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Embedded Discrete Fracture Models

daniel wong, florian doster, and sebastian geiger

Abstract

Fractures are often implicitly represented in models used to simulate flow in frac-
tured porous media. This simplification results in smaller models that are com-
putationally tractable. As computational power continues to increase, there has
been growing interest in simulation methods that explicitly represent fractures. The
embedded discrete fracture model (EDFM) is one such method. In EDFM, fracture
and matrix grids are constructed independently. The grids are then coupled to each
other via source/sink relations. This modeling approach makes EDFM versatile and
easy to use. EDFM has been shown to be able to handle complex fracture networks.
The grid construction process is also straightforward and requires minimal fine-
tuning. Within academia and industry, EDFM has been used to study geothermal
energy production, unconventional gas production, multiphase flow in fractured
reservoirs, and enhanced oil recovery processes. In this chapter, the mathematical
formulation of EDFM is introduced. We then demonstrate the usage of EDFM via
three examples. The first example involves a simple fracture network containing
only three fractures. The second involves upscaling a stochastically generated frac-
ture network. Finally, a well test will be simulated in a publicly available data set
sourced from the Jandaira carbonate formation in Brazil.

9.1 Introduction

Naturally fractured reservoirs (NFRs), defined as reservoirs that contain naturally
occurring fractures that can or are expected to play a significant role in fluid
flow [31] are often encountered in the exploitation of hydrocarbon accumulations
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and geothermal energy, as well as in the management of groundwater resources.
In terms of hydrocarbon reserves, a significant amount of hydrocarbons is contained
in NFRs. At the turn of the millennium, it was estimated that over 20% of the
world’s oil reserves are contained in NFRs [14]. In a study of 56 oil reservoirs,
Jack and Sun [19] showed that recovery averaged at 26% but could range from a
low of less than 10% to a high of over 60%. These figures suggest that there is huge
incentive to properly manage NFRs in order to produce hydrocarbons sustainably,
securely, and economically.

As with conventional reservoir management, reservoir simulations form an
important component in making predictions about how NFRs may behave when
produced. Such predictions enable us to evaluate and compare different field
development and production strategies. This comparison then allows us to evolve
and optimize the management of a field, maximizing the hydrocarbon recovery.
Many mathematical methods have been developed to simulate flow in NFRs.
One of the central features in these mathematical methods is how fractures are
represented, implicitly or explicitly [4]. In methods that employ implicit fracture
representation, fractures are converted into equivalent porous media via upscaling.
These methods are often referred to as continuum methods. The models created
through these methods are referred to as continuum models. Continuum models
are computationally inexpensive to solve and can be used for full-field simulation
studies. An example of a continuum model is the dual-porosity model, which
represents fractures as a secondary porous medium that interacts with the matrix
via transfer functions [2, 47].

Despite the advantages of continuum methods in terms of computational effi-
ciency, their reliability is increasingly coming into question. Due to the multi-
scale nature of fracture networks, which are often self-similar, the representation
of fracture networks as a continuum may not be possible due to the lack of a
representative elementary volume [3, 7]. In line with these findings, Elfeel et al.
[13] demonstrated that, for multiscale fracture networks, upscaled equivalent per-
meability fields are dependent on chosen grid sizes. This discrepancy ultimately led
to different outcomes in terms of production forecasting and history matching. Egya
et al. [11] showed that, contrary to what dual-porosity models might suggest, NFRs
do not necessarily exhibit the dual-porosity signal in well tests. Moreover, various
transfer functions have been proposed for the dual-porosity model. Choosing the
appropriate one requires an understanding of the physical processes governing flow
in NFRs. This understanding is often not available a priori [1, 26]. In view of these
pitfalls, more accurate and robust simulation methods are required.

The response to the need for accurate simulation of flow in NFRs is the develop-
ment of mathematical methods that explicitly represent a network of fractures in a
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porous rock matrix. These methods are collectively known as discrete fracture and
matrix (DFM) methods. The main feature of DFM methods is that they make mini-
mal simplifications to the fractures being modeled and seek to stay as close to real-
ity as possible. With the increase in computational power, as well as improvement
of data acquisition methods, there has been a growth in applications and studies that
make use of DFM methods. For example, Geiger and Matthäi [16] reviewed and
assessed how DFM methods can be used to critically assess continuum methods to
identify areas of improvement. Panfili and Cominelli [32] simulated miscible gas
injection into an NFR with DFM to assess the risks that the presence of fractures
pose. Bisdom et al. [6] used DFM methods for numerical upscaling of fracture
networks to determine the impact of various aperture prediction methods. Egya
et al. [12] studied well-test responses from various fracture networks and found
that the infamous “dual-porosity dip” is not always observable. Hardebol et al. [17]
used DFM simulations to study the impact of fracture network characterization on
fluid flow. Vo et al. [45] compared DFM and dual-permeability models and iden-
tified a range of deficiencies in terms of the dual-permeability method’s ability to
account for viscous displacement and spontaneous imbibition. Hui et al. [18] used
a DFM method to simulate waterflooding in a full-field model in which the fracture
network is simplified via a method known as edge collapse. In this simplification,
short fracture segments with hanging nodes are removed to reduce the degrees of
freedom involved in the simulations.

Various DFM methods exist because of different simplification choices [15]. The
classical DFM method makes use of an unstructured grid that conforms to the frac-
ture network geometry; fractures are then represented as subdimensional objects
that are located at cell boundaries [21]. On the other hand, recent developments
of DFM methods have focused on using grids that do not have to conform to the
fracture network geometry. One such method is the extended finite-element method
(XFEM), which enriches the finite-element solution space with basis functions that
capture the effects of fractures [40]. Closely related to XFEM is the Lagrange
multiplier method, which does not enrich the finite-element basis functions but
instead accounts for matrix–fracture coupling using Lagrange multipliers [24, 39].
Alternatively, the embedded discrete fracture model (EDFM) relaxes the grid con-
formance requirement by treating fractures as line sources or sinks. EDFM uses a
finite-volume discretization, thus making it compatible with conventional reservoir
simulators. The decoupling of matrix and fracture grids in XFEM, Lagrange mul-
tiplier method, and EDFM permits the usage of structured grids, which are the de
facto grid type used in geological modeling [25, 30].

The focus of this chapter is on EDFM, which is available in the MATLAB Reser-
voir Simulation Toolbox (MRST). EDFM was first introduced by Lee et al. [25]
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and took inspiration from the representation of wells as sinks or sources; however,
they only considered a few sparse and unconnected fractures within the simulation
domain. Li and Lee [27] later extended the EDFM approach to account for a net-
work of connected vertical fractures. Improvements were then made by Moinfar
et al. [30] to account for inclined fractures. Flemisch et al. [15] benchmarked
EDFM against a full-dimensional fractured model for single-phase flow and found
a good match between the two. However, to our knowledge, no such validation
has been performed for more complex flow phenomena that involve capillarity
or gravity. Nevertheless, EDFM has been used in many studies, including that
of Panfili and Cominelli [32] to simulate miscible sour gas injection into a frac-
tured carbonate field; Siripatrachai et al. [43] and Zhang et al. [51] to understand
the impact of capillary effects on hydrocarbon production in tight hydraulically
fractured formations; Karvounis and Jenny [22] for simulating flow in enhanced
geothermal systems; and Shakiba et al. [42] to analyze production uncertainties in
hydraulic fracture networks characterized by microseismic data.

