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Non-alcoholic steatohepatitis (NASH) may be associated with a number of clinical conditions,
but it occurs most commonly in patients with insulin resistance. There is as yet no established
disease-modifying treatment, and a safe and broadly available agent that targets hepatic steatosis,
insulin resistance, inflammation and fibrosis is necessary. The polyphenolic compound curcumin
exhibits antioxidant and anti-inflammatory properties, inhibits NF-kB and activates PPAR-g. In
rodents, curcumin prevents dietary-induced hepatic steatosis, hepatic stellate cell activation and
production of fibrotic proteins, and ameliorates steatohepatitis induced by the intake of alcohol or
a methionine–choline-deficient diet. Indirect evidence suggests that curcumin may improve
insulin sensitivity in diabetes and inflammatory states. The present paper reviews the numerous
cellular and animal studies indicating that curcumin attenuates many of the pathophysiological
processes involved in the development and progression of NASH. It is suggested that basic and
clinical studies on curcumin in the development and progression of NASH are indicated.

Diferuloylmethane: Curcumin: Steatosis: Oxidative stress: Fibrosis: Steatohepatitis

Introduction

Non-alcoholic steatohepatitis (NASH), like alcoholic
steatohepatitis (ASH), is a liver disease characterised by
diffuse fatty infiltration and inflammation, but is seen in
patients with minimal alcohol consumption. Since this
common and often clinically silent disorder can lead to
cirrhosis, there is growing interest in understanding its
pathophysiology and in developing an appropriate treatment
(Angulo, 2002). The pathogenesis of NASH is not well
established, but insulin resistance (IR) is considered a
primary mediator of hepatic steatosis, the ‘first hit’ of the
disease. In many patients, steatosis sensitises the liver to
inflammation, oxidative stress, mitochondrial dysfunction
and fibrosis, the ‘second hit’ (Neuschwander-Tetri &
Caldwell, 2003). The prevalence of both simple hepatic
steatosis and NASH is thought to be increasing in parallel to
the diabesity epidemic (Sass et al. 2005). Less often NASH
may develop secondarily into nutritional, metabolic,
intestinal and post-interventional disorders (for example,
abetalipoproteinaemia, lipodystrophy, ileo-jejunal bypass
and total parenteral nutrition) or drug-induced hepatotoxi-
city (Neuschwander-Tetri & Caldwell, 2003).

The therapeutic potential of interventions able to target
one or more of these inter-related processes is being

evaluated in animal models as well as in patients with
NASH (Angulo, 2002; Neuschwander-Tetri & Caldwell,
2003). Lifestyle changes may be beneficial and PPAR-g
agonists, betaine, vitamin E and pentoxfylline were found to
be effective in clinical trials (Neuschwander-Tetri &
Caldwell, 2003; Satapathy et al. 2004; Sass et al. 2005).
But, no long-term studies have been performed and there is
at present no established treatment that is both safe and that
modifies the natural history of NASH (Sass et al. 2005).
The polyphenolic substance diferuloylmethane, com-

monly known as curcumin (CUR), is a yellow water-
insoluble pigment extracted from turmeric, the rhizome of
Curcuma longa. The other two curcuminoids isolated from
turmeric are demethoxycurcumin and bisdemethoxycurcu-
min, but CUR is considered the more important mediator of
turmeric’s biological activity. Turmeric is extensively used as
a spice, food preservative and medicinal plant in the Far and
Middle East (for an important review, see Joe et al. 2004).
CUR beneficially modulates the multiple processes involved
in carcinogenesis and is being evaluated as a dietary
chemopreventive agent (Aggarwal et al. 2003). It is a potent
antioxidant and NF-kB-inhibitor, protects cells from injury-
and inflammatory-induced necrosis and apoptosis, and
enhances wound healing (Miquel et al. 2002; Aggarwal
et al. 2003; Joe et al. 2004). CUR has been shown to be
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protective in animal models of toxic (Venkatesan, 1998;
Venkatesan et al. 2000; Gukovsky et al. 2003), inflammatory
(Madan & Ghosh, 2003) and ischaemic injury (Shoskes,
1998; Ghoneim et al. 2002) to different organs.

