta, \epsilon}$. Find $p \in G \cap$ $E_{\delta, \epsilon,\{\alpha, \beta\}}$. Since $p \in \mathbb{Q}$ and $a_{\alpha, \delta}<_{T} \quad a_{\beta, \epsilon}$, it follows that $a_{\alpha, \delta}<_{p}^{1} \quad a_{\beta, \epsilon}$. Therefore, $\left(a_{\alpha, \delta}, a_{\beta, \epsilon}\right) \in \operatorname{dom}\left(f_{p}\right)$. Let $F\left(a_{\alpha, \delta}, a_{\beta, \epsilon}\right)$ be an arbitrary element of $f_{p}\left(a_{\alpha, \delta}, a_{\beta, \epsilon}\right)$.

To verify that F is as sought, fix $a, b, c \in T^{\lambda}$ such that $(a, b),(a, c) \in\left[T^{\lambda}\right]^{2}$ and $F(a, b)=F(a, c)$. Without loss of generality, suppose there are $\beta \leq \gamma<\lambda^{++}$such that $b \in T_{\beta}^{\lambda}$, and $c \in T_{\gamma}^{\lambda}$. Find $p_{b} \in G$ such that $(a, b) \in \operatorname{dom}\left(f_{p_{b}}\right)$ and $F(a, b) \in f_{p_{b}}(a, b)$. Similarly, find $p_{c} \in G$ such that $(a, c) \in \operatorname{dom}\left(f_{p_{c}}\right)$ and $F(a, c) \in f_{p_{c}}(a, c)$. Find $q \in G \cap \mathbb{Q}$ with $q \leq_{\mathbb{P}} p_{b}, p_{c}$. Then $(a, b),(a, c) \in \operatorname{dom}\left(f_{q}\right), F(a, b) \in f_{q}(a, b)$, and $F(a, c) \in f_{q}(a, c)$. In particular, $f_{q}(a, b) \cap f_{q}(a, c) \neq \varnothing$. Since $q \in \mathbb{Q}$ it follows that there are λ-many $i<\lambda$ such that $b(i) \leq_{q}^{1} c(i)$. But then, for all such $i<\lambda$, we have $b(i) \leq_{T} c(i)$. Thus, F witnesses that $\left(T,<_{T}\right)$ is a λ^{++}-super-Souslin tree, so our proof of Theorem C is now complete.

5 Square and Diamond

In this section, we use \square_{κ}^{B} and $\diamond(\kappa)$ to construct combinatorial objects that will help us prove Theorem B in Section 6.

5.1 Enlarged Direct Limit

In this short subsection, we introduce an "enlarged direct limit" operator. This operator motivates our application of \square_{κ}^{B} that will be carried out in the next subsection.

Definition 5.1 For a linearly ordered set (Y, \triangleleft) and a subset $Z \subseteq Y$, we define double $_{Z}(Y, \triangleleft)$ as a linearly ordered set whose underlying set is $(Z \times\{0\}) \uplus(Y \times\{1\})$, ordered lexicographically by letting $(y, i) \triangleleft_{l}\left(y^{\prime}, i^{\prime}\right)$ if and only if one of the following holds:

- $y \triangleleft y^{\prime}$;
- $y=y^{\prime}$ and $\left(i, i^{\prime}\right)=(0,1)$.

The linearly ordered set (Y, \triangleleft) we have in mind is a direct limit of a system of well-ordered sets, and the choice of the subset $Z \subseteq Y$ (to be doubled) will be defined momentarily. The following is obvious.

Lemma 5.2 For all $Z \subseteq Y$, if Y is well-ordered by \triangleleft, then $\operatorname{double}_{Z}(Y, \triangleleft)$ is wellordered by \triangleleft_{l}.

We start with a certain system of well-ordered sets. Suppose that $\vec{\theta}=\left\langle\theta_{\eta} \mid \eta<\xi\right\rangle$ and $\vec{\pi}=\left\langle\pi_{\eta, \eta^{\prime}} \mid \eta<\eta^{\prime}<\xi\right\rangle$ are such that

- ξ is a limit ordinal,
- $\vec{\theta}$ is a nondecreasing sequence of ordinals,
- for all $\eta<\eta^{\prime}<\xi, \pi_{\eta, \eta^{\prime}}: \theta_{\eta} \rightarrow \theta_{\eta^{\prime}}$ is a c.o.i.,
- for all $\eta<\eta^{\prime}<\eta^{\prime \prime}<\xi$, we have $\pi_{\eta, \eta^{\prime \prime}}=\pi_{\eta^{\prime}, \eta^{\prime \prime}} \circ \pi_{\eta, \eta^{\prime}}$.

As is well known, the direct limit of the system $(\vec{\theta}, \vec{\pi})$ is defined as follows.

- Put $X:=\left\{(\eta, \gamma) \mid \eta<\xi, \gamma<\theta_{\eta}\right\}$.
- For $(\eta, \gamma),\left(\eta^{\prime}, \gamma^{\prime}\right) \in X$ with $\eta<\eta^{\prime}$, let $(\eta, \gamma) \sim\left(\eta^{\prime}, \gamma^{\prime}\right)$ if and only if $\pi_{\eta, \eta^{\prime}}(\gamma)=\gamma^{\prime}$.
- Let Y consists of all equivalence classes $[(\eta, \gamma)]$ for $(\eta, \gamma) \in X$.
- Order Y by letting $\left[\left(\eta_{0}, \gamma_{0}\right)\right] \triangleleft\left[\left(\eta_{1}, \gamma_{1}\right)\right]$ if and only if there exists some $\eta \geq$ $\max \left\{\eta_{0}, \eta_{1}\right\}$ and $\gamma_{0}^{\prime}<\gamma_{1}^{\prime}$ such that $\left(\eta_{0}, \gamma_{0}\right) \sim\left(\eta, \gamma_{0}^{\prime}\right)$ and $\left(\eta_{1}, \gamma_{1}\right) \sim\left(\eta, \gamma_{1}^{\prime}\right)$.
- For each $\eta<\xi$, define a map $\pi_{\eta}: \theta_{\eta} \rightarrow Y$ by stipulating $\pi_{\eta}(\gamma):=[(\eta, \gamma)]$.

Definition 5.3 (Direct limit) Let $\lim (\vec{\theta}, \vec{\pi})$ denote $\left(Y, \triangleleft,\left\langle\pi_{\eta} \mid \eta<\xi\right\rangle\right)$.
Next, we let Z be the set of equivalence classes in Y such that, for every representative (η, γ) from the equivalence class, $\pi_{\eta} \upharpoonright \gamma$ is bounded below $\pi_{\eta}(\gamma)$, i.e.,

$$
Z:=\left\{z \in Y \mid \forall(\eta, \gamma) \in z \exists y \in Y \forall \beta<\gamma\left[\pi_{\eta}(\beta) \triangleleft y \triangleleft \pi_{\eta}(\gamma)\right]\right\} .
$$

Let $W:=\operatorname{double}_{Z}(Y, \triangleleft)$, and let ω denote the map from Y to its canonical copy inside W, i.e., $\omega(y)=(y, 1)$.

Definition 5.4 (Enlarged direct limit) Let $\lim ^{*}(\vec{\theta}, \vec{\pi})$ denote $\left(W, \triangleleft_{l},\left\langle\pi_{\eta}^{*} \mid \eta<\xi\right\rangle\right)$, where $\pi_{\eta}^{*}:=\omega \circ \pi_{\eta}$ for each $\eta<\xi$.

Finally, by Lemma 5.2, in the special case that (Y, \triangleleft) is well-ordered, we know that $\left(W, \triangleleft_{l}\right)$ is well-ordered. In this case, we put $\theta:=\operatorname{otp}\left(W, \triangleleft_{l}\right)$, and let $\pi^{*}: W \rightarrow \theta$ be the collapse map. Then, we define the following.

Definition 5.5 (Ordinal enlarged direct limit) $\lim ^{+}(\vec{\theta}, \vec{\pi})$ stands for

$$
\left(\theta, \epsilon,\left\langle\pi_{\eta}^{+} \mid \eta<\xi\right\rangle\right)
$$

where $\pi_{\eta}^{+}:=\pi^{*} \circ \pi_{\eta}^{*}$ for all $\eta<\xi$.