The strengths of EDFM over its other DFM counterparts is twofold. Firstly,
it does not require conforming grids, thus allowing us to avoid meshing difficul-
ties by using structured grids. Although preprocessing is required to establish the
fracture–matrix and fracture–fracture connectivity relations, it is a much easier
procedure. Any subsequent modifications such as changes in fracture apertures
can be incorporated by applying multipliers on the transmissibility and porosity
values. Secondly, EDFM uses the finite-volume discretization and two-point flux
approximation (TPFA), making it naturally compatible with conventional reservoir
simulators. Though TPFA is a popular formulation in many DFM methods, the
combination of TPFA and nonconforming grids make the use of EDFM appealing.
The main disadvantage of EDFM is that it is only suitable for conductive fractures.
A study by [44] has shown that matrix pressure and saturation are continuous across
fractures in EDFM simulations. Pressure and saturation continuity is not a major
issue for fractures that are highly conductive relative to the matrix but introduces
significant errors when fractures are sealed and form barriers to flow.

This chapter aims to introduce the reader to theory behind EDFM as well as
the practical aspects of running EDFM simulations. In the following section, we
introduce the concept of fracture permeability. Then, we present the mathematical
formulation of EDFM. Following that, we present three examples of EDFM simu-
lations along with detailed explanations. The first example involves two-phase flow
in a porous medium containing three fractures. The second example shows how
EDFM can be used to upscale a stochastically generated fracture network. Finally,
the third example shows how EDFM can be used to simulate a well-test response
in a fracture network mapped on an outcrop.
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9.2 Fracture Permeability

To model flow in fractured porous media, one possible approach would be to define
fractures as spaces in which flow would be modeled using the Navier–Stokes
equation. However, it is a very challenging process to couple different mathematical
models. Instead, we can represent the spaces as equivalent porous material
with equivalent fracture permeabilities to simplify flow modeling within fractures.
In the case of a conductive frature, we can determine its equivalent permeability
using its aperture,

kf = a2

12fc

, (9.1)

where kf refers to fracture permeability and a refers to fracture aperture. The
correction factor fc equals to 1 for laminar flow between parallel and smooth planes
and is larger than 1 if the flow regime, fracture geometry, and surface roughness
deviate from these ideal conditions. According to Darcy’s law, volumetric flow rate
is proportional to the product of kf and the cross-sectional area of flow. The latter is
proportional to a. As such, the volumetric flow rate is proportional to a3. As a
result of this relationship, (9.1) is often called the cubic law. In a study performed
by Witherspoon et al. [48], the cubic law was validated by performing flow tests on
different rocks under various stress conditions. The study showed that the cubic law
is valid regardless of the stress history undergone by a rock. The correction factor
fc was found to vary between 1.04 and 1.65 because of the surface roughness of the
fractures. In actual practice, fc is difficult to determine for subsurface rocks because
of uncertainties surrounding fracture geometry and surface roughness. Because
values for fc are typically close to 1, fc is usually assumed to be equal to 1 in
the literature [8, 23, 29, 34, 37, 52].

The possibility of representing the transmissibilities of fractures by fracture per-
meabilities allows fracture networks to be incorporated within the framework of
porous media flow. This is an important simplification that enables the use of DFM
methods.

9.3 Mathematical Formulation

In this section, the mathematical formulation of EDFM will be reviewed. The
mathematical formulation is based on the works of Lee et al. [25], Li and Lee
[27], and Moinfar et al. [30]. EDFM very much resembles the dual-porosity for-
mulation, except that fractures are represented as subdimensional objects instead
of a continuum and the transfer functions no longer assume a sugar cube geometry
for matrix blocks. Mathematically, for a 3D system with Nf fractures, flow in the
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fractures is formulated using Nf mass-conservation equations, with each fracture
represented by an index i. For all i ∈ [1,Nf

]
,

∂(φiραS
i
α)

∂t
+ ∇ · (ρα �ui

α) =
ρα

ai

⎡⎣qi
α − qi,0

α −
Nf∑

j=1,j �=i

qi,j
α

⎤⎦ , �i ⊂ R
2. (9.2)

Flow in the matrix is modeled using a mass conservation equation as well. For
convenience, the matrix is represented using an index i = 0. For i = 0,

∂(φ0ραS
0
α)

∂t
+ ∇ · (ρα �u0

α) = ρα

⎡⎣q0
α −

Nf∑
i=1

q0,i
α

⎤⎦ , �0 ⊂ R
3. (9.3)

In (9.2) and (9.3), φi refers to the porosity of medium i. For fractures (i ∈ [1,Nf

]
),

φi can be used to account for effects such as mineralization that reduce a fracture’s
total aperture open to flow. For the matrix (i = 0), the pore spaces that are open
to flow is φ0. The density of fluid phase α is ρα. The aperture of fracture i is ai .
The saturation of fluid phase α in medium i is Si

α. The transfer function qi,0
α (with

a unit of (m3/s)/m2) determines fluid flow from fracture i to the matrix, whereas
q0,i

α (with a unit of (m3/s)/m3) flows in the opposite direction. Similarly, qi,j
α (with

a unit of (m3/s)/m2) is the transfer function for flow from fracture i to fracture j .
The source/sink terms in the matrix and fractures, q0

α and qi
α, have units (m3/s)/m3

and (m3/s)/m2, respectively.
All of the fracture equations (9.2) are coupled to the matrix equation through

qi,0
α . The fracture equations are coupled with each other through qi,j

α ; however,
because fractures do not always intersect each other, qi,j

α = 0 for some fracture
pairs. Finally, �ui

α is the velocity of fluid phase α in medium i and is modeled using
Darcy’s law,

�ui
α = −ki

rα

μα

Ki∇(pi
α − ρi

α �g), (9.4)

for all i ∈ [0,Nf

]
. Here, ki

rα and pi
α refer, respectively, to the relative permeability

and pressure of fluid phase α in medium i; μα is the viscosity of fluid phase α; Ki

is the permeability of medium i; and �g is the acceleration due to gravity.
In the EDFM literature, qi,0

α and qi,j
α are not defined in continuous space; instead,

they are constructed within the context of the finite-volume discretization [27, 30].
Given a matrix grid and fracture network (Figure 9.1a), the fractures are also

discretized such that each fracture cell corresponds to one matrix cell (Figure 9.1b).
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Figure 9.1 Construction of an EDFM. (a) Structured matrix grid and fracture
network. (b) Fracture grid. (c) Matrix cells color-coded according to fractures they
are connected to. (d) Fracture cells that are connected to each other.