In rodents, pharmacologically active levels of CUR are
found in the liver following its ingestion (Sharma et al.
2001a), and it has been shown to ameliorate many forms of
hepatic insult (Reddy & Lokesh, 1996; Quiles et al. 1998;
Chuang et al. 2000a,b; Park et al. 2000; Watanabe & Fukui,
2000; Asai & Miyazawa, 2001; Morikawa et al. 2002; Nanji
et al. 2003; Shukla & Arora, 2003; Leclercq et al. 2004),
including steatohepatitis due to a methionine–choline-
deficient (MCD) diet (Leclercq et al. 2004), ASH (Nanji et al.
2003) and dietary-induced hepatic steatosis (Asai &
Miyazawa, 2001). CUR also inhibits hepatic stellate cell
(HSC) activation and type I collagen production (Kang et al.
2002; Xu et al. 2003). CUR’s ability to prevent hypergly-
caemia in a mice model of type 2 diabetes (Nishiyama et al.
2005), and to inhibit inhibitory kB kinase (IKK; Joe et al.
2004) and c-Jun N terminus protein kinase (JNK; Chen &
Tan, 1998), which interfere with insulin signal transduction,
suggests that it may also ameliorate IR. The aim of the
present article is to present some of the deleterious
biochemical and cellular processes underlying NASH, and
to review the evidence of their prevention by CUR.

Hepatic steatosis

Hepatic steatosis develops in a number of experimental and
clinical settings, and may be the result of an increased
uptake and synthesis of fatty acids by hepatocytes,
insufficient fatty acid oxidation and/or defective VLDL
export (Browning & Horton, 2004). CUR ameliorates
biochemical and histological indices of hepatic steatosis in a
number of models of metabolic and dietary-induced
steatosis and steatohepatitis (Table 1). It attenuated the
rise in hepatic and plasma total and VLDL triacylglycerols
in normal rats fed a moderately high-fat (15%) diet (Asai &
Miyazawa, 2001), a moderately high-fat (15% sunflower--
seed oil) and ethanol diet (Rukkumani et al. 2002) and in
streptozocin-induced diabetic rats fed a 10% fat diet (Babu
& Srinivasan, 1997). The hepatic NEFA content was also
shown to be reduced by CUR in the ethanol model
(Rukkumani et al. 2003). CUR also reduced plasma
triacylglycerol concentrations in Wistar rats fed a high-fat
(30%) diet, although hepatic triacylglycerols were not
measured in that study (Kempaiah & Srinivasan, 2004). A
significantly lower histopathological index of steatosis was
evident in Wistar rats fed CUR in ethanol and fish
oil-induced liver injury (Nanji et al. 2003). In those of the
above studies that included weight measurement, CUR
administration was not associated with a significant change
in weight. CUR also prevented the increase in epididymal
adipose tissue weight in rats fed a moderately high-fat diet
(Asai & Miyazawa, 2001). The finding that CUR reduces
both hepatic and non-hepatic fat suggests that it lowers the
fatty acid synthesis:oxidation ratio. CUR activates a key
fatty acid oxidising enzyme, acyl-CoA oxidase (Asai &
Miyazawa, 2001), a deficiency of which can lead to hepatic
steatosis (Yeon et al. 2004). This might be one way CUR
prevents lipid accumulation.

CUR inhibited the inflammatory, but not the steatotic,
component of steatohepatitis in mice fed an MCD diet
(Leclercq et al. 2004). In addition, acyl-CoA oxidase
expression was not increased by CUR. The reason for the
discrepancy in CUR’s effect on steatosis in different models
is not clear, but may be related to the finding that MCD-fed
mice do not exhibit IR (Rinella & Green, 2004),
which appears to be necessary for the development of
human NASH and which may be a target in CUR’s
anti-steatotic effect.