5.2 Square

Fix a \square_{κ}^{B}-sequence, $\left\langle C_{\beta} \mid \beta \in \Gamma\right\rangle$. Enlarge the preceding to a sequence $\vec{C}=\left\langle C_{\beta} \mid \beta<\kappa\right\rangle$ by letting, for all limit $\beta \in \kappa \backslash \Gamma, C_{\beta}$ be an arbitrary club in β of order type $\operatorname{cf}(\beta)$, and
letting $C_{\beta+1}:=\{0, \beta\}$ for all $\beta<\kappa$. In particular, for every $\beta \in E_{\omega}^{\kappa} \backslash \Gamma$, we have $\operatorname{acc}\left(C_{\beta}\right)=\varnothing$. Thus, without loss of generality, we can assume that $E_{\omega}^{\kappa} \subseteq \Gamma$. For convenience, assume also that $0 \in C_{\beta}$ for all nonzero $\beta<\kappa$.

We now turn to constructing a matrix $\vec{B}=\left\langle B_{\eta}^{\beta} \mid \beta<\kappa^{+}, \eta<\kappa\right\rangle$ such that $\bigcup_{\eta<\kappa} B_{\eta}^{\beta}=$ $\beta+1$ for all $\beta<\kappa^{+}$. From this matrix, for each $\beta<\kappa^{+}$, we shall derive the following additional objects:

- We let η_{β} denote the least $\eta<\kappa$ such that $B_{\eta}^{\beta} \neq \varnothing$.
- For each $\xi \in \operatorname{acc}\left(\kappa \backslash \eta_{\beta}\right)$, we write $B_{<\xi}^{\beta}:=\cup_{\eta<\xi} B_{\eta}^{\beta}$.
- For each $\eta<\kappa$, we set $\theta_{\eta}^{\beta}:=\operatorname{otp}\left(B_{\eta}^{\beta}\right)$ and let $\pi_{\eta}^{\beta}: B_{\eta}^{\beta} \rightarrow \theta_{\eta}^{\beta}$ denote the unique orderpreserving bijection.
- For each $\eta<\xi<\kappa, \pi_{\eta, \xi}^{\beta}: \theta_{\eta}^{\beta} \rightarrow \theta_{\xi}^{\beta}$ will denote the order-preserving injection indicating how B_{η}^{β} "sits inside" B_{ξ}^{β}, i.e., $\pi_{\eta, \xi}^{\beta}:=\pi_{\xi}^{\beta} \circ\left(\pi_{\eta}^{\beta}\right)^{-1}$.
We shall also derive a "distance function" $d:\left[\kappa^{+}\right]^{2} \rightarrow \kappa$ by letting

$$
d(\alpha, \beta):=\min \left\{\eta<\kappa \mid \alpha \in B_{\eta}^{\beta}\right\} \quad\left(\alpha<\beta<\kappa^{+}\right) .
$$

Lemma 5.6 There exists a matrix $\vec{B}=\left\langle B_{\eta}^{\beta} \mid \beta<\kappa^{+}, \eta<\kappa\right\rangle$ such that for each $\beta<\kappa^{+}$, the following hold:
(1) $\left\langle B_{\eta}^{\beta}\right| \eta\langle\kappa\rangle$ is a \subseteq-increasing sequence of closed sets, each of size $<\kappa$, that converges to $\beta+1$, and $\beta \in B_{\eta_{\beta}}^{\beta}$;
(2) for all $\eta<\kappa$ and $\alpha \in B_{\eta}^{\beta}$, we have $B_{\eta}^{\alpha}=B_{\eta}^{\beta} \cap(\alpha+1)$ and $\pi_{\eta}^{\alpha}=\pi_{\eta}^{\beta} \upharpoonright(\alpha+1)$;
(3) for all $\eta<\kappa$, if $\operatorname{cf}(\beta)=\kappa$, then $\max \left(B_{\eta}^{\beta} \cap \beta\right)=C_{\beta}(\omega \eta)$;
(4) if $\beta \in \Gamma \cap E_{<\kappa}^{\kappa^{+}}$, then $\eta_{\beta}=\operatorname{otp}\left(\operatorname{acc}\left(C_{\beta}\right)\right)$ and $\operatorname{acc}\left(C_{\beta}\right) \subseteq B_{\eta_{\beta}}^{\beta}$;
(5) for all $\xi \in \operatorname{acc}\left(\kappa \backslash \eta_{\beta}\right)$, all of the following hold:
(a) B_{ξ}^{β} is the ordinal closure of $B_{<\xi}^{\beta}$;
(b) for every $\alpha \in B_{\xi}^{\beta} \backslash B_{<\xi}^{\beta}$, letting $\gamma:=\min \left(B_{\xi}^{\beta} \backslash(\alpha+1)\right)$, we have $\operatorname{cf}(\gamma)=\kappa$ and $\alpha=C_{\gamma}(\omega \xi) ;$
(c) $\operatorname{cf}(\beta)=\kappa$ if and only if $\operatorname{ssup}\left(\pi_{\eta, \xi}^{\beta}\right.$ " $\left.\pi_{\eta}^{\beta}(\beta)\right)<\pi_{\xi}^{\beta}(\beta)$ for all $\eta \in\left[\eta_{\beta}, \xi\right)$.

Proof The construction is by recursion on $\beta<\kappa^{+}$.
Case 0: $\beta=0$. Set $B_{\eta}^{\beta}:=\{0\}$ for all $\eta<\kappa$. It is trivial to see that (1)-(5) all hold.
Case 1: $\beta=\alpha+1$. For all $\eta<\eta_{\alpha}$, let $B_{\eta}^{\beta}:=\varnothing$, and for all $\eta \in\left[\eta_{\alpha}, \kappa\right)$, let $B_{\eta}^{\beta}:=$ $\{\beta\} \cup B_{\eta}^{\alpha}$. It is trivial to see that (1)-(5) all hold.
Case 2: $\beta \in \operatorname{acc}(\kappa)$ and $\sup \left(\operatorname{acc}\left(C_{\beta}\right)\right)<\beta$. In particular, $a:=C_{\beta} \backslash \sup \left(\operatorname{acc}\left(C_{\beta}\right)\right)$ is a cofinal subset of β of order type ω. Note that since $\operatorname{cf}(\beta)=\omega$, we have $\beta \in \Gamma$. Put $\eta_{\beta}:=\operatorname{otp}\left(\operatorname{acc}\left(C_{\beta}\right)\right)$ and $\eta^{*}:=\max \left\{\eta_{\beta}, \sup \left(d^{"}[a]^{2}\right)\right\}$. Now, for all $\eta<\kappa$, define B_{η}^{β} as follows:

- If $\eta<\eta_{\beta}$, then let $B_{\eta}^{\beta}:=\varnothing$. Clauses (2)-(5) are trivially satisfied.
- If $\eta_{\beta} \leq \eta \leq \eta^{*}$, then let $\alpha^{*}:=\min (a)$ and put $B_{\eta}^{\beta}:=\{\beta\} \cup B_{\eta}^{\alpha^{*}}$. Since $\alpha^{*} \in \operatorname{acc}\left(C_{\beta}\right) \cup\{0\}$ and $\beta \in \Gamma$, we have $C_{\alpha^{*}} \sqsubseteq C_{\beta}$, which ensures (4). As for
(5c), for all $\eta<\xi$ in $\left[\eta_{\beta}, \eta^{*}\right]$, we have

$$
\operatorname{ssup}\left(\pi_{\eta, \xi}^{\beta} " \pi_{\eta}^{\beta}(\beta)\right)=\pi_{\eta, \xi}^{\beta}\left(\pi_{\eta}^{\beta}\left(\alpha^{*}\right)+1\right)=\pi_{\xi}^{\beta}\left(\alpha^{*}\right)+1=\pi_{\xi}^{\beta}(\beta)
$$

The other clauses are easily seen to be satisfied.