For each matrix–fracture cell pair (m,f ), the movements of the fluid phases are
modeled via TPFA as follows:

Qm,f
α =

∫
Vm

qm,f
α dV = T mf krα

μα

(pm
α − pf

α ), (9.5)

Qf,m
α =

∫
Af

qf,m
α dA = T mf krα

μα

(pf
α − pm

α ), (9.6)

where Qm,f
α is the volumetric flow rate from the matrix cell to the fracture

cell, whereas Qf,m
α is the volumetric flow rate from the fracture cell to the

matrix cell. The two are related by Qm,f
α = −Qf,m

α . The matrix and fracture
cell domains are respectively Vm and Af . The mobility term krα/μα is upwind
weighted. The transmissibility T mf is unique to each matrix–fracture cell pair and
is defined as

T mf = kmf Amf

〈d〉mf
, (9.7)
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where kmf is the pore volume weighted harmonic average of fracture and matrix
permeabilities, whereas Amf is the fluid exchange area between the matrix–fracture
cell pair. The average normal distance 〈d〉mf between points in the matrix and the
fracture cell can be calculated as

〈d〉mf =
∫
Vm

∣∣(�x − �xref

) · �nf

∣∣ dV∫
Vm

dV
, (9.8)

where �x ∈ Vm are points in the matrix cell, �xref is any reference point on the
fracture plane, and �nf is the unit normal vector of the fracture plane. 〈d〉mf can
be numerically approximated by subgridding a matrix cell and calculating the
weighted average of normal distances from each matrix subcell’s centroid to the
fracture cell. The weights are the volumes of each matrix subcell. Note that it
is possible for multiple fracture cells from different fractures to be within the
same matrix cell. If fractures intersect with each other, there will be at least two
fracture cells within one matrix cell. If two fractures are not intersecting but located
close to each other, there may also be multiple fracture cells within each matrix
cell. The latter case should be avoided by reducing matrix cell size, particularly
for multiphase flow simulations where numerical dispersion can be severe. Also
noteworthy is that at fracture tips, fracture cells may not be through-going within
matrix cells. In such a case, the fluid exchange area Amf will be reduced according
to the size of the fracture cell.

For every two fracture cells (f 1,f 2) that intersect with each other, the fluid
exchange is modeled by

Qf 1,f 2
α =

∫
Af 1

qf 1,f 2
α dA = T ff krα

μα

(pf 1
α − pf 2

α ), (9.9)

Qf 2,f 1
α =

∫
Af 2

qf 2,f 1
α dA = T ff krα

μα

(pf 2
α − pf 1

α ), (9.10)

where the transmissibility T ff is zero for nonintersecting fracture cell pairs and
positive otherwise. To determine T ff , the half-transmissibilities of each fracture
cell in the pair (f 1,f 2) have to be calculated:

T
f i

1/2 =
kf iaf iL

f 1,f 2
∩

d
f i
∩

, ∀i ∈ {1,2}. (9.11)

Here, k and a are the permeability and aperture of the fracture cell, L∩ is the
length of the intersection line between the two cells, and d∩ is the average normal
distance from the centers of the subsegments to the intersection line (Figure 9.2).
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Figure 9.2 Geometrical input required for the calculation of fracture half-
transmissibilities.

Each subsegment of a fracture cell lies on one side of the intersection line. If the
intersection line does not extend fully across a fracture cell, the subsegments of the
fracture cell can be established by extrapolating the intersection line to the edge of
the fracture cell. The calculated half-transmissibilities then enable us to determine
T ff as the harmonic average of the two:

T ff = T
f 1

1/2T
f 2

1/2

T
f 1

1/2 + T
f 2

1/2

. (9.12)

Note that EDFM only caters to the intersection of two fractures. For intersections
involving more than two fractures, connectivity among the fractures can still be
established by assigning transmissibility values for fracture cell pairs. However, to
our knowledge, this scenario has not been addressed in the literature. In our work,
we will only be considering intersections between two fractures.

In summary, the EDFM method involves three main steps:

1. Construction of a fracture grid based on a preexisting matrix grid (Figure 9.1b).
2. Connect intersecting matrix–fracture cell pairs using (9.7) (Figure 9.1c).
3. Connect intersecting fracture–fracture cell pairs using (9.12) (Figure 9.1d).

9.4 Hierarchical Fracture Model Module

EDFM has been implemented in the open-source MATLAB Reservoir Simulation
Toolbox (MRST) under the hfm module. The initial implementation was by Shah
et al. [41] in release 2016b and was mainly developed for 2D simulations. In release
2017b, we upgraded the hfm module to include full 3D capabilities based on the
method developed by Li and Lee [27] and Moinfar et al. [30]. The hfm module
in MRST serves as a preprocessor that creates a global grid along with a list of
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Figure 9.3 Difference between neighboring and non-neighboring connections.
(a) A simple global grid consisting of four matrix and four fracture cells,
(b) a list of neighboring connections and the associated transmissibilities, and
(c) a list of non-neighboring connections that account for matrix–fracture and
fracture–fracture fluid exchanges. Note that the transmissibility values are entirely
fictional and for illustrative purposes only.

non-neighboring connections (NNCs) that are compatible with MRST’s black-
oil simulator framework from ad-core and ad-blackoil. The construction
of the global grid is performed through the EDFMgrid function. The calcula-
tion~of the NNCs is performed using the fracturematrixNNC3D and
fracturefractureNNCs3D functions. The NNCs refer to the matrix–fracture
and fracture–fracture connections; although the interacting cells are physically
next to each other, in the simulation, they are not treated as physical neighbors and,
as such, require NNCs to be connected. A simple example is shown in Figure 9.3,
where NNCs have been computed and tabulated; such NNC lists are commonly
used by reservoir simulators.

The current 3D implementation of EDFM in the hfm module is capable of
handling conductive fractures that are represented using convex 2D polygons
in any orientation. However, the matrix grid is limited to orthogonal grids in a
cuboid domain. Such a matrix grid can be constructed using the cartGrid and
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tensorGrid functions in MRST. These functions have been extensively covered
in section 3.1 of the MRST textbook [28]. For readers keen to implement EDFM
on corner-point grids, we refer the reader to Xu and Sepehrnoori [49]. In the
hfm module, some aspects of the algorithm have been parallelized. In particular,
fracture grid construction is implemented such that each fracture within a network
can be handled by one parallel processor. The matrix–fracture NNC calculations
are also treated the same way. For the fracture–fracture NNCs, the calculations
are separated by fracture pairs for parallelization. The module can also be used in
serial mode if the MATLAB Parallel Processing Toolbox is not available. In the
next section, the workflow for setting up an EDFM simulation is described.

9.5 Two-Phase Flow through a Simple Fracture Network

In this section, we demonstrate how the 3D EDFM implementation in MRST works.
The MATLAB script for this section, titled Example_1_manualEDFM.m,
is available in the hfm module. This example involves simulating two-phase
flow through a domain containing three intersecting fractures using the hfm

and ad-blackoil modules in MRST. We refer readers unfamiliar with the
ad-blackoil module to chapters 11 and 12 in the MRST textbook [28].