Insulin resistance

The majority of patients with fatty liver and NASH exhibit
IR, i.e. a reduced responsiveness to endogenous and
exogenous insulin, as well as compensatory hyperinsuli-
naemia. IR is also strongly associated with type 2 diabetes
mellitus, obesity and the metabolic syndrome, and a large
body of evidence supports the causative role of IR in human
hepatic steatosis and NASH (Angulo, 2002; Neuschwander-
Tetri & Caldwell, 2003; Choudhury & Sanyal, 2004).
Adipocyte IR increases liver fatty stores by disinhibition of
lipolysis, thereby increasing NEFA efflux. Skeletal muscle
and hepatocyte IR results in hyperglycaemia, caused by
reduced peripheral uptake and increased hepatic production
of glucose, respectively. Hyperglycaemia leads to a
compensatory hyperinsulinaemia, which increases fatty
acid synthesis and impairs hepatocyte export of VLDL
(Choudhury & Sanyal, 2004). Elevated hepatocyte glucose
levels may augment carbohydrate-mediated stimulation of
lipogenesis via the carbohydrate response element binding
protein (Browning & Horton, 2004). TNF-a, NEFA and
oxidative stress inhibit insulin signal transduction by
activating IKK, JNK and certain protein kinase C isoforms,
which phosphorylate serine residues on insulin receptor
substrates (Choudhury & Sanyal, 2004; Diehl, 2004).

CUR’s effect on target-organ or whole-body insulin
sensitivity has not been assessed. However, both a turmeric
extract and a purified CUR extract reduced hyperglycaemia
in amousemodel of type 2diabetesmellitus (Nishiyama et al.
2005). CUR also activated PPAR-g in adipocytes in vitro and
the authors attributed CUR’s hypoglycaemic effect to this
mechanism.HSC andMoser cell PPAR-gwere also activated
by CUR in vitro (Xu et al. 2003; Zheng & Chen, 2004; Chen
&Xu, 2005). CUR’s ability to activate PPAR-g and to reduce
oxidative stress may result in the attenuation of IR
(Choudhury & Sanyal, 2004; Ogihara et al. 2004). In
addition, CUR may minimise IR under conditions of
increased production of TNF-a, since it inhibits both the
production and the action of the latter by inhibiting IKK
activation and DNA binding of NF-kB (Chan, 1995; Singh&
Aggarwal, 1995; Xu et al. 1997–98; Joe et al. 2004). CUR
has also been shown to inhibit JNK signalling (Chen & Tan,
1998). It is not knownwhether the ingestion ofCUR results in
significant pharmacological effects in fatty tissue and
skeletal muscle. Even if this is not the case, dietary CUR
produces pharmacodynamic effects in the liver (Sharma et al.
2001a), where it may ameliorate IR by local inhibition of
TNF-a, JNK and oxidative stress (Choudhury & Sanyal,
2004; Nakatani et al. 2004). Steatosis impairs hepatocyte
sensitivity to and the ability to clear insulin (Medina et al.
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2004) and in itself plays a causative role in the metabolic
syndrome (den Boer et al. 2004). Therefore, CUR’s ability to
inhibit dietary-induced hepatic steatosis, as discussed above,
may, indirectly, benefit extrahepatic insulin signalling and
metabolic health. A simplified and schematic overview of
how CUR may ameliorate hepatic steatosis and IR is
presented in Fig. 1.

Oxidative stress

Increased formation of reactive oxygen species and
lipoperoxides by hepatocytes, Kupffer and recruited
inflammatory cells appears to be necessary for the
progression of steatosis to inflammation and fibrosis.
Hepatocyte mitochondrial and peroxisomal b-oxidative
enzymes, and microsomal CYP2E1, are important sources
of lipoperoxides in NASH (Angulo, 2002; Neuschwander-
Tetri & Caldwell, 2003; Choudhury & Sanyal, 2004).
The reduced expression and activity of endogenous
antioxidant systems might also contribute to the develop-
ment and progression of NASH in man (Choudhury &
Sanyal, 2004).

