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On the Theory ot Contours,
and its Applications in Physical Science.

By W. PEDDIE.

PART I1.

1. In the first part of this paper we have considered merely the
contours of curves, that is, contour points, and the method of obtain-
ing the various physical diagrams. In this part we shall consider
chiefly the contours of surfaces ; that is, contour lines.

If any curve be cut by planes parallel to that of (x, ¥) and if the
various points of intersection be projected on any one of these planes,
say z=0, the contour points so obtained will evidently lie on a definite
line, and the line will be more accurately indicated in proportion as
the number of intersecting planes is greater and their mutual distance
is less. It will be given without any break in continuity by project-
ing every point of the curve upon the plane 2=0. But such a line
may be regarded as the intersection, by the plane z=0, (see fig. 48)
of a cylindrical surface whose generating lines are parallel to the
z-axis and are drawn from the given curve to meet that plane. We
have here then the intersection of a given surface by a surface over
which z is constant. But this satisfies our definition of a contour
line. This case of a cylindrical surface supplies the simplest system
of contour lines by giving z different values. The contours are al
superposed in the diagram, but are not in general conterminous. The
only case in which they would be conterminous is that in which the
same values of the x and y co-ordinates of a point on the curve
correspond to different values of the z-co-ordinate.

2. In the case of a non-cylindrical surface, no part of the contours
will be superposable in general. The contours of a sphere, for example,
are concentric circles. And, just as in the case of contour points the
steepness of slope of the original curve is indicated by the closeness
of the contour points on the x-axis for equal increments of y, so in the
case of contour lines the steepness of slope of the surface is indicated
by the closeness of the contourlines forequal increments of z (see fig. 49).
The contours are closer when their radii are large.

Again, the contours of a right circular cone are also concentric
circles. These circles however are all at equal distances apart for
equal increments of z.
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In my paper on the Representation of the Physical Properties of
substances by means of Surfaces, read before this Society two sessions
ago, I have collected together the methods of deducing the general
properties of a surface from its contours. In this connection Max-
well’s and Cayley’s investigations referred to in that paper should be
consulted. The differences between Maxwell’s diagram of the con-
tours of an inland basin and that of the contours of an insular high-
land, as mapped in our Proceedings for 1883-84, should be noted.

3. We shall now consider special surfaces the contours of which
may be used to indicate certain physical properties.
We have the equation
g=4ml/e
connecting / the length of a pendulum, ¢ its time of oscillation, and g
the value of gravity. Tf # and ! be measured along two rectangular
horizontal axes, and g be measured vertically from the same origin,
we obtain a surface the contours of which give the values of ¢ and !
for any given value of g. This surface is obviously that which Max-
well has called a skew screw surface (fig. 50), and its contours are
straight lines through the origin variously inclined to the axes.
The intrinsic equation of the circle is
s=ad
where a is the radius, and ¢ is the angle between the radius-vector
and the initial line. Hence the intrinsic equation of one involute is
P A,
§= 3 P
This involute is the one which meets the circle at the position
from which ¢ is reckoned, and s’ is measured along it from this point.
If we consider a to be the mass of a moving body, and ¢ to be its
speed, s and &' are respectively its momentum and kinetic energy.
Fig. 51 represents two circles with their involutes satisfying the above
conditions. The curves in that figure may be regarded as the contours
of a right circular cone and an associated surface so formed that its
intersection by any plane parallel to that of the diagram is an involute
of the circle in which the cone is cut by the same plane.
The acceleration and speed of a body falling under the action of
gravity, and the space passed over by it, are given by the known

equations
a=an,
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Hence these various quantities can be represented also by the contours
of the surfaces just considered. Only in this case s and &' must not
be measured from the point for which ¢ is zero.

Again, in the case of a thermo-electric circuit composed of two
dissimilar metals, the electromotive force, E, is given in terms of ¢,
the difference of temperature of the two junctions, by means of the

formula
E=a + bt +ct®
Also the thermo-electric power e is given by the equation
dE
e= _—=b+ 2.
di

Hence the electromotive force and thermo-electric power are repre-
sentable by means of the same surfaces.

4. As an additional example the contours of the surface showing
the relation of the pressure, volume, and temperature of a substance
may be taken. These are shown for water-substance in our Proceed-
ings for 1883-84. The contours are isothermals, when pressure and
volume are the co-ordinate quantities in the diagram. It is only
when the temperature considered happens to be one corresponding to
a contour in the disgram that the relation of pressure and volume
can be found. This fact, that only a finite number of curves corres-
ponding to different values of the quantity which is constant along
each curve, but varies from one to another, can be mapped, constitutes
the great defect of the method of contours. But it can be entirely got
rid of by using trilinear co-ordinates, and in addition the variation of
a fourth quantity can be shown. For a perfect gas we have the
equation

pv=ct
where p, v, and ¢ represent respectively the pressure, volume, and
temperature, and ¢ is a quantity which depends on the nature of the
gas and varies- from one to another. Fig. 52 shows the contours for
different values of ¢ the triangle being equilateral for converience.
Temperature is measured by the distance from the vertical side
of the triangle of reference, and pressure and volume from the
inclined sides. The equation shows that the curves are hyperbolas
with vertical and horizontal axes. No part of the hyperbolas outside
the triangle of reference has any physical meaning, as then either
the pressure, volume, or temperature, or any two, or all of them,
would be negative. This is impossible of course in a perfect gas.
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Tt is evident from this figure that pressure, volume, and temperature
for any one gas are continuously represented.

5. Figure 52 evidently represents the contours of a surface by
planes parallel to the plane of the diagram which may be looked
upon as that corresponding to zero value of ¢. When ¢ is zero, the
hyperbola becomes the straight lines coinciding with the sides AB,
AC of the triangle of reference. When ¢ is infinite, the side BC is
part of the .corresponding hyperbola. All points of vertical lines
through B and C lie upon the surface. These lines bound the parts
of one sheet of the surface which correspond to real physical states
of the gas, from those which do not. Outside the triangle the surface
is evidently an overhanging precipice.

If ¢ and ¢ have each a definite value, the point on the contour is
undetermined. Let P (fig. 53) be the point giving the proper ratios of
p,v,and t. Draw PM, PN, parallel to the sides of the triangle of refer-
ence. Since the asymptotes of the hyperbola are parallel to the sides
AB, AC, it follows that that part of the tangent at P intercepted by
the sides of the triangle is bisected at the point of contact. Therefore
AM =MQ, and AN=NR. Now the compressibility £ of a gas is
given by the ratio dv/vdp. But dv/dp=MQ/MP=NP/MP=v/p
where v and p are, as formerly stated, the perpendiculars from P on
the sides AB, AC respectively. Hence k=1/p, that is, the compressi-
bility of a perfect gas is the reciprocal of the pressure, which is a
known result. Similarly, it can be shown that the expansibility is
inversely proportional to the absolute temperature.

The work done during isothermal expansion can also be found
from the diagram. "The position of the point P gives the ratio of p,
v, and ¢, but since ¢ has a known constant value, the actual values of
pand v are also known, Hence PN (=pcosecBAC) is a known

known function of v. If P move to P’ the area PN N'P'=JPNdv

= cosecBAC dev is a given multiple of the work done.

6. The applicability of the method of contours to other physical
problems is evident. Electric stream lines and equipotential lines
may be regarded as contours of a surface. And the number of
equipotential lines crossing unit length of a stream line may be used
to indicate the strength of current. So also air-current lines and
isobars, isothermals and flow-lines of heat, &c., are rectangular systems
of contours.
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