In our workflow, the hfm module can be thought of as a preprocessor for the
ad-blackoil module. The preprocessor takes as inputs an orthogonal matrix grid
and a database of fractures. The orthogonal matrix grid can be created using the
cartGrid function. Rock properties can, for instance, be prescribed using the
makeRock function:

%% SET UP A STRUCTURED MATRIX GRID
physdim = [350, 200, 100]; % 350m x 200m x 100m domain
celldim = [35, 20, 10]; % 10m x 10m x 10m grid cell sizes
G = cartGrid(celldim, physdim);
G = computeGeometry(G);
G.rock = makeRock(G,100*milli*darcy,0.3); % km=100mD, matrix porosity = 0.3

The database of fractures is contained in a struct array; each fracture is char-
acterized by a set of vertices, a permeability value, aperture, and porosity value
(usually set to 1). In this example, three fractures are created. All three fractures
span the full vertical depth of the matrix grid. The first and third fractures are
vertical, whereas the second fracture is inclined. Once the setup in Listing 9.1 has
been executed, the following code produces the plot in Figure 9.1a:

plotfracongrid(G,fracplanes);
view(30,45); axis equal tight
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Listing 9.1 Setup of model with three intersecting fractures.

%% SET UP FRACTURE 1 (RED)
fracplanes(1).points = [40 100 0;

90 160 0;
90 160 100;
40 100 100]; % Vertices

fracplanes(1).aperture = 1/25;
fracplanes(1).poro = 0.8;
fracplanes(1).perm = 10000*darcy;

%% SET UP FRACTURE 2 (GREEN)
points = [80 160 0;

290 40 0;
290 40 100;
80 160 100]; % Vertices

f2normal = getnormal(points);
points([1,2],:) = points([1,2],:)-f2normal*15; % displace top points
points([3,4],:) = points([3,4],:)+f2normal*15; % displace bottom points
fracplanes(2).points = points;
fracplanes(2).aperture = 1/25;
fracplanes(2).poro = 0.8;
fracplanes(2).perm = 10000*darcy;

%% SET UP FRACTURE 3 (YELLOW)
fracplanes(3).points = [200 70 0;

280 160 0;
280 160 100;
200 70 100]; % Vertices

fracplanes(3).aperture = 1/25;
fracplanes(3).poro = 0.8;
fracplanes(3).perm = 10000*darcy;

Now that the matrix grid and fracture database have been created, the fracture
grid can be constructed. This is usually done by passing these two objects to the
EDFMgrid function:

[G,fracplanes] = EDFMgrid(G, fracplanes, 'Tolerance', 1e-6);

which creates a global grid containing both matrix and fracture grid cells. How-
ever, in this example, we will describe in detail all of the lower-level commands
necessary to construct the grid manually for pedagogical reasons. The code in
Listing 9.2 generates three fracture grids contained in Fgrid. Each fracture grid
corresponds to one fracture plane defined in fracplanes. The main function in the
code snippet is pebiAABBintersect, which takes as inputs the vertex coordinates
of a 3D polygon (in this case the vertex coordinates of a fracture plane) and the
vertex coordinates of a cube (in this case the nodal coordinates of a matrix cell).
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Listing 9.2 Generate fracture grid.

tol = 1e-5;
Nm = G.cells.num;
for i=1:length(fracplanes)

points = fracplanes(i).points;
aperture = fracplanes(i).aperture;

% Calculate plane unit normal
diffp = diff(points,1);
planenormal = cross(diffp(1,:), diffp(2,:));
planenormal = planenormal/norm(planenormal);

% Instantiate data types to hold fracture grid information
fraccellpoints = cell(Nm,1); % vertices of each fracture grid cell
area = -1*ones(Nm,1); % area of each fracture grid cell

% Calculate intersection of fracture with each matrix grid cell
for j = 1:Nm

[cn,cpos] = gridCellNodes(G,j);
[~,area(j),~,~,fraccellpoints{j}] = ...

pebiAABBintersect(points,G.nodes.coords(cn,:),tol);
end

% Consolidate intersection data
intersected = ~cellfun('isempty',fraccellpoints);
fraccellpoints = fraccellpoints(intersected);
mcells = find(intersected); area = area(intersected);

% Generate grid using vertex coordinates (V) and indirection map (C)
V = vertcat(fraccellpoints{:});
C = cellfun(@(c) 1:size(c,1),fraccellpoints,'UniformOutput',false);
for j = 2:size(C,1)

addTo = C{j-1}(end);
C{j} = C{j}+addTo;

end
Fgrid(i).grid = fractureplanegeneralgrid(V,C,points,...

planenormal,aperture,tol);
Fgrid(i).matrix_connection.cells = mcells;
Fgrid(i).matrix_connection.area = area;

end

It then determines whether the fracture plane intersects a given matrix cell. If so,
the area and vertex coordinates of the intersection are calculated. The function
pebiAABBintersect is used in a double for loop to determine the intersection
of every fracture plane and matrix cell combination.

The generated intersection data are then used as input for a function called
fractureplanegeneralgrid, which generates a 3D grid for each fracture plane.
Each 3D grid will have a thickness equal to the aperture of the corresponding frac-
ture plane. The list of intersected matrix cells and the respective intersection areas
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are also saved to facilitate the calculation of fracture–matrix NNCs. Figure 9.1b
shows the grids constructed with the code from Listing 9.2. The red and yellow
fractures are vertical but angled with respect to the horizontal axes, which results in
grid cells that have uneven lengths along the fractures. The green fracture is inclined
relative to the vertical axis and, as a result, has an unstructured grid pattern. The
figure can be generated as follows:

colors = ['r','g','y'];
for i = 1:3

plotGrid(Fgrid(i).grid,'FaceColor',colors(i));
end
axis equal tight; view(30,45);
xlim([0 physdim(1)]); ylim([0 physdim(2)]);

Figure 9.1c shows the intersected matrix grids and can be generated as follows:

for i = 1:3
plotGrid(G,Fgrid(i).matrix_connection.cells,...

'FaceAlpha', 0.5, 'FaceColor', colors(i));
end

The generated fracture grids are then saved in the previous grid object G under
a new field FracGrid, as shown in Listing 9.3. The grid is also extended into a
global grid by using the assembleGlobalGrid function to append the fracture
grids in G.FracGrid to the matrix grid. The grid cell indices for the fracture grids
will continue from the matrix or the last appended grid. In the case of Figure 9.1,
the global grid cell index will run from 1 to (Nm + Nred + Ngreen + Nyellow), with
the first Nm indices representing matrix grids, the next Nred indices representing the
red fracture cells, the next Ngreen indices representing the green fracture cells, and
the last Nyellow indices representing the yellow fracture cells. An empty NNC list
is also created in preparation for NNC calculations. Note that whenever possible,
the resulting fracture grids should be inspected. Occasionally, small grid cells may
be omitted by EDFMgrid. In such cases, a tighter floating point tolerance can be
specified as an optional input.

Next, the empty NNC list needs to be populated to connect cells. We first con-
sider neighboring cell connections. Because MRST’s grid generator automatically
determines neighboring connections, the matrix cells are already connected to
each other; similarly, fracture cells are also connected to neighboring fracture
cells that are within the same fracture. These connections need not be added to
the NNC list.

For matrix–fracture connections, because intersections have already been deter-
mined in the fracture grid construction step, we already know which matrix cell
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Listing 9.3 Assemble global grid.