CUR reduces reactive oxygen species levels by a number
of mechanisms; for instance it can inhibit formation,
increase dismutation and directly scavenge the superoxide
anion (Joe & Lokesh, 1994; Joe et al. 2004; Mishra et al.
2004). It attenuates in vivo formation of hepatic lipoper-
oxides in rats fed a high-fat or ethanol þ fat diet (Nanji et al.
2003; Rukkumani et al. 2003, 2004b; Kempaiah &
Srinivasan, 2004; Table 1). Lipid peroxidation of liver
microsomes and mitochondria induced by Fe (Reddy &
Lokesh, 1994) and an atherosclerotic diet (Quiles et al.
1998) was reduced by CUR. In addition, CUR boosts the
activity of a number of hepatic antioxidant enzymes,
including catalase, superoxide dismutase and the gluta-
thione system, both under normal and pathological
conditions (Sharma et al. 2001a; Miquel et al. 2002; Leu
& Maa, 2002; Iqbal et al. 2003; Joe et al. 2004).
Importantly, CUR reduced membranal and intracellular
lipid peroxide levels and induced antioxidant activity in
hepatocytes and erythrocytes of rats on a high-fat diet
(Kempaiah & Srinivasan, 2004; Table 1). Haeme-oxygen-
ase-1 (HO-1) is an important cytoprotector (Zuckerbraun &
Billiar, 2003) that is induced by CUR (Scapagnini et al.
2002). HO-1, which degrades haeme to yield biliverdin, free
Fe and CO, had a protective effect upon hepatic insult
caused by endotoxin, acetaminophen and ischaemia–re-
perfusion. Reduction of oxidative stress is one of HO-1’s
salutary effects; it up regulates ferritin and interacts with an
intracellular Fe pump to lower intracellular Fe and
pro-oxidant Fenton reactivity (Balla et al. 2003; Zuck-
erbraun & Billiar, 2003). CUR induces HO-1 expression via
modulation of the antioxidant response element (Balogun
et al. 2003), thereby increasing cellular antioxidant capacity
(Motterlini et al. 2000). Under normal conditions, CUR is a
weak inhibitor of CYP2E1 activity (Oetari et al. 1996). But,
by preventing the intracellular accumulation of fatty acids,
which are both substrates and inducers of CYP2E1
(Browning & Horton, 2004), CUR may reduce this
enzyme’s production of lipoperoxides. Finally, CUR
exhibited a sparing effect on coenzyme Q10 and a--M
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tocopherol in dietary-induced oxidative stress (Quiles et al.
2002), the latter antioxidant showing some
therapeutic potential in NASH (Neuschwander-Tetri &
Caldwell, 2003).

It is conceivable that CUR, due to its pleiotropic
antioxidant activities, reduces the formation of lipid
peroxides despite induction of acyl-CoA oxidase. These
combined effects should minimise oxidative stress and
attenuate the progression of steatosis to NASH.

Inflammation, tumour necrosis factor-a, nuclear factor
kB and lipopolysaccharide

TNF-a is both induced by and an activator of NF-kB and
can lead to a partially self-perpetuating inflammatory
process (Choudhury & Sanyal, 2004). Elevated TNF-a
levels are related to the inflammation, necrosis and fibrosis
characteristic of NASH (Angulo, 2002). Studies in animal
models suggest that an augmented Kupffer cell inflamma-

Fig. 1. Curcumin may prevent hepatic steatosis in dietary, diabetic and inflammatory states by targeting different biochemical processes.
Hepatocytes accumulate pathological amounts of fat due to increased fatty efflux, resistance to insulin’s lipid-sparing effects and/or increase in
fatty acid (FA) synthesis due to hyperinsulinaemia and an increased supply of substrates. Curcumin reduces hyperglycaemia in type 2 diabetes
mellitus, reduces dietary-induced elevations in circulating lipids, inhibits inhibitory kB kinase (IKK) and c-Jun N terminus protein kinase (JNK) that
are implicated in insulin resistance and activates acyl-CoA oxidase. Curcumin also inhibits the production of TNF and free radicals, inducers of
insulin resistance. ROS, reactive oxygen species; LPO, lipoperoxide; ! , activates, leads to; , inhibits; B, blocked or inhibited by curcumin.
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tory response to lipopolysaccharide (LPS) may also be
involved in obesity-related liver damage and that inhibition
of LPS or of the TNF-a–IKKb–NF-kB pathway could be
therapeutic in NASH (Diehl, 2004). The TNF-a-induced
phosphorylation of IKKb, NF-kB activation and binding of
DNA, and the resultant transcription of pro-inflammatory
molecules, are inhibited by CUR (Chan, 1995; Singh &
Aggarwal, 1995; Pendurthi et al. 1997; Bierhaus et al. 1997;
Xu et al. 1997–98; Kumar et al. 1998; Plummer et al. 1999;
Chun et al. 2003; Lee et al. 2003; Joe et al. 2004), as is the
ex vivo LPS-induced production of TNF-a by macrophages
(Abe et al. 1999; Punithavathi et al. 2003). CUR inhibited
in vivo liver NF-kB activation and TNF-a expression, and
LPS-induced production of TNF-a by Kupffer cells in rats
with ASH (Nanji et al. 2003; Table 1). Activation of NF-kB
by osteopontin, which may play a role in NASH (Sahai et al.
2004), is also inhibited by CUR (Philip & Kundu, 2003).