- Otherwise, let $B_{\eta}^{\beta}:=\{\beta\} \cup \bigcup_{\alpha \in a} B_{\eta}^{\alpha}$. Since $\eta>\eta^{*}$, for every pair of ordinals $\alpha<\alpha^{\prime}$ from a, we have $\alpha \in B_{\eta}^{\alpha^{\prime}}$, so that $B_{\eta}^{\alpha}=B_{\eta}^{\alpha^{\prime}} \cap(\alpha+1)$. It follows that $\left\langle B_{\eta}^{\alpha} \mid \alpha \in a\right\rangle$ is an \subseteq-increasing sequence of closed sets. In particular, $B_{\eta}^{\beta} \cap \beta$ is a club in β, which takes care of (5c). So, all clauses are satisfied.
Case 3: $\operatorname{cf}(\beta)<\kappa$ and $\sup \left(\operatorname{acc}\left(C_{\beta}\right)\right)=\beta$. Put $\eta_{\beta}:=\sup \left(d^{"}\left[\operatorname{acc}\left(C_{\beta}\right)\right]^{2}\right)$, and, for all $\eta<\kappa$, define B_{η}^{β} as follows:
- If $\eta<\eta_{\beta}$, then let $B_{\eta}^{\beta}:=\varnothing$. Clauses (2)-(5) are trivially satisfied.
- If $\eta \geq \eta_{\beta}$, then let $B_{\eta}^{\beta}:=\{\beta\} \cup \bigcup_{\alpha \in \operatorname{acc}\left(C_{\beta}\right)} B_{\eta}^{\alpha}$. Since $\eta \geq \sup \left(d^{*}\left[\operatorname{acc}\left(C_{\beta}\right)\right]^{2}\right)$, we have that $\left\langle B_{\eta}^{\alpha} \mid \alpha \in \operatorname{acc}\left(C_{\beta}\right)\right\rangle$ is an $巨$-increasing sequence of closed sets. So $B_{\eta}^{\beta} \cap \beta$ is a club in β, and all clauses except (4) are easily seen to be satisfied. Now, if $\beta \in \Gamma$, then, since (4) holds for all $\alpha \in \operatorname{acc}\left(C_{\beta}\right)$; we have $\eta_{\beta}=\operatorname{otp}\left(\operatorname{acc}\left(C_{\beta}\right)\right)$, so that (4) holds for β, as well.
Case 4: $\beta \in E_{\kappa}^{\kappa^{+}}$. For all $\eta<\kappa$, let $\alpha_{\eta}:=C_{\beta}(\omega \eta)$ and $B_{\eta}^{\beta}:=\{\beta\} \cup B_{\eta}^{\alpha_{\eta}}$, so that (3) is satisfied.

Since $\operatorname{cf}(\beta)=\kappa$, we have $\beta \in \Gamma$. Hence, for all $\eta<\xi<\kappa$, we have $\alpha_{\xi} \in \Gamma$, so that $\alpha_{\eta} \in B_{\xi}^{\alpha_{\xi}}$ by (4). It follows that $\left\langle B_{\eta}^{\beta} \cap \beta \mid \eta<\kappa\right\rangle$ is \subseteq-increasing. In particular, (1) and (2) are satisfied. It also follows that, for all $\xi \in \operatorname{acc}(\kappa)$ and $\alpha \in B_{\xi}^{\beta} \cap \beta$, we have $B_{<\xi}^{\beta} \cap(\alpha+1)=B_{<\xi}^{\alpha}$, so that (5a) and (5b) are satisfied.

Finally, to verify (5c), fix an arbitrary $\xi \in \operatorname{acc}(\kappa)$ and $\eta<\xi$. By (2) and (3), we have $B_{\eta}^{\beta}=\{\beta\} \cup B_{\eta}^{\alpha_{\eta}}$ and $B_{\xi}^{\beta}=\{\beta\} \cup B_{\xi}^{\alpha_{\xi}}$, so that $\pi_{\eta}^{\beta}(\beta)=\pi_{\eta}^{\beta}\left(\alpha_{\eta}\right)+1$ and $\pi_{\xi}^{\beta}(\beta)=\pi_{\xi}^{\beta}\left(\alpha_{\xi}\right)+1$. Therefore, we have

$$
\pi_{\eta, \xi}^{\beta} \text { " } \pi_{\eta}^{\beta}(\beta) \subseteq \pi_{\eta, \xi}^{\beta}\left(\pi_{\eta}^{\beta}\left(\alpha_{\eta}\right)\right)+1=\pi_{\xi}^{\beta}\left(\alpha_{\eta}\right)+1<\pi_{\xi}^{\beta}\left(\alpha_{\xi}\right)<\pi_{\xi}^{\beta}(\beta)
$$

The next lemma assumes familiarity with the previous subsection.
Lemma 5.7 Suppose $\beta<\kappa^{+}$and $\xi \in \operatorname{acc}\left(\kappa \backslash \eta_{\beta}\right)$. Write $\vec{\theta}:=\left\langle\theta_{\eta}^{\beta} \mid \eta<\xi\right\rangle$ and $\vec{\pi}:=\left\langle\pi_{\eta, \eta^{\prime}}^{\beta} \mid \eta<\eta^{\prime}<\xi\right\rangle$. Then $\lim ^{+}(\vec{\theta}, \vec{\beta})$ is defined and, letting $\left(\theta, \in,\left\langle\pi_{\eta}^{+} \mid \eta<\xi\right\rangle\right):=$ $\lim ^{+}(\vec{\theta}, \vec{\pi})$, we have $\theta=\theta_{\xi}^{\beta}$ and $\left\langle\pi_{\eta}^{+} \mid \eta<\xi\right\rangle=\left\langle\pi_{\eta, \xi}^{\beta} \mid \eta<\xi\right\rangle$.

Proof Let $\left\langle Y, \triangleleft,\left\langle\pi_{\eta} \mid \eta<\xi\right\rangle\right):=\lim ((\vec{\theta}, \vec{\pi}))$. For every class $y \in Y$ and representatives $(\eta, \gamma),\left(\eta^{\prime}, \gamma^{\prime}\right) \in y$ with $\eta<\eta^{\prime}$, we have $\pi_{\eta, \eta^{\prime}}^{\beta}(\gamma)=\gamma^{\prime}$, i.e., $\left(\pi_{\eta^{\prime}}^{\beta}\right)^{-1}\left(\gamma^{\prime}\right)=$ $\left(\pi_{\eta}^{\beta}\right)^{-1}(\gamma)$. Therefore, for each $y \in Y$, we can let $\alpha_{y}:=\left(\pi_{\eta}^{\beta}\right)^{-1}(\gamma)$ for an arbitrary choice of $(\eta, \gamma) \in y$. Note that, for all y, y^{\prime} in Y, we have $y \triangleleft y^{\prime}$ if and only if $\alpha_{y}<\alpha_{y^{\prime}}$. Therefore, the order type of (Y, \triangleleft) is precisely $\operatorname{otp}\left(B_{<\xi}^{\beta}\right)$. In particular, $\lim (\vec{\theta}, \vec{\pi})$ is well-ordered, so $\lim ^{+}(\vec{\theta}, \vec{\pi})$ is defined. Write $\left(\theta, \epsilon,\left\langle\pi_{\eta}^{+} \mid \eta<\xi\right\rangle\right)$ for $\lim ^{+}(\vec{\theta}, \vec{\pi})$.

Let Z be the set of equivalence classes in Y such that, for every representative (η, γ) from the class, we have that $\pi_{\eta} \upharpoonright \gamma$ is bounded below $\pi_{\eta}(\gamma)$. By clause (5c) of Lemma 5.6 we know that $Z=\left\{z \in Y \mid \operatorname{cf}\left(\alpha_{z}\right)=\kappa\right\}$.

For all $\alpha \in B_{<\xi}^{\beta} \cap E_{\kappa}^{\kappa^{+}}$, we have $C_{\alpha}(\omega \xi) \in B_{\xi}^{\beta} \backslash B_{<\xi}^{\beta}$ and $\alpha=\min \left(B_{\xi}^{\beta} \backslash\left(C_{\alpha}(\omega \xi)+1\right)\right)$. Also, by clauses (5a) and (5b) of Lemma 5.6, we know that

$$
B_{\xi}^{\beta}=B_{<\xi}^{\beta} \cup\left\{C_{\alpha}(\omega \xi) \mid \alpha \in B_{<\xi}^{\beta} \cap E_{\kappa}^{\kappa^{+}}\right\}
$$

Now, for all $z \in Z$, the addition of $(z, 0)$ when passing from Y to $W:=\operatorname{double}_{Z}(Y, \triangleleft)$ corresponds precisely to the addition of $C_{\alpha_{z}}(\omega \xi)$ when passing from $B_{<\xi}^{\beta}$ to B_{ξ}^{β}. It follows that $\operatorname{otp}\left(W, \triangleleft_{l}\right)=\operatorname{otp}\left(B_{\xi}^{\beta}\right)=\theta_{\xi}^{\beta}$; that is, $\theta=\theta_{\xi}^{\beta}$. Letting $\pi^{*}: W \rightarrow \theta$ be the collapse map, we have that, for all $z \in Y, \pi^{*}(z, 1)=\pi_{\xi}^{\beta}\left(\alpha_{z}\right)$, so, for all $\eta<\xi$ and $\gamma<\theta_{\eta}^{\beta}$, we have

$$
\begin{aligned}
& \qquad \pi_{\eta}^{+}(\gamma)=\pi^{*}([(\eta, \gamma)], 1)=\pi_{\xi}^{\beta}\left(\left(\pi_{\eta}^{\beta}\right)^{-1}(\gamma)\right)=\pi_{\eta, \xi}^{\beta}(\gamma) \text {, } \\
& \text { so }\left\langle\pi_{\eta}^{+} \mid \eta<\xi\right\rangle=\left\langle\pi_{\eta, \xi}^{\beta} \mid \eta<\xi\right\rangle \text {. }
\end{aligned}
$$