% Initiate starting indices for cells, faces and nodes
cstart = G.cells.num+1;
fstart = G.faces.num+1;
nstart = G.nodes.num+1;

% Append Fgrid to G
for i = 1:length(fracplanes)

fieldname = ['Frac',num2str(i)];

% Add fracture grid to G.FracGrid
G.FracGrid.(fieldname) = Fgrid(i).grid;

% Save global starting indices and compute next one
G.FracGrid.(fieldname).cells.start = cstart;
G.FracGrid.(fieldname).faces.start = fstart;
G.FracGrid.(fieldname).nodes.start = nstart;
cstart = cstart + G.FracGrid.(fieldname).cells.num;
fstart = fstart + G.FracGrid.(fieldname).faces.num;
nstart = nstart + G.FracGrid.(fieldname).nodes.num;

% Append poroperm data
G.FracGrid.(fieldname).rock.perm = ...

ones(G.FracGrid.(fieldname).cells.num,1)*fracplanes(i).perm;
G.FracGrid.(fieldname).rock.poro = ...

ones(G.FracGrid.(fieldname).cells.num,1)*fracplanes(i).poro;
end
G.nnc = []; % Instantiate an empty list of NNCs
G = assembleGlobalGrid(G); % Create a global grid

each fracture cell should be connected with. Figure 9.1 shows matrix cells that are
connected to fracture cells; the matrix cells are color-coded to match the fractures
they should be connected to. For each matrix–fracture cell pair, the cell-to-cell
transmissibility, T mf , is calculated using (9.7); the two cell indices and associ-
ated transmissibility T mf are then appended to the NNC list. This procedure is
achieved with the function:

G = fracturematrixNNC3D(G, 1e-5);

Listing 9.4 presents details from the underlying code. Here, G.nnc.cells

is a matrix in which every row contains the indices of two connected cells:
one matrix and one fracture. The corresponding row in G.nnc.T contains the
transmissibility between the cells. The transmissibility is calculated using the
calcfracmatCI function, which uses the formula in (9.7). The average normal
distance (9.8) between points in a matrix cell and a fracture cell is calculated using
the calcdavg function.
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Listing 9.4 Generate non-neighboring connections between fracture and matrix.

G.nnc.cells = []; G.nnc.T = [];
G.nnc.area = []; G.nnc.type = [];
tol = 1e-6;

for i=1:length(fracplanes)
points = fracplanes(i).points;
diffp = diff(points,1);
planenormal = cross(diffp(1,:), diffp(2,:));
planenormal = planenormal/norm(planenormal);
fieldname = ['Frac',num2str(i)];

% Generate list of NNC pairs
fcellstart = G.FracGrid.(fieldname).cells.start;
Nf = Fgrid(i).grid.cells.num;
mcells = Fgrid(i).matrix_connection.cells;
N_nnc = length(mcells);
nncpairs = [mcells,repmat(((1:Nf)+fcellstart-1)',N_nnc/Nf,1)];

% Calculate average distance and CI
CI = ones(N_nnc,1); % instantiate list of CI
for j=1:N_nnc

[cn,cpos] = gridCellNodes(G,Fgrid(i).matrix_connection.cells(j));
cellnodecoords = G.nodes.coords(cn,:);
davg = calcdavg(cellnodecoords,planenormal,points(1,:),tol);
CI(i) = calcfracmatCI(cellnodecoords,...

Fgrid(i).matrix_connection.area(j),...
planenormal,points(1,:),davg,tol);

end

% Calculate cell to cell transmissibility
pv = poreVolume(G,G.rock);
w1 = pv(nncpairs(:,1))./G.rock.perm(nncpairs(:,1));
w2 = pv(nncpairs(:,2))./G.rock.perm(nncpairs(:,2));
wt = pv(nncpairs(:,1))+pv(nncpairs(:,2));
Trans = 2*CI.*(wt./(w1+w2));

% Append NNC data
G.nnc.cells = [G.nnc.cells;nncpairs];
G.nnc.T = [G.nnc.T;Trans];
G.nnc.area = [G.nnc.area;Fgrid(i).matrix_connection.area];

end

Finally, connections between intersecting fractures need to be established:

[G,fracplanes] = fracturefractureNNCs3D(G, fracplanes, 1e-5);

In the underlying code, shown in Listing 9.5, we exploit the fact that if two fracture
cells intersect, they must also intersect the same matrix cell. As such, we utilize
the existing fracture–matrix NNC data to narrow down the fracture cell pairs that
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have to be evaluated. For each fracture pair, the vertex coordinates of every fracture
cell pair are provided to PEBIPEBIintersection3D to determine intersections.
As was done for matrix–fracture NNCs, the indices of the intersecting cells along
with the associated transmissibility T ff are appended to the NNC list. Figure 9.1d
shows an example in which the intersecting fracture cell pairs are highlighted with
red and green and green and yellow colors, respectively. The figure was generated
with the following code:

allnnccells=nnc_pairs(:);
for i=1:3

fieldname = ['Frac',num2str(i)];
cstart = G.FracGrid.(fieldname).cells.start;
cend = cstart-1+G.FracGrid.(fieldname).cells.num;

plotGrid(G, cstart:cend, 'FaceColor', 'none');
plotGrid(G, allnnccells(ismember(allnnccells',cstart:cend)),...

'FaceColor', colors(i));
end

The next steps in this example follow the standard procedure for running a black-
oil simulation using the ad-blackoil module. Whereas this example involves
only two phases, a three-phase simulation model will be set up so that readers can
easily make necessary modifications for their applications. The compressible three-
phase fluid can be set up as follows:

% Define a three-phase fluid model without capillarity. Properties are
% listed in the order 'Water-Oil-Gas'.
pRef = 100*barsa;
fluid = initSimpleADIFluid('phases' , 'WOG', ...

'mu' , [ 1, 5, 0.2] * centi*poise , ...
'rho', [1000, 700, 250] * kilogram/meter^3, ...
'c', [1e-8, 1e-5, 1e-3] / barsa, ...
'n' , [ 2, 2, 2], ...
'pRef' , pRef);

The fluid object and global grid can then be used to set up a three-phase black-oil
model. In this model, the dissolved gas and vaporized oil options are turned off.
The effects of gravity are also disregarded. Additionally, the operators within
the model are overwritten to ensure that the NNCs are incorporated in the
model:

gravity off
model = ThreePhaseBlackOilModel(G,G.rock,fluid,'disgas',false,'vapoil',false);
model.operators = setupEDFMOperatorsTPFA(G, G.rock, tol);
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Listing 9.5 Generate non-neighboring connections among fractures.

tol=1e-6;
nnc_pairs = []; nnc_T = [];

% Indices of matrix cells which contain fracture cells
mcells = unique(G.nnc.cells(:,1));
N_nnc_max = length(mcells);

for i=1:N_nnc_max
mcelli = mcells(i);
ind = ismember(G.nnc.cells(:,1),mcelli);

if sum(ind)==2
fraccells = G.nnc.cells(ind,2)';
fraccellareas = G.nnc.area(ind);
cellnodes1 = G.nodes.coords(gridCellNodes(G,fraccells(1)),:);
cellnodes2 = G.nodes.coords(gridCellNodes(G,fraccells(2)),:);