CUR administration also attenuates the phagocytic
activity of Kupffer cells and leucocyte adherence to liver
sinusoids following intravenous injection of LPS in mice
(Lukita-Atmadja et al. 2002). Thus, CUR may minimise the
deleterious inflammatory response of Kupffer cells and
infiltrating monocytes by blocking the multiple pathways
converging on NF-kB.

Since NF-kB activity appears to be necessary to prevent
apoptosis and facilitate hepatocyte regeneration (Heyninck
et al. 2003), it is conceivable a priori that its inhibition by
CUR would be detrimental in NASH. However, in vitro
studies show that CUR does not inhibit constitutive NF-kB
activity (Gao et al. 2004), and that it induces apoptosis in
activated HSC (Xu et al. 2003; Zheng & Chen, 2004) and
in transformed hepatocytes (Syng-Ai et al. 2004), but not in
normal hepatocytes (Syng-Ai et al. 2004).

Fibrosis

Activation of HSC is the central event in hepatic fibrosis.
Locally synthesised lipoperoxides, matrix metalloprotei-
nases (MMP)-9, MMP-2, transforming growth factor-b1 and
monocyte chemotactic protein-1 may mediate the trans-
formation of the quiescent HSC into a proliferative,
fibrogenic and contractile myofibroblast (Friedman, 2000).
Activated HSC deposit numerous scar proteins, ultimately
leading to vascular and tissue contraction. HSC inhibition
may prevent or even reverse hepatic fibrosis resulting from
diverse disease states (Albanis et al. 2003). CUR has been
shown to reduce the induced production of MMP-9
(Shishodia et al. 2003), MMP-2 (Yao et al. 2004) and
transforming growth factor-b1 (Gaedeke et al. 2004). It also
reduces lipoperoxide levels, as discussed above. CUR
inhibited the expression of type I collagen and that of other
markers of pulmonary fibrosis in rats after intratracheal
instillation of amiodarone (Punithavathi et al. 2003), an agent
that can also cause steatohepatitis (Stravitz & Sanyal, 2003).
The synthesis of liver monocyte chemotactic protein-1 was
limited by CUR in rodent ASH (Nanji et al. 2003) andMCD-
diet-induced steatohepatitis (Leclercq et al. 2004). CUR
normalised MMP-2 and MMP-9 activity in rats fed either
ethanol, oxidised sunflower-seed oil or both hepatotoxins
(Aggarwal, 2004). HSC proliferation and expression of
collagen-a1, fibronectin and a-smooth muscle actin mRNA

were all reduced by CUR, whereas HSC apoptosis was
induced (Kang et al. 2002; Xu et al. 2003). HSC inhibition by
CUR can be partially explained by the latter’s induction and
activation of PPAR-g, and inhibition of NF-kB (Kang et al.
2002; Zheng & Chen, 2004). PPAR-g agonists were recently
shown to have therapeutic effects in NASH (Choudhury &
Sanyal, 2004). CUR also inhibited platelet-derived growth
factor-induced proliferation of human hepatic myofibro-
blasts (Park et al. 2005). Finally, HO-1, which is induced by
CUR, may have anti-fibrotic properties in activated HSC (Li
et al. 2003). A simplified and schematic overview of how
CUR may prevent the progression of hepatic steatosis to
NASH is presented in Fig. 2. We recently established that
CUR administration to rats attenuates the development of
thioacetamide-induced hepatic cirrhosis (R Bruck, M
Ashkenazi, H Shapiro, O Genia and M Pines, unpublished
results.).

Safety, bioavailability and clinical trials

Turmeric is added to food as a natural colorant, food
preservative or spice (Joe et al. 2004). As an additive, the
WHO has defined an intake of up to 1mg/kg per d as safe
(World Health Organization, 2000).