5.3 Diamond

Our next goal is to prove the following.
Lemma 5.8 Suppose that $\diamond(\kappa)$ holds and that $(\mathbb{P}, \leq \mathbb{P}, \mathbb{Q}) \in \mathcal{P}_{\kappa}$. Then there are arrays $\left\langle\vartheta_{\eta}^{\xi} \mid \eta \leq \xi<\kappa\right\rangle,\left\langle\omega_{\eta, \eta^{\prime}}^{\xi} \mid \eta<\eta^{\prime} \leq \xi<\kappa\right\rangle$, and $\left\langle q_{\eta}^{\xi} \mid \eta<\xi<\kappa\right\rangle$ such that every $\beta<\kappa^{+}$ and every decreasing sequence $\left\langle p_{\eta} \mid \eta<\kappa\right\rangle \in \prod_{\eta<\kappa} \mathbb{P}_{B_{\eta}^{\beta}}$, there are stationarily many $\xi<\kappa$ such that

- $\left\langle\vartheta_{\eta}^{\xi} \mid \eta \leq \xi\right\rangle=\left\langle\theta_{\eta}^{\beta} \mid \eta \leq \xi\right\rangle$,
- $\left\langle\omega_{\eta, \eta^{\prime}}^{\xi} \mid \eta<\eta^{\prime} \leq \xi\right\rangle=\left\langle\pi_{\eta, \eta^{\prime}}^{\beta} \mid \eta<\eta^{\prime} \leq \xi\right\rangle$,
- $\left\langle q_{\eta}^{\xi} \mid \eta<\xi\right\rangle=\left\langle\pi_{\eta}^{\beta} \cdot p_{\eta} \mid \eta<\xi\right\rangle$.

The rest of this subsection will be devoted to proving Lemma 5.8. To avoid the use of codings, we will make use of the following equivalent version of $\diamond(\kappa)$ (see [2]).

Definition $5.9 \diamond^{-}\left(H_{\kappa}\right)$ asserts the existence of a sequence $\left\langle A_{\xi} \mid \xi<\kappa\right\rangle$ such that, for every $A \subseteq H_{\kappa}$ and $p \in H_{\kappa^{+}}$, there exists an elementary submodel $\mathcal{M}<H_{\kappa^{+}}$, with $p \in \mathcal{M}$, such that $\kappa^{\mathcal{M}}:=\mathcal{M} \cap \kappa$ is an ordinal $<\kappa$ and $A \cap \mathcal{M}=A_{\kappa^{\aleph}}$.

Fix a $\diamond^{-}\left(H_{\kappa}\right)$-sequence, $\left\langle A_{\xi} \mid \xi<\kappa\right\rangle$.
Definition 5.10 We say that $\xi<\kappa$ is good if $\xi \in \operatorname{acc}(\kappa)$ and

$$
A_{\xi}=\left\{\left(\vartheta_{\eta^{\xi}}^{\xi}, q_{\eta}^{\xi}, \omega_{\eta, \eta^{\prime}}^{\xi}, \eta, \eta^{\prime}\right) \mid \eta<\eta^{\prime}<\xi\right\},
$$

where, for all $\eta<\eta^{\prime}<\eta^{\prime \prime}<\xi$, we have

- $\vartheta_{\eta}^{\xi} \leq \vartheta_{\eta^{\prime}}^{\xi}<\kappa$,
- $q_{\eta}^{\xi} \in \mathbb{P}_{\vartheta_{\eta}^{\xi}}$,
- $\omega_{\eta, \eta^{\prime}}^{\xi}: \vartheta_{\eta}^{\xi} \rightarrow 9_{\eta^{\prime}}^{\xi}$, is a c.o.i. and $q_{\eta^{\prime}}^{\xi} \leq \mathbb{P} \omega_{\eta, \eta^{\prime}}^{\xi} \cdot q_{\eta^{\prime}}^{\xi}$,
- $\omega_{\eta, \eta^{\prime \prime}}^{\xi}=\omega_{\eta^{\prime}, \eta^{\prime \prime}}^{\xi} \circ \omega_{\eta, \eta^{\prime \prime}}^{\xi}$,
- $\lim \left(\left\langle\vartheta_{\eta}^{\xi} \mid \eta<\xi\right\rangle,\left\langle\omega_{\eta, \eta^{\prime}}^{\xi} \mid \eta<\eta^{\prime}<\xi\right\rangle\right)$ is well-ordered.
- If $\xi<\kappa$ is good, then $\left\langle 9_{\eta}^{\xi} \mid \eta<\xi\right\rangle,\left\langle\omega_{\eta, \eta^{\prime}}^{\xi} \mid \eta<\eta^{\prime}<\xi\right\rangle$, and $\left\langle q_{\eta}^{\xi} \mid \eta<\xi\right\rangle$ are already defined, and we let

$$
\left(\vartheta_{\xi}^{\xi}, \in,\left\langle\omega_{\eta, \xi}^{\xi} \mid \eta<\xi\right\rangle\right):=\lim ^{+}\left(\left\langle\vartheta_{\eta}^{\xi} \mid \eta<\xi\right\rangle,\left\langle\omega_{\eta, \eta^{\prime}}^{\xi} \mid \eta<\eta^{\prime}<\xi\right\rangle\right) .
$$

- If $\xi<\kappa$ is not good, then let $\left\langle 9_{\eta}^{\xi} \mid \eta \leq \xi\right\rangle,\left\langle\omega_{\eta, \eta^{\prime}}^{\xi} \mid \eta<\eta^{\prime} \leq \xi\right\rangle$, and $\left\langle q_{\eta}^{\xi} \mid \eta<\xi\right\rangle$ be arbitrary.

We claim that the arrays thus defined satisfy the conclusion of Lemma 5.8. To verify this, fix $\beta<\kappa^{+}$, a decreasing sequence $\left\langle p_{\eta} \mid \eta<\kappa\right\rangle \in \prod_{\eta<\kappa} \mathbb{P}_{B_{\eta}^{\beta}}$, and a club D in κ. Put

$$
A:=\left\{\left(\theta_{\eta}^{\beta}, \pi_{\eta}^{\beta} \cdot p_{\eta}, \pi_{\eta, \eta^{\prime}}^{\beta}, \eta, \eta^{\prime}\right) \mid \eta<\eta^{\prime}<\kappa\right\} .
$$

Since $A \subseteq H_{\kappa}$ and $D \in H_{\kappa^{+}}$, we can let $p:=\{A, D\}$ and fix an elementary submodel $\mathcal{M}<H_{\kappa^{+}}$with $p \in \mathcal{M}$ such that $\xi:=\mathcal{M} \cap \kappa$ is in κ and $A \cap \mathcal{M}=A_{\xi}$. By the fact that $D \in \mathcal{M}$ and the elementarity of \mathcal{N}, we have $\xi \in D$. Since $\mathcal{M} \cap \kappa=\xi$ and $A \in \mathcal{M}$, and by the elementarity of \mathcal{M}, we have

$$
A_{\xi}=\left\{\left(\theta_{\eta}^{\beta}, \pi_{\eta}^{\beta} \cdot p_{\eta}, \pi_{\eta, \eta^{\prime}}^{\beta}, \eta, \eta^{\prime}\right) \mid \eta<\eta^{\prime}<\xi\right\} .
$$

In particular, ξ is good. By Lemma 5.7, we have $\vartheta_{\xi}^{\xi}=\theta_{\xi}^{\beta}$ and, for all $\eta<\xi, \omega_{\eta, \xi}^{\xi}=\pi_{\eta, \xi}^{\beta}$. Therefore, $\xi \in D$ satisfies the three bullet points in the statement of Lemma 5.8. Since D was arbitrary, this completes the proof of the lemma.

6 Proof of Theorem B

This section is devoted to the proof of Theorem B, which forms the main result of this paper.

Theorem B Suppose that \square_{κ}^{B} and $\diamond(\kappa)$ both hold. Then so does $\operatorname{SDFA}\left(\mathcal{P}_{\kappa}\right)$.

6.1 Setup

Fix an arbitrary $(\mathbb{P}, \leq \mathbb{P}, \mathbb{Q}) \in \mathcal{P}_{\kappa}$ along with a collection $\left\{\mathcal{D}_{i} \mid i<\kappa\right\}$ of sharply dense systems. For each $i<\kappa$, write $\mathcal{D}_{i}=\left\{D_{i, x} \left\lvert\, x \in\binom{\kappa^{+}}{\theta_{\mathcal{D}_{i}}}\right.\right\}$.