% Intersection calculation
[intersected,~,xlength,df] = ...
PEBIPEBIintersection3D(cellnodes1,cellnodes2,tol);

if intersected
nnc_pairs = [nnc_pairs; sort(fraccells)];

% Calculate transmissibility
aperture1 = G.cells.volumes(fraccells(1))/fraccellareas(1);
aperture2 = G.cells.volumes(fraccells(2))/fraccellareas(2);
Trans1 = G.rock.perm(fraccells(1))*aperture1*xlength/df(1);
Trans2 = G.rock.perm(fraccells(2))*aperture2*xlength/df(2);
Trans = (Trans1*Trans2)/(Trans1+Trans2);
nnc_T = [nnc_T; Trans];

end
end

end

G.nnc.cells = [G.nnc.cells;nnc_pairs];
G.nnc.T = [G.nnc.T;nnc_T];

Wells are specified with one well injecting one pore volume over two years:

%% ADD INJECTOR
totTime = 2*year;
tpv = sum(model.operators.pv);
wellRadius = 0.1;
[nx, ny, nz] = deal(G.cartDims(1), G.cartDims(2), G.cartDims(3));
cellinj = 1:nx*ny:(1+(nz-1)*nx*ny);
W = addWell([], G, G.rock, cellinj, 'Type', 'rate', ...

'Val', tpv/totTime, 'Radius', wellRadius, ...
'Comp_i', [1, 0, 0], 'Name', 'Injector');

and another well producing at a fixed pressure:
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%% ADD PRODUCER
cellprod = nx*ny : nx*ny : nz*nx*ny;
W = addWell(W, G, G.rock, cellprod, 'Type', 'bhp', ...

'Val', 50*barsa, 'Radius', wellRadius, ...
'Comp_i', [1, 1, 0], 'Name', 'Producer');

The model is then initialized to be fully saturated with oil at constant pressure:

s0 = [0, 1, 0];
state = initResSol(G, pRef, s0);

Finally, a timestepping scheme is set up before the simulation is launched.
The timestep is set to 30 days, with an initial ramp-up to the designated step
length:

dt = rampupTimesteps(totTime, 30*day, 10);
schedule = simpleSchedule(dt, 'W', W);

%% LAUNCH SIMULATION
[ws, states, report] = simulateScheduleAD(state, model, schedule);

The results of the simulation are shown in Figure 9.4, where the progression of the
water saturation front is visibly affected by the three fractures. At 90 days, the front
just reaches the fracture network. At 150 days, water has short-circuited through

Figure 9.4 Results for a waterflood simulation into the model in Figure 9.1. Water
saturation maps for the matrix and fractures are shown for four different timesteps.
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the fracture network. Water breaks through at the well at 270 days. After a further
330 days, most of the domain remains unswept by water. The plots are produced
with MRST’s plotting tool: plotToolbar(G, states).

9.6 Upscaling a Stochastically Generated Fracture Network

Instead of manually creating a fracture network like in the previous example, the
statistical properties of a fracture network can be used to stochastically gener-
ate discrete fracture networks (DFN) realizations, which enable the study of flow
behaviors within NFRs. Figure 9.5d is an example of a stochastically generated
DFN. In this example, a DFN will be generated and processed using the hfm

module. Then, the resulting EDFM will be used for numerical upscaling.

Figure 9.5 Stochastically generated DFN. (a) Vertical fracture set (red) oriented
along the y-axis, (b) horizontal fracture set (green), (c) vertical fracture set
(yellow) oriented along the x-axis, and (d) full fracture network. Note that this
is not the fracture network used in Figure 9.6.

https://doi.org/10.1017/9781009019781.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.015


Embedded Discrete Fracture Models 395

To generate a DFN, we first need random generators that output fracture proper-
ties; e.g., fracture size, orientation, aperture, and position. These random generators
are derived from the statistical distributions of the properties in question. For exam-
ple, the cumulative distribution function for fracture sizes that follow a power law
distribution is

C(s) = s1−KPL − s
1−KPL

min

s
1−KPL
max − s

1−KPL

min

, (9.13)

where s refers to fracture size and KPL is a power-law exponent. The distribution
function can be inverted to express s in terms of C(s). Noting that 0 ≤ C(s) ≤ 1,
we replace C(s) with a random number generator RU that returns values between
0 and 1, drawn from a standard uniform distribution. The resulting random fracture
size generator RPL (subscript referring to power law) is

RPL =
(
s

1−KPL

min + RU

(
s1−KPL
max − s

1−KPL

min

)) 1
1−KPL . (9.14)

The same approach can be used to derive random generators for other fracture
properties. In this example, the steps for creating a DFN are based on the approach
by Priest [33]:

1. Start with the first fracture orientation set.
2. Randomly generate the parameters for a new fracture: orientation, aperture, size,

location.
3. Check that the new fracture does not intersect an exclusion zone around existing

fractures within the same set.

• Remove new fracture if intersection is detected.

• Update fracture density if no intersection is detected.

4. If target fracture density is not met, repeat from Step 2.
5. Repeat Steps 2–4 for all other fracture orientation sets.

Step 3 in this procedure is a modification based on the observation of stress shadow
zones around preexisting fractures. The shapes of exclusion zones, for practical
reasons, are often chosen to be simple geometries that enclose fractures [20, 36, 46].

Note that the DFN generation procedure outlined can be modified to account
for more features. For example, we have assumed that aperture and size are not
correlated. The algorithm can also be modified to specify aperture as a function of
fracture size. Another possible modification is the inclusion of fracture abutment
probabilities, which can be used to create a random decision maker (equivalent to
an unfair coin toss); new fractures may then either intersect with or truncate at an
older fracture based on the outcome of the decision maker [17].
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This procedure has been implemented in MATLAB and is part of the hfm mod-
ule. The DFN generator takes as inputs the domain in which fractures will be
generated, fracture network properties, and a parameter that controls the size of
exclusion zones. In the following code, three orthogonal fracture sets are defined.
The fracture orientations are allowed to vary around corresponding mean orienta-
tions based on the Fisher distribution. The fracture sizes are also allowed to vary
according to a power-law distribution. Fracture apertures are constant. Fractures
are represented as 10-sided polygons randomly distributed in space based on the
Poisson process:

%% FRACTURE NETWORK STATISTICAL PARAMETERS
physdim=[100 100 100]; % domain size

% Fracture sets 1 (red), 2(green), 3(yellow)
fracinput1 = struct('circle',true,'vertices',10,'poro',1,'perm',1e4*darcy,...

'P32',0.025*(1/meter),'aperture',1e-3*meter,...
'normal',struct('direction',[1 0 0],'K',10),...
'size',struct('minsize',5*meter,...