CUR, like other food-derived polyphenolic substances, is
only partially absorbed by rodents and man, undergoes
extensive intestinal conjugation and reduction and is further
metabolised in the liver (Joe et al. 2004; Manach et al.
2004). Although populations with a high intake of CUR
have a lower incidence of Alzheimer’s disease and colon
cancer (Chandra et al. 2001; Joe et al. 2004), and CUR has
therapeutic effects in pre-clinical models of both diseases
(Lim et al. 2001; Aggarwal et al. 2003), evidence of a
causative link between dietary CUR and a reduced
incidence of disease is lacking. Phase I studies of CUR in
the prevention and treatment of cancer have used different
forms of turmeric extracts and synthesised CUR at doses
that may be considered pharmacological. These studies
show that ingestion of up to 8 g CUR is not significantly
toxic, with infrequent diarrhoea being the major side effect
(Cheng et al. 2001; Aggarwal et al. 2003; Sharma et al.
2001b, 2004). Phase II clinical trials of CUR treatment for
mild to moderate Alzheimer’s disease and advanced
pancreatic cancer are presently enrolling patients (National
Institutes of Health, 2004a,b).

Despite its low bioavailability, ingestion of pharmaco-
logical doses of CUR by human subjects can produce
systemic pharmacological effects, as evident by a .50%
reduction in ex vivo LPS-induced production of prosta-
glandin E2 by leucocytes. This anti-inflammatory effect is
presumably attributable to inhibition of NF-kB-mediated
expression of cyclo-oxygenase-2 by CUR (Sharma et al.
2004). In addition, ingestion of 20–80mg of a highly
concentrated CUR preparation by twelve healthy adults
induced a powerful, dose-dependent increase in gallbladder
contractility in two double-blind, ultrasonographic studies
(Rasyid & Lelo, 1999; Rasyid et al. 2002). Thus, CUR can
produce pharmacological effects in the liver. Attempts are
being made to develop more powerful and potent CUR
analogues.
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The structure of CUR’s benzene rings, its hydrogen
substitutions and their position determine its antioxidant
ability (Joe et al. 2004). A CUR analogue with ortho-
hydroxyl substitution, for instance, has an enhanced ability
to neutralise free radicals (Rukkumani et al. 2004b).
Administration of CUR analogues prepared by ortho-
hydroxyl substitution or photo-irradiation indeed resulted
in greater hepatoprotection compared with that of CUR in a
rat model of ASH (Rukkumani et al. 2004b; Table 1). It is
not known how modulation of CUR’s chemical structure
affects its interaction with its protein targets, such as the
TNF-a–IKK–NF-kB pathway and PPAR-g. A number of
CUR analogues that display in vitro anti-neoplastic activity
that is superior to their mother compound have also been
developed (Venkatesan & Rao, 2000; Ishida et al. 2002;
Robinson et al. 2003). Assessment of CUR’s effects v.
those of its analogues should be tried out in animal models
of NASH that are similar to the human disease in order to

help detect more effective treatment. In addition, a
comparison of the in vitro effect of CUR and its analogues
on acyl-CoA oxidase, the TNF-a–IKK–NF-kB pathway,
PPAR-g and other modulators of the disease process could
reveal the relative importance of the different mechanisms
underlying NASH.
In conclusion, CUR inhibits many serial and parallel

pathways leading to hepatic steatosis, inflammation and
fibrosis. Since CUR has a good safety profile, its role in the
prevention and treatment of NASH merits further
investigation.
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Fig. 2. Curcumin targets the involvement of hepatocytes, inflammatory cells and hepatic stellate cells (HSC) in steatosis progression to
steatohepatitis. Formation of lipoperoxides by hepatocytes, inflammatory activation and production of TNF-a by Kupffer cells, and transformation
of HSC to proliferative, fibrogenic and contractile myofibroblasts activation mediate the progression of hepatic steatosis to non-alcoholic
steatohepatitis. Curcumin reduces the formation of lipoperoxides and increases antioxidant capacity in hepatocytes. It also inhibits the production
of TNF-a and other pro-inflammatory and pro-fibrotic molecules by Kupffer cells. Curcumin induces apoptosis in activated HSC and minimises the
production of scar proteins. ! , Activates, leads to; , inhibits; B, blocked or inhibited by curcumin.
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