Let \vec{B} be given by Lemma 5.6 , and let $\left\langle 9_{\eta}^{\xi} \mid \eta \leq \xi<\kappa\right\rangle,\left\langle\omega_{\eta, \eta^{\prime}}^{\xi} \mid \eta<\eta^{\prime} \leq \xi<\kappa\right\rangle$, $\left\langle q_{\eta}^{\xi} \mid \eta<\xi<\kappa\right\rangle$ be given by Lemma 5.8 applied to ($\mathbb{P}, \leq \mathbb{P}, \mathbb{Q}$).

Definition 6.1 Let X denote the set of $\xi \in \operatorname{acc}(\kappa)$ such that

- ξ is good, in the sense of Definition 5.10;
- $\left\langle\omega_{\eta, \xi}^{\xi} \cdot \cdot_{\eta}^{\xi} \mid \eta<\xi\right\rangle$ admits a lower bound in $\mathbb{P}_{9 \xi}$.

Let \triangleleft_{κ} be some well-ordering of H_{κ}. Using $\kappa^{<\kappa}=\kappa$ (which follows from $\diamond(\kappa)$), enumerate all elements of $\bigcup_{i<\kappa}\{i\} \times \kappa \times\binom{\kappa}{\theta_{\mathcal{D}_{i}}}$ as a sequence $\left\langle\left(i_{\eta}, j_{\eta}, z_{\eta}\right) \mid \eta<\kappa\right\rangle$.

Lemma 6.2 There is a sequence of conditions $\left\langle s_{\xi} \mid \xi \in X\right\rangle \in \prod_{\xi \in X} \mathbb{Q}_{9_{\xi}^{\xi}}$, such that, for all $\xi \in X$

- s_{ξ} is a lower bound for $\left\langle\omega_{\eta, \xi}^{\xi} \cdot q_{\eta}^{\xi} \mid \eta<\xi\right\rangle$;
- for all $\eta<\xi$, if $j_{\eta}<\xi$ and $z_{\eta} \subseteq \vartheta_{j_{\eta}}^{\xi}$, then there is $q \in D_{i_{\eta}, \omega_{j_{\eta}, \xi}^{\xi} z_{\eta}}$ such that $s_{\xi} \leq \mathbb{P} q$.

Proof Let $\xi \in X$ be arbitrary. We first define a sequence $\left\langle s^{\eta} \mid \eta \leq \xi\right\rangle \in \prod_{\eta \leq \xi} \mathbb{Q}_{9_{\xi}^{\xi}}$ by recursion on η :

- For $\eta=0$, use clauses (1c) and (6) of Definition 2.1 and the fact that $\xi \in X$ to find $s^{0} \in \mathbb{Q}$ such that $x_{s^{0}}=\vartheta_{\xi}^{\xi}$ and s^{0} is a lower bound for $\left\langle\omega_{\eta, \xi}^{\xi} \cdot q_{\eta}^{\xi} \mid \eta<\xi\right\rangle$.
- For $\eta<\xi$, with $j_{\eta}<\xi$ and $z_{\eta} \subseteq \vartheta_{j_{\eta}}^{\xi}$, use the fact that $\mathcal{D}_{i_{\eta}}$ is a sharply dense system and that $\omega_{j_{\eta}, \xi}^{\xi}{ }^{\prime \prime} z_{\eta} \subseteq \vartheta_{\xi}^{\xi}$ to find $s^{\eta, *} \in D_{i_{\eta}, \omega_{j_{\eta}}, \xi^{\prime \prime} z_{\eta}}$ such that $s^{\eta, *} \leq_{\mathbb{P}} s^{\eta}$ and $x_{s^{\eta, *}}=\vartheta_{\xi}^{\xi}$. Then, use Definition 2.1(6) to find $s^{\eta+1} \in \mathbb{Q}$ such that $s^{\eta+1} \leq_{\mathbb{P}} s^{\eta, *}$ and $x_{s^{\eta+1}}=\vartheta_{\xi}^{\xi}$.
- For $\eta<\xi$ with $j_{\eta} \geq \xi$ or $z_{\eta} \nsubseteq \mathcal{\vartheta}_{j_{\eta}}^{\xi}$, simply let $s^{\eta+1}:=s^{\eta}$.
- For $\eta \in \operatorname{acc}(\xi+1)$, assuming that $\left\langle s^{\zeta} \mid \zeta<\eta\right\rangle$ has already been defined, use Definition 2.1(7) to let s^{η} be a lower bound for $\left\langle s^{\zeta} \mid \zeta<\eta\right\rangle$ in \mathbb{Q} with $x_{s^{\eta}}=\vartheta_{\xi}^{\xi}$.

Having constructed $\left\langle s^{\eta} \mid \eta \leq \xi\right\rangle$, it is clear that $s_{\xi}:=s^{\xi}$ is as sought.

Fix a sequence $\left\langle s_{\xi} \mid \xi \in X\right\rangle$ as in the preceding lemma. We will construct a matrix of conditions $\left\langle p_{\eta}^{\beta} \mid \beta<\kappa^{+}, \eta<\kappa\right\rangle$ satisfying the following conditions:
(i) for all $\beta<\kappa^{+}$and $\eta<\kappa$, we have $p_{\eta}^{\beta} \in \mathbb{P}_{B_{\eta}^{\beta}}$;
(ii) for all $\beta<\kappa^{+},\left\langle p_{\eta}^{\beta} \mid \eta<\kappa\right\rangle$ is $\leq_{\mathbb{P}}$-decreasing;
(iii) for all $\beta<\kappa^{+}, \eta<\kappa$, and $\alpha \in B_{\eta}^{\beta}$, we have $p_{\eta}^{\beta} f(\alpha+1)=p_{\eta}^{\alpha}$;
(iv) for all $\beta<\kappa^{+}$, all $i<\kappa$, and all $x \in\binom{\beta+1}{\theta_{\mathcal{D}_{i}}}$, there is $\xi<\kappa$ and $q \in D_{i, x}$ such that $p_{\xi}^{\beta} \leq \mathbb{P} q ;$
(v) for all $\beta \in E_{\kappa}^{\kappa^{+}}$and all $\xi \in \operatorname{acc}(\kappa)$, the sequence $\left\langle\pi_{\xi}^{\beta} \cdot p_{\eta}^{\beta} \mid \eta \leq \xi\right\rangle$ depends only on the value of $C_{\beta}(\omega \xi)$.
Note that if we succeed, then letting G be the upward closure of $\left\{p_{\eta}^{\beta} \mid \beta<\kappa^{+}, \eta<\kappa\right\}$, it follows from (i)-(iv) that G is a filter on \mathbb{P} that, for each $\eta<\kappa$, meets \mathcal{D}_{η} everywhere. Of course, the sequence $\left\langle s_{\xi} \mid \xi \in X\right\rangle$, which was derived from \diamond, will be a key to ensuring clause (iv).

6.2 Hypotheses

The construction of $\left\langle p_{\eta}^{\beta} \mid \beta<\kappa^{+}, \eta<\kappa\right\rangle$ will be by recursion on $\eta<\kappa$ and, for fixed η, by recursion on $\beta<\kappa^{+}$. We will maintain requirements (i)-(iii) and (v) as recursion hypotheses. In order to ensure that the construction will be successful, we
need to carry along some further hypotheses. Suppose that $\beta<\kappa^{+}, \xi \in \operatorname{acc}(\kappa)$, and $\left\langle p_{\eta}^{\alpha} \mid \alpha<\kappa^{+}, \eta<\xi\right\rangle$ has been constructed.

Definition 6.3 We say that the pair (β, ξ) is active if $\xi \in X, \theta_{\xi}^{\beta} \leq \mathcal{\vartheta}_{\xi}^{\xi}$, and one of the following holds:

- $\xi>\eta_{\beta}$ and, for all $\eta<\xi, s_{\xi} \leq \mathbb{P} \pi_{\xi}^{\beta} \cdot p_{\eta}^{\beta}$;
- $\xi=\eta_{\beta}$ and there is $\gamma \in E_{\kappa}^{\kappa^{+}}$such that $\beta \in \operatorname{acc}\left(C_{\gamma}\right)$ and (γ, ξ) is active.

In our construction, we will require that, for all active (β, ξ), we have $\pi_{\xi}^{\beta} \cdot p_{\xi}^{\beta}=$ $s_{\xi} \vDash \theta_{\xi}^{\beta}$. In particular, if (β, ξ) is active, then $p_{\xi}^{\beta} \in \mathbb{Q}$ and $x_{p_{\xi}^{\beta}}=B_{\xi}^{\beta}$. Moreover, for all $\beta<\kappa^{+}$, we will arrange that, if $\xi<\kappa$ is least such that $\beta \in x_{p_{\xi}^{\beta}}$, then either (β, ξ) is active or $\left(\xi=\eta_{\beta}\right.$ and $\left.p_{\xi}^{\beta} \in \mathbb{Q}\right)$.