'maxsize',20*meter,'exponent',1.5));
fracinput2 = fracinput1; fracinput2.normal.direction=[0 0 1];
fracinput3 = fracinput1; fracinput3.normal.direction=[0 1 0];

% Exclusion zone is cylindrical with radius being (1+exclzonemult) times
% the fracture radius; height is exclzonemult times the fracture radius.
exclzonemult = 0.01;

The parameters are passed to the DFN generator in the hfm module. Periodicity
is enforced at the domain boundaries, such that truncated fractures reappear at
opposite boundaries:

%% DFN GENERATION
tol = 10 -̂5; % tolerance for comparison of doubles
fracplanes = DFNgenerator([],fracinput1,physdim,exclzonemult,tol);
fracplanes = DFNgenerator(fracplanes,fracinput2,physdim,exclzonemult,tol);
fracplanes = DFNgenerator(fracplanes,fracinput3,physdim,exclzonemult,tol);

Note that the generated DFN shown in Figure 9.5 is simply one of a limit-
less number of possible realizations that honor the fracture network parameters
specified. In actuality, a proper risk assessment should adopt a Monte Carlo
approach by generating hundreds to thousands of DFN realizations in order
to quantify the uncertainty in flow behavior resulting from our limited knowl-
edge of the fracture network. Figure 9.5 can be produced using the following
code:
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%% PLOT DFN
colourchoice=['r','g','y'];
figure;
hold on;
plotGrid(cartGrid([1 1 1],physdim),'facealpha',0);
axis equal tight
view(45,30);
for i=1:3

index = find(vertcat(fracplanes.SetID)==i);
C = colourchoice(i);
for j=index'

X = fracplanes(j).points(:,1);
Y = fracplanes(j).points(:,2);
Z = fracplanes(j).points(:,3);
fill3(X,Y,Z,C);

end
xlabel('x','Interpreter','latex')
ylabel('y','Interpreter','latex')
zlabel('z','Interpreter','latex')

end

The output from the DFN generator is a database of fractures that can directly
be used as an input to the hfm module. In the next part of this example, we
show how the generated DFN can be numerically upscaled using the method
introduced by Durlofsky [10]. Numerical upscaling involves running a single-
phase incompressible simulation in which the simulation domain is subjected to a
pressure differential. The calculated flow rate can then be used to back-calculate an
equivalent permeability using Darcy’s law. For an in-depth discussion of upscaling,
we refer the reader to chapter 15 in the MRST textbook [28]. In this example, the
EDFM grid and NNCs are set up automatically using the functions EDFMgrid,
fracturematrixNNC3D, and fracturefractureNNCs3D. These functions per-
form the same EDFM preprocessing tasks as those shown in the previous example.
Take note that due to the number of fractures involved, the EDFM preprocessing
phase will take a while. For the reader’s convenience, an already preprocessed
stochastically generated DFN is provided (SampleDFN_preprocessed.mat) so
that the reader may proceed straight to the numerical upscaling part of this example:

%% SETUP GRID
celldim = [25 25 25];
G = cartGrid(celldim, physdim);
G = computeGeometry(G);
km = 10*milli*darcy;
G.rock = makeRock(G,km,0.25);
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%% EDFM PRE-PROCESSING
tol = 1e-6;
[G,fracplanes] = EDFMgrid(G,fracplanes,'Tolerance',tol);
G = fracturematrixNNC3D(G,tol);
[G,fracplanes] = fracturefractureNNCs3D(G,fracplanes,tol);

Because numerical upscaling only requires a single flowing phase, a fluid model
is set up with properties of water. Then, the EDFM grid and fluid model are
used to instantiate a water model. Additionally, because the flowing fluid is
incompressible, the stepFunctionIsLinear property in the water model is set to
true:

pRef = 100*barsa;
fluid = initSimpleADIFluid('phases','W','mu',1* centi*poise,'pRef',pRef,...

'rho',1000* kilogram/meter^3, 'c',0/barsa);
%% SETUP WATER MODEL
gravity reset off
model = WaterModel(G, G.rock, fluid);
model.operators = setupEDFMOperatorsTPFA(G, G.rock, tol);
model.stepFunctionIsLinear = true;

In the next step, initial and boundary conditions are set. The initial condition
is such that the entire domain is at constant pressure. A pressure differential is
applied to the western and eastern boundaries of the domain. The fracture cell faces
at these boundaries are determined using the findfracboundaryfaces function
that checks for intersections between domain boundaries and fractures:

% Initial condition
state = initResSol(G, pRef);

% Find fracture cell faces at domain boundary
boundfaces = findfracboundaryfaces(G,tol);
% Set pressure differential on opposing boundaries in the x-direction
deltaP = 50*barsa;
bc = pside([],G.Matrix,'East',pRef);
matwestfaces = bc.face;
bc = pside(bc,G.Matrix,'West',pRef + deltaP);
bc = addBC(bc,boundfaces.East,'pressure',pRef);
bc = addBC(bc,boundfaces.West,'pressure',pRef + deltaP);
bc.sat = ones(size(bc.face));

A simple schedule with a single 1 second timestep is set up and the simulation is
launched:

schedule = simpleSchedule(1,'bc',bc);
[~, states,~] = simulateScheduleAD(state, model, schedule);
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Figure 9.6 Pressure field under a pressure differential imposed in the x-direction
from the West to the East. Pressure is shown in bars.

Figure 9.6 shows the pressure field established in the model given the applied
pressure differential. Pressures are high on the western boundary and low on the
eastern boundary. The isopressure surfaces are uneven due to the influence of highly
conductive fractures within the simulation domain. This figure can be reproduced
with the code:

plotCellData(G,states{1}.pressure,1:G.Matrix.cells.num,...
'FaceAlpha',0.5,'EdgeAlpha',0.1);

plotCellData(G,states{1}.pressure,G.Matrix.cells.num+1:G.cells.num);
view(30,45);
caxis([100 150]*barsa); colorbar('EastOutside');
axis equal tight; box on

The simulation results can be easily processed to back-calculate an equivalent
permeability for the whole domain. To do this, the overall flux through the domain
in the x-direction has to be determined. Because the fluid involved is incompress-
ible, fluid flux is equal at both the western and eastern boundaries. We will calculate
the flux at the western boundary. Once the flux is calculated, Darcy’s law can be
used to determine the equivalent permeability:

% Determine flux through western boundary
westfaces = [matwestfaces;boundfaces.West'];
waterflux = sum(abs(states{end}.flux(westfaces,1)));

% Inverse Darcy's law for permeability
k_eq = waterflux*fluid.muW(1)*physdim(1)/(physdim(1)*physdim(2)*deltaP);
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In this example, only the x-direction of the equivalent permeability has been
calculated. The boundary conditions can easily be modified such that the pressure
differential is prescribed in other directions. By doing so, the y- and z-directions
of the equivalent permeability can be determined. For the DFN in Figure 9.6, the
equivalent permeability in the x-direction is 33.0 md. In comparison, the matrix
permeability is 10.0 md. Due to the high conductivity of the fractures, the flow
capacity of the overall volume in the x-direction has been increased threefold.
Note that in the method proposed by Durlofsky [10], periodic boundary conditions
are applied to boundaries perpendicular to the applied pressure differential. How-
ever, because the fracture network that is being upscaled in this example is largely
isotropic, crossflow is not expected to be significant. Hence, we assume that no
crossflow occurs and impose no-flow conditions on side boundaries. The example
can also be repeated to obtain a distribution of possible equivalent permeabilities,
given the same fracture network parameters.

