
6
Phase transitions

In the present chapter we shall discuss the consequences the finite number of
particles have in the phenomenon of pairing phase transition in atomic nuclei.
Finite size effects give rise to fluctuations of the pairing gap and thus of the
correlation length (order parameter) ξ . Because ξ is much larger than the size
of the nucleus, it comes as no surprise that in describing the phase transition in
the small-particle superconductors one doesn’t need the non-analytic functions
necessary to account for the condensation in infinite systems. On the other hand,
the phenomena in both systems are closely related and, in a system like the
nucleus, we have the possibility of studying the transition in terms of the spectrum
of individual states. Thus the transition from a pair-correlated to a normal system
with increasing angular momentum involves the coupling between rotational
bands associated with the ground state and with excited (few quasiparticle) states.

Because all the transitions we shall treat are connected with level crossings at
zero temperature, it is more appropriate to talk about quantal phase transitions
(see Sachdev (1999)).

The variation of the moment of inertia I of rotational bands with angular
momentum provides one clue to the variation of the pairing gap with angular
momentum. This is because the moment of inertia has a simple monotonic de-
pendence on �. In characterizing a superfluid nucleus the moment of inertia
I of the rotational bands and the energy of the lowest non-collective excita-
tions 2Eν play a central role. Bohr and Mottelson (1975, equation (4.128)) have
given a qualitative estimate of the effect of pair correlations on the moment of
inertia which depends on a dimensionless parameter x ∼ β2�ω0/2� where β2

is the quadrupole deformation of the system, �ω0 ∼ 41/A1/3 MeV is the en-
ergy between major shells in the single-particle potential, and � is the pairing
gap. Their expression for the relation between the rigid moment of inertia Irig

and the actual moment of inertia of a deformed nucleus is I = Irig(1− g(x))
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118 Phase transitions

where

g(x) ≈
ln

(
x +√1+ x2

)
x
√

1+ x2
.

The moment of inertia tends to the rigid value when the pairing is weak and
decreases as � increases (x ≈ β2�ω0/2�). For typical cases (A = 160, β2 ∼
0.3, �ω0 ∼ 7.5,� ∼ 0.9 MeV) one obtains x ∼ 1.25, and g(x) ∼ 0.5. However,
both I and Eν are strongly dependent on the shape of the nucleus, which is
modified by the rotation of the system as a whole, making it difficult to extract
the order parameter from the changes observed in these quantities.

A better probe is the transfer of two nucleons as a function of the angular
momentum. In fact, as already discussed in Chapters 4 and 5, the ratio of the
two-nucleon transfer differential cross-section between the ground states of su-
perfluid nuclei, normalized with respect to the DWBA differential cross-section
calculated making use of a form factor describing the motion of two uncorrelated
particles in a single j-orbit typical of the mass region, is approximately given
by (�/G)2 where G is the pairing coupling constant.

New possibilities have been opened by the observation of tunnelling between
different minima of the potential-energy surface, which displays a very strong
dependence on the rotational frequency. The tunnelling probability depends ex-
ponentially on the pairing gap, making such measurements extremely sensitive
to changes of � as a function of I . The tunnelling probability from a deformed
to a superdeformed configuration (see Section 6.5) can be written in the WKB
approximation, assuming the barrier is well described by an inverted parabola
as a function of the deformation, as (see Chapter 7)

P ∼ exp

[
−2π (EB − E)

�
√

C/D

]
.

The quantity EB is the height of the barrier, E the (zero point) energy of the system
in the deformed minimum, while D and C are the tunnelling mass parameter of