Lemma 6.4 Suppose that $\beta<\kappa^{+}, \xi \in X$, and (β, ξ) is active. Then (α, ξ) is active for all $\alpha \in B_{\xi}^{\beta}$.

Proof Let $\alpha \in B_{\xi}^{\beta}$ be arbitrary. As $B_{\xi}^{\beta} \cap(\alpha+1)=B_{\xi}^{\alpha}$, we have $\theta_{\xi}^{\alpha}<\theta_{\xi}^{\beta} \leq \vartheta_{\xi}^{\xi}=x_{s_{\xi}}$.

- If $\xi>\eta_{\beta}$ and $\alpha \in B_{<\xi}^{\beta}$, then $\xi>\eta_{\alpha}$ and, for all sufficiently large $\eta<\xi$, we have $p_{\eta}^{\alpha}=p_{\eta}^{\beta} \vDash(\alpha+1)$. By Lemma 5.6(2), then, $s_{\xi} \leq \mathbb{P} \pi_{\eta}^{\beta} \cdot p_{\eta}^{\alpha}=\pi_{\eta}^{\alpha} \cdot p_{\eta}^{\alpha}$, so (α, ξ) is active.
\rightarrow If $\xi>\eta_{\beta}$ and $\alpha \in B_{\xi}^{\beta} \backslash B_{<\xi}^{\beta}$, then let $\gamma:=\min \left(B_{\xi}^{\beta} \backslash(\alpha+1)\right)$. By Lemma 5.6(b), we know that $\operatorname{cf}(\gamma)=\kappa$ and $\alpha=C_{\gamma}(\omega \xi)$. It follows that $\alpha \in \Gamma$ and hence, by Lemma 5.6(4), we have $\xi=\eta_{\alpha}$. Since $\left|B_{\xi}^{\beta}\right|<\kappa$, and by Lemma 5.6(a), we know that $\gamma \in B_{<\xi}^{\beta}$, so, by the previous paragraph, (γ, ξ) is active. Hence, by Definition 6.3, (α, ξ) is active as well.
- If $\xi=\eta_{\beta}$ and $\gamma \in E_{\kappa}^{\kappa^{+}}$is such that $\beta \in \operatorname{acc}\left(C_{\gamma}\right)$ and (γ, ξ) is active, then by clauses (2) and (3) of Lemma 5.6, $B_{\xi}^{\gamma} \cap(\beta+1)=B_{\xi}^{\beta}$, so $\alpha \in B_{\xi}^{\gamma}$. Moreover, $\xi>\eta_{\gamma}=0$, so, by the previous cases, we again conclude that (α, ξ) is active.

Our final recursion hypotheses concern nonactive pairs (β, ξ).
First, suppose that (β, ξ) is not active and $\xi=\eta_{\beta}$. If $\xi \in \operatorname{acc}(\kappa)$ and there is $\gamma \in E_{\kappa}^{\kappa^{+}}$ such that $\beta \in \operatorname{acc}\left(C_{\gamma}\right)$ and $\sup \{\eta<\xi \mid(\gamma, \eta)$ is active $\}=\xi$, then we will require that $p_{\xi}^{\beta} \in \mathbb{Q}$ and $x_{p_{\xi}^{\beta}}=B_{\xi}^{\beta}$.

Next, suppose that (β, ξ) is not active and $\xi>\eta_{\beta}$. Let

$$
\eta^{*}:=\max \left\{\sup \{\eta<\xi \mid(\beta, \eta) \text { is active }\}, \eta_{\beta}\right\}
$$

- If $\eta^{*}=\xi$, then we will require that $p_{\xi}^{\beta} \in \mathbb{Q}$ and $x_{p_{\xi}^{\beta}}=B_{\xi}^{\beta}$.
- If $\eta^{*}<\xi$ and $\beta \in x_{p_{\eta^{*}}^{\beta}}$, then we will have $p_{\eta^{*}}^{\beta} \in \mathbb{Q}$ and will require that p_{ξ}^{β} is the

6.3 The Construction

We now turn to the actual construction. Suppose that $\beta<\kappa^{+}, \xi<\kappa$, and we have already constructed $\left\langle p_{\eta}^{\alpha} \mid \alpha<\kappa^{+}, \eta<\xi\right\rangle$ and $\left\langle p_{\xi}^{\alpha} \mid \alpha<\beta\right\rangle$. We now construct p_{ξ}^{β}. There are a number of cases to consider. In all cases, unless explicitly verified, it will be trivial to check that the recursion hypotheses are maintained.

Case 0: $\xi<\eta_{\beta}$. Let $p_{\eta}^{\beta}:=\mathbb{1}_{\mathbb{P}}$.
Case 1: $\xi=\eta_{\beta}$. There are now a few subcases to consider.
Subcase 1a: (β, ξ) is active. Then, in particular, $x_{s_{\xi}}={\underset{\beta}{\beta}}_{\xi}^{\xi} \geq \theta_{\xi}^{\beta}$. Let p_{ξ}^{β} be the unique condition q such that $x_{q}=B_{\xi}^{\beta}$ and $\pi_{\xi}^{\beta} \cdot q=s_{\xi} \vDash \theta_{\xi}^{\beta}$, i.e., $p_{\xi}^{\beta}=\left(\pi_{\xi}^{\beta}\right)^{-1} .\left(s_{\xi} \vDash \theta_{\xi}^{\beta}\right)$. Note that, for all $\alpha \in_{\beta} B_{\xi}^{\beta}$, Lemma 6.4 implies that (α, ξ) is active. We therefore have $\pi_{\xi}^{\beta} \cdot p_{\xi}^{\boldsymbol{\alpha}}=\pi_{\xi}^{\alpha} \cdot p_{\xi}^{\alpha}=s_{\xi} \vDash \theta_{\xi}^{\beta}$, so $p_{\xi}^{\beta} f(\alpha+1)=p_{\xi}^{\alpha}$, and requirement (iii) is satisfied.
Subcase 1b: (β, ξ) is not active and there is $\gamma \in E_{\kappa}^{\kappa^{+}}$such that $\beta \in \operatorname{acc}\left(C_{\gamma}\right)$ and $\sup \{\eta<\xi \mid(\gamma, \eta)$ is active $\}=\xi$. Fix such a γ. Note that $B_{<\xi}^{\gamma} \cap \beta$ is unbounded in $B_{\xi}^{\beta} \cap \beta$ and, for all $\alpha \in B_{<\xi}^{\gamma} \cap \beta$, $\sup \{\eta<\xi \mid(\alpha, \eta)$ is active $\}=\xi$. Therefore, by our recursion hypotheses, for all $\alpha \in B_{<\xi}^{\gamma}$, we know that $p_{\xi}^{\alpha} \in \mathbb{Q}$ and $x_{p_{\xi}^{\alpha}}=B_{\xi}^{\alpha}$. By clause (5) of Definition 2.1, there is a unique condition $q \in \mathbb{Q}$ such that $x_{q}=B_{\xi}^{\beta} \cap \beta$ and, for all $\alpha \in B_{\xi}^{\beta}$, we have $q \vDash(\alpha+1)=p_{\xi}^{\alpha}$. By Definition 2.1(7), there is a lower bound p for $\left\langle p_{\eta}^{\gamma} \mid \eta<\xi\right\rangle$ such that

- $p \in \mathbb{Q}$;
- $x_{p}=B_{\xi}^{\gamma}=B_{\xi}^{\beta} \cup\{\gamma\}$;
- $p \neq \beta=q$.