9.7 Simulation of Well Test Response in an Outcrop-Based
Fracture Network

In the final example of this chapter, we show how a well test in a real fracture
network can be simulated. We use a publicly available database provided by Bis-
dom et al. [5] that contains fracture networks mapped on outcrops of the Jandaira
carbonate formation in the Potiguar basin, Brazil. The data are contained in two
formats: kml and shapefiles. The former format can be read into Google Earth to
visualize the fracture network. Shapefiles, on the other hand, can easily be read into
MATLAB using the shaperead function, which is part of the Mapping Toolbox.
For the reader’s convenience, we have parsed the shapefile for the Apodi 2 fracture
network and saved the data as Apodi2.mat (Figure 9.7). This file is available in the
hfm module and contains two variables: physdim and fracplanes. The former
contains information about the size of the domain of interest. The latter is a struct
array that contains fracture segments.

Once Apodi2.mat is loaded, similar to the previous examples, an orthogonal
grid can be set up. The grid and fracplanes can then be passed through the
EDFMgrid, fracturematrixNNC3D, and fracturefractureNNCs3D

functions to create an EDFM. Note that in this example, the EDFM only has
one grid cell in the z-direction and is actually a 2D model. However, the example
still utilizes the 3D version of the hfm module so that readers can easily modify
the example such that there are more layers in the z-direction. Such a modification
will allow for the study of gravitational effects on flow. Due to the number of
fractures involved, the EDFM preprocessing step will take a while to complete.
For readers who are keen to go straight into the flow simulation, we have provided
Apodi2preprocessed.mat, which contains the preprocessed grid G:
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Figure 9.7 The Apodi 2 fracture network from Bisdom et al. [5] mapped on
outcrops of the Jandaira carbonate formation in the Potiguar basin, Brazil. The
red point is the location of a well.

%% SETUP GRID
G = cartGrid([220 220 1], physdim);
G = computeGeometry(G);
G.rock = makeRock(G,1*milli*darcy,0.25);

%% EDFM PRE-PROCESSING
tol = 1e-6;
[G,fracplanes] = EDFMgrid(G,fracplanes,'Tolerance',tol);
G = fracturematrixNNC3D(G,tol);
[G,fracplanes] = fracturefractureNNCs3D(G,fracplanes,tol);

For this well test, we assume that only a single-phase fluid is flowing. As such,
we set up a fluid object with typical oil properties. The grid and fluid are used
to instantiate a WaterModel. Note that although the model used here is named
after water, it can in fact be used with any fluid as long as only a single phase is
involved:

%% SETUP FLUID MODEL WITH OIL PROPERTIES
pRef = 100*barsa;
fluid = initSimpleADIFluid('phases','W','mu',8*centi*poise,'pRef',pRef,...

'rho',700* kilogram/meter̂ {3},'c',1e-5/barsa);
%% SETUP WATER MODEL
gravity reset off
model = WaterModel(G, G.rock, fluid);
model.operators = setupEDFMOperatorsTPFA(G, G.rock, tol);
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In the next step, we specify a point sink that acts as a well that is being produced
at constant rate. The point sink will be positioned within a fracture cell to emulate
the process of producing from a fracture. To do this, we first plot the EDFM grid
using plotEDFMgrid. Using the plot as a reference, the approximate coordinates
of a point on a fracture are chosen and used to determine the index of a fracture
cell in that location. The fracture cell index can then be used as an input to the
addSource function to specify a point sink. This procedure is implemented in the
following code, which will produce Figure 9.7:

%% PLOT GRID TO HELP DETERMINE APPROXIMATE WELL LOCATION
[hm,hf]=plotEDFMgrid(G); hm.EdgeAlpha=0; hold on
scatter(27.16, 121, 10, 'r', 'filled'); view(0,90); box on

%% LOCATE NEAREST FRACTURE CELL
fraccellcent = [27.16,121,0.5]; % Approximate location of well
fraccell = find(all(abs(G.cells.centroids-fraccellcent)<0.5,2));
fraccell = fraccell(fraccell>G.Matrix.cells.num);

%% SET UP SINK
src = addSource([],fraccell,-1*(meter̂ 3)/day);
src.sat = ones(size(src.cell));

The model is then initialized and a schedule with log spaced timesteps is set up.
The log spaced timestepping is required to capture early time flow dynamics that
are mainly concentrated near the well. Finally, the simulation can be launched:

state = initResSol(G, pRef);
dt = diff(10.^(-8.5+(1:60)*0.25))'; % log spaced timesteps
schedule = simpleSchedule(dt,'src',src);
[~, states] = simulateScheduleAD(state, model, schedule);

The results of well tests are often visualized on log–log plots of pressure deriva-
tives with respect to log time [9]. The next code excerpt shows how the simulation
results can be postprocessed to generate such a plot (Figure 9.8):

pvalues = cellfun(@(x) x.pressure(src.cell), states);
tottime = cumsum(dt);
dp_dlnt = -diff(pvalues)./diff(log(tottime));
midtime = 0.5*(tottime(1:end-1)+tottime(2:end));
loglog(midtime,dp_dlnt);

The diagnostic plot (Figure 9.8) shows that there are two flow regimes sepa-
rated by a brief drop in the pressure derivative. The first flow regime corresponds
to fracture-dominated flow. In this phase, fluid flow occurs only in the fracture
network. The second flow regime corresponds to matrix-dominated flow. In this
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Figure 9.8 Diagnostic plot for a well test simulated using EDFM in a real fracture
network.

flow regime, fractures serve as the conduit for fluid flow from the matrix to the
well. At the transition between the two flow regimes, the pressure front in the
fracture network reaches the domain boundaries while the pressure in the matrix
remains undisturbed (Figure 9.9a). At late time (beyond the transition), pressure
in the matrix will deplete as fluid is produced from the well through the fractures
(Figure 9.9b).

9.8 Concluding Remarks

In this chapter, EDFM has been presented as a way to perform high-resolution
flow simulations in a fractured porous medium. In contrast to the popular dual-
porosity model, EDFM represents fractures explicitly in the simulation model as
line sinks or sources. Due to the explicit fracture representation, EDFM is capable
of capturing the geometrical complexity of fracture networks. The hfm module
provides the basic building blocks of EDFM. Various research efforts are still ongo-
ing to improve the capabilities of EDFM. For example, Tene et al. [44] proposed
the projection-based EDFM, which addresses the issue of pressure and saturation
continuity across fractures in EDFM; their work allows sealing fractures to be
modeled using EDFM. This method is explained in more detail and used to model
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Figure 9.9 Pressure distribution for the Apodi 2 well test simulation. Row
(a) contains the pressure fields at 1 second. Row (b) contains the pressure fields
at 3.66 days. Column 1 shows the pressures in the fracture cells. Column 2 shows
the pressures in the matrix cells. Pressures are in bars.

flow in unconventional oil and gas reservoirs in Chapter 10. Hui et al. [18] have
further simplified and optimized the EDFM preprocessing algorithm, thus allowing
users to handle a much larger number of fractures. Additionally, various authors
have coupled EDFM with geomechanical simulations for fully coupled simulations
[35, 38, 50]. We highly recommend that keen readers delve into these works to
continue exploring EDFM beyond what has been covered in this chapter. Lastly,
we encourage readers to modify and run the examples presented in this chapter to
discover for themselves the ease of running EDFM simulations.
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