Fix such a lower bound p with a \triangleleft_{κ}-minimal possible value for π_{ξ}^{γ}. p, and let $p_{\xi}^{\beta}:=p \vDash(\beta+1)$. Note that, by requirement (v), the construction in this Subcase is independent of our choice of γ.
Subcase 1c: Otherwise. Let p_{ξ}^{β} be the unique condition, given by Definition 2.1(5), such that

$$
x_{p_{\xi}^{\beta}}=\bigcup\left\{x_{p_{\xi}^{\alpha}} \mid \alpha \in\left(B_{\xi}^{\beta} \cap \beta\right)\right\}
$$

and, for all $\alpha \in\left(B_{\xi}^{\beta} \cap \beta\right)$, we have $p_{\xi}^{\beta} \nmid(\alpha+1)=p_{\xi}^{\alpha}$.
Case 2: $\xi>\eta_{\beta}$. There are again a few subcases to consider.
Subcase 2a: (β, ξ) is active. Let p_{ξ}^{β} be the unique condition q such that $x_{q}=$ B_{ξ}^{β} and $\pi_{\xi}^{\beta} \cdot q=s_{\xi} \vDash \theta_{\xi}^{\beta}$. By Definition 6.3, we have that $s_{\xi} \leq \mathbb{P} \pi_{\xi}^{\beta} . p_{\eta}^{\beta}$ for all $\eta<\xi$, which implies that $p_{\xi}^{\beta} \leq \mathbb{P} p_{\eta}^{\beta}$ for all $\eta<\xi$, so requirement (i) holds.
Subcase 2b: (β, ξ) is not active, $\sup \{\eta<\xi \mid(\beta, \eta)$ is active $\}=\xi$, and $\beta \notin$ $E_{\kappa}^{\kappa^{+}}$. In this subcase, we have that $\xi \in \operatorname{acc}(\kappa)$ and $B_{<\xi}^{\beta} \cap \beta$ is unbounded in $B_{\xi}^{\beta} \cap \beta$. Since, for all $\alpha \in B_{<\xi}^{\beta}$, we know that $\sup \{\eta<\xi \mid(\alpha, \eta)$ is active $\}=$ ξ, it follows as in Subcase lb that there is a unique condition $q \in \mathbb{Q}$ such that $x_{q}=B_{\xi}^{\beta} \cap \beta$ and, for all $\alpha \in B_{\xi}^{\beta}$, we have $q \vDash(\alpha+1)=p_{\xi}^{\alpha}$. By Definition 2.1(7), there is $p \in \mathbb{Q}$ such that

- p is a lower bound for $\left\langle p_{\eta}^{\beta} \mid \eta<\xi\right\rangle$;
- $p \in \mathbb{Q}$;
- $x_{p}=B_{\xi}^{\beta}$;
- $p \not \vDash \beta=q$.

Let p_{ξ}^{β} be such a p.
Subcase 2c: (β, ξ) is not active, $\sup \{\eta<\xi \mid(\beta, \eta)$ is active $\}=\xi$, and $\beta \in$ $E_{\kappa}^{\kappa^{+}}$. Let $\alpha:=C_{\beta}(\omega \xi)$, so that $B_{\xi}^{\beta}=B_{\xi}^{\alpha} \cup\{\beta\}$. When defining p_{ξ}^{α}, we were in Subcase 1b. In that subcase, we considered a $\gamma \in E_{\kappa}^{\kappa^{+}}$such that $\alpha \in$ $\operatorname{acc}\left(C_{\gamma}\right)$, produced a condition p with $x_{p}=B_{\xi}^{\gamma}$, and let $p_{\xi}^{\alpha}:=p \vDash(\alpha+1)$. Let $\pi: B_{\xi}^{\gamma} \rightarrow B_{\xi}^{\beta}$ be the unique order-preserving bijection, and let $p_{\xi}^{\beta}=$ $\pi . p$. Since, by requirement (v), we have

$$
\left\langle\pi_{\xi}^{\beta} \cdot p_{\eta}^{\beta} \mid \eta<\xi\right\rangle=\left\langle\pi_{\xi}^{\gamma} \cdot p_{\eta}^{\gamma} \mid \eta<\xi\right\rangle,
$$

and since $\pi \upharpoonright B_{\xi}^{\alpha}$ is the identity, the recursion hypotheses are all easily verified.
Subcase 2d: (β, ξ) is not active and there is no $\eta<\xi$ such that $\beta \in x_{p_{\eta}^{\beta}}$. Let p_{ξ}^{β} be the unique condition q such that $x_{q}=\bigcup\left\{x_{p_{\xi}^{\alpha}} \mid \alpha \in\left(B_{\xi}^{\beta} \cap \beta\right)\right\}$ and, for all $\alpha \in\left(B_{\xi}^{\beta} \cap \beta\right)$, we have $q \neq(\alpha+1)=p_{\xi}^{\alpha}$.
Subcase 2e: Otherwise. Let

$$
\eta^{*}:=\max \left\{\sup \{\eta<\xi \mid(\beta, \eta) \text { is active }\}, \eta_{\beta}\right\} .
$$

Since we are not in any of the previous Subcases, it must be the case that
 condition, given by Definition 2.1(5), such that

$$
x_{q_{\eta}}=\bigcup\left\{x_{p_{\eta}^{\alpha}} \mid \alpha \in\left(B_{\eta}^{\beta} \cap \beta\right)\right\}
$$

and, for all $\alpha \in\left(B_{\eta}^{\beta} \cap \beta\right)$, we have $q \vDash(\alpha+1)=p_{\eta}^{\alpha}$. By the recursion hypotheses, we know that, for all $\eta \in\left(\eta^{*}, \xi\right), p_{\eta}^{\beta}$ is the $\leq_{\mathbb{P}^{-} \text {-greatest lower }}$ bound of $p_{\eta^{*}}^{\beta}$ and q_{η}, as given by Definition 2.1(8). Therefore, if we let p_{ξ}^{β} be the $\leq_{\mathbb{P}}$-greatest lower bound of $p_{\eta^{*}}^{\beta}$ and q_{ξ}, which again exists by Definition 2.1(8), it will follow that $p_{\xi}^{\beta} \leq \mathbb{P} p_{\eta}^{\beta}$ for all $\eta<\xi$, so requirement (i) holds. The other requirements are easily verified.
This completes the construction. We have maintained requirements (i)-(iii) and (v) throughout. We now verify requirement (iv). To this end, fix $\beta<\kappa^{+}, i<\kappa$, and $x \in\binom{\beta+1}{\theta_{D_{i}}}$. We will find $\xi<\kappa$ and $q \in D_{i, x}$ such that $p_{\xi}^{\beta} \leq \mathbb{P} q$.

Fix $j<\kappa$ such that $x \subseteq B_{j}^{\beta}$, and fix $\eta^{*}<\kappa$ such that $\left(i_{\eta^{*}}, j_{\eta^{*}}, z_{\eta^{*}}\right)=\left(i, j, \pi_{j}^{\beta " x}\right)$. Find $\xi \in \operatorname{acc}\left(\kappa \backslash\left(\max \left\{j, \eta^{*}, \eta_{\beta}\right\}+1\right)\right)$ such that

- $\left\langle\vartheta_{\eta}^{\xi} \mid \eta \leq \xi\right\rangle=\left\langle\theta_{\eta}^{\beta} \mid \eta \leq \xi\right\rangle$;
- $\left\langle\omega_{\eta, \eta^{\prime}}^{\xi} \mid \eta<\eta^{\prime} \leq \xi\right\rangle=\left\langle\pi_{\eta, \eta^{\prime}}^{\beta} \mid \eta<\eta^{\prime} \leq \xi\right\rangle$;
- $\left\langle q_{\eta}^{\xi} \mid \eta<\xi\right\rangle=\left\langle\pi_{\eta}^{\beta} \cdot p_{\eta}^{\beta} \mid \eta<\xi\right\rangle$.

The following two claims now suffice for the verification of requirement (iv).
Claim $6.5(\beta, \xi)$ is active.
Proof We verify the requirements in Definition 6.3. We clearly have $\theta_{\xi}^{\beta} \leq \mathcal{\vartheta}_{\xi}^{\xi}$ and $\xi>\eta_{\beta}$. Moreover, for all $\eta<\xi$, we have

$$
\omega_{\eta, \xi}^{\xi} \cdot q_{\eta}^{\xi}=\pi_{\eta, \xi}^{\beta} \cdot \pi_{\eta}^{\beta} \cdot p_{\eta}^{\beta}=\pi_{\xi}^{\beta} \cdot p_{\eta}^{\beta} .
$$

Since $p_{\xi}^{\beta} \in \mathbb{P}_{B_{\xi}^{\beta}}$ is a lower bound for $\left\langle p_{\eta}^{\beta} \mid \eta<\xi\right\rangle$, it follows that $\pi_{\xi}^{\beta} \cdot p_{\xi}^{\beta} \in \mathbb{P}_{\vartheta_{\xi}^{\xi}}$ is a lower bound for

$$
\left\langle\omega_{\eta, \xi}^{\xi} \cdot q_{\eta}^{\xi} \mid \eta<\xi\right\rangle
$$

In particular, $\xi \in X$. It follows that s_{ξ} is a lower bound for

$$
\left\langle\omega_{\eta, \xi}^{\xi} \cdot q_{\eta}^{\xi} \mid \eta<\xi\right\rangle=\left\langle\pi_{\xi}^{\beta} \cdot p_{\eta}^{\beta} \mid \eta<\xi\right\rangle,
$$

which completes the verification.
Claim 6.6 There is $q \in D_{i, x}$ such that $p_{\xi}^{\beta} \leq \mathbb{P} q$.
Proof Since (β, ξ) is active and $\theta_{\xi}^{\beta}=\vartheta_{\xi}^{\xi}$, we have $\pi_{\xi}^{\beta} \cdot p_{\xi}^{\beta}=s_{\xi}$. It thus suffices to find $q^{\prime} \in D_{i, \pi_{\xi}^{\beta / x_{x}}}$ such that $s_{\xi} \leq \mathbb{P} q^{\prime}$.

Note that $\eta^{*}, j<\xi$ and $\pi_{j}^{\beta<"} x \subseteq \theta_{j}^{\beta}=\vartheta_{j}^{\xi}$. Therefore, since

$$
\left(i, j, \pi_{j}^{\beta " x} x\right)=\left(i_{\eta^{*}}, j_{\eta^{*}}, z_{\eta^{*}}\right)
$$

and $\left\langle s_{\xi} \mid \xi \in X\right\rangle$ satisfies the conclusion of Lemma 6.2, it follows that there is $q^{\prime} \in$ $D_{i, \oplus_{j, \xi}^{\xi}{ }^{"} \pi_{j}^{\beta "} x}=D_{i, \pi_{\xi}^{\beta "} x}$ such that $s_{\xi} \leq_{\mathbb{P}} q^{\prime}$, as desired.

Acknowledgments In 2010, a few days after attending his talk at the 11th International Workshop on Set Theory in Luminy, M. Foreman wrote to the second author that one can construct an \aleph_{2}-Souslin tree from the conjunction of $\square_{\aleph_{1}}$ and $\diamond\left(\aleph_{1}\right)$, using ideas from Shelah's "models with second order properties" papers and [6]. This work was never published, and no details of the construction were provided, but this hint turned out to be quite stimulating. We thank him for pointing us in this direction.

Portions of this work were presented by the first author at the Oberseminar mathematische Logik at the University of Bonn in May 2017 and at the 6th European Set Theory Conference in Budapest in July 2017. We thank the organizers for their hospitality.

We also thank the referee for their thoughtful feedback.

References

[1] A. M. Brodsky and A. Rinot, Distributive Aronszajn trees. To appear in Fundamenta Mathematicae, 2019. http://www.assafrinot.com/paper/29
[2] \longrightarrow, A microscopic approach to Souslin-tree constructions. Part I. Ann. Pure Appl. Logic 168(2017), no. 11, 1949-2007. http://dx.doi.org/10.1016/j.apal.2017.05.003
[3] _, Reduced powers of Souslin trees. Forum Math. Sigma 5(2017), e2. http://dx.doi.org/10.1017/fms.2016.34
[4] K. J. Devlin, Aspects of constructibility. Lecture Notes in Mathematics, 354, Springer-Verlag, Berlin-New York, 1973.
[5] \longrightarrow Constructibility. Perspectives in mathematical logic. Springer-Verlag, Berlin, 1984.
[6] M. Foreman, An \aleph_{1}-dense ideal on \aleph_{2}. Israel J. Math. 108(1998), 253-290. http://dx.doi.org/10.1007/BF02783051
[7] M. Foreman, M. Magidor, and S. Shelah, Martin's maximum, saturated ideals and nonregular ultrafilters. II. Ann. of Math. (2) 127(1988), no. 3, 521-545. http://dx.doi.org/10.2307/2007004
[8] M. Gitik and A. Rinot, The failure of diamond on a reflecting stationary set. Trans. Amer. Math. Soc. 364(2012), no. 4, 1771-1795. http://dx.doi.org/10.1090/S0002-9947-2011-05355-9
[9] T. Jech, Non-provability of Souslin's hypothesis. Comment. Math. Univ. Carolinae 8(1967), 291-305.
[10] R. B. Jensen, The fine structure of the constructible hierarchy. Ann. Math. Logic 4(1972), 229-308; erratum, ibid. 4(1972), 443. http://dx.doi.org/10.1016/0003-4843(72)90001-0
[11] _, Souslin's hypothesis is incompatible with $V=L$. Notices Amer. Math. Soc 15(1968).
[12] G. Kurepa, Ensembles ordonnés et ramifiés. Publications de l'Institut Mathématique Beograd, 1935.
[13] C. Lambie-Hanson, Aronszajn trees, square principles, and stationary reflection. MLQ Math. Log. Q. 63(2017), no. 3-4, 265-281. http://dx.doi.org/10.1002/malq. 201600040
[14] R. Laver and S. Shelah, The \aleph_{2}-Souslin hypothesis. m Trans. Amer. Math. Soc. 264(1981), no. 2, 411-417. http://dx.doi.org/10.2307/1998547
[15] W. Mitchell, Aronszajn trees and the independence of the transfer property. Ann. Math. Logic 5(1972/73), 21-46. http://dx.doi.org/10.1016/0003-4843(72)90017-4
[16] D. Raghavan and S. Todorcevic, Suslin trees, the bounding number, and partition relations. Israel J. Math., to appear.
[17] A. Rinot, Higher Souslin trees and the GCH, revisited. Adv. Math. 311(2017), 510-531. http://dx.doi.org/10.1016/j.aim.2017.03.002
[18] S. Shelah, Diamonds. Proc. Amer. Math. Soc. 138(2010), no. 6, 2151-2161. http://dx.doi.org/10.1090/S0002-9939-10-10254-8
[19] S. Shelah, C. Laflamme, and B. Hart, Models with second order properties. V. A general principle. Ann. Pure Appl. Logic 64(1993), no. 2, 169-194. http://dx.doi.org/10.1016/0168-0072(93)90033-A
[20] S. Shelah and L. Stanley, S-forcing. I. A "black-box" theorem for morasses, with applications to super-Souslin trees. Israel J. Math. 43(1982), no. 3, 185-224. http://dx.doi.org/10.1007/BF02761942
[21] , S-forcing. IIa. Adding diamonds and more applications: coding sets, Arhangelskii's problem and $\mathcal{L}\left[Q_{1}^{<\omega}, Q_{2}^{1}\right]$. Israel J. Math. 56(1986), 1-65. http://dx.doi.org/10.1007/BF02776239
[22] , Weakly compact cardinals and nonspecial Aronszajn trees. Proc. Amer. Math. Soc. 104(1988), no. 3, 887-897. http://dx.doi.org/10.2307/2046812
[23] R. M. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin's problem. Ann. of Math. (2) 94(1971), 201-245. http://dx.doi.org/10.2307/1970860
[24] M. Y. Souslin, Problème 3. Fundamenta Math. 1(1920), no. 1, 223.
[25] E. Specker, Sur un problème de Sikorski. Colloquium Math. 2(1949), 9-12. http://dx.doi.org/10.4064/cm-2-1-9-12
[26] S. Tennenbaum, Souslin's problem. Proc. Nat. Acad. Sci. U.S.A. 59(1968), 60-63.
[27] S. Todorcevic, Walks on ordinals and their characteristics. Progress in Mathematics, 263, Birkhäuser Verlag, Basel, 2007.
[28] S. Todorcevic and V. Torres Perez, Conjectures of Rado and Chang and special Aronszajn trees. MLQ Math. Log. Q. 58(2012), no. 4-5, 342-347. http://dx.doi.org/10.1002/malq. 201110037
[29] D. Velleman, Souslin trees constructed from morasses. In: Axiomatic set theory (Boulder, Colo., 1983), Contemp. Math., 31, American Mathematical Society, Providence, RI, 1984, pp. 219-241. http://dx.doi.org/10.1090/conm/031/763903
[30] \longrightarrow, Morasses, diamond, and forcing. Ann. Math. Logic 23(1982), no. 2-3, 199-281. http://dx.doi.org/10.1016/0003-4843(82)90005-5
[31] W. S. Zwicker, $P_{k} \lambda$ combinatorics. I. Stationary coding sets rationalize the club filter. In: Axiomatic set theory (Boulder, Colo., 1983), Contemp. Math., 31, American Mathematic Society, Providence, RI, 1984, pp. 243-259. http://dx.doi.org/10.1090/conm/031/763904
Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel
e-mail: lambiec@macs.biu.ac.il rinotas@math.biu.ac.il

[^0]: Received by the editors July 31, 2017; revised November 26, 2017.
 Published electronically April 26, 2018.
 This research was partially supported by the Israel Science Foundation (grant \#1630/14).
 AMS subject classification: 03E05, 03E35, 03E57.
 Keywords: Souslin tree, square, diamond, sharply dense set, forcing axiom, SDFA.

[^1]: ${ }^{1}$ Note that \square_{κ}^{B} is equivalent to the principle $\square_{\kappa}\left(\kappa^{+}, \sqsubseteq_{\kappa}\right)$ from $[1, \S 1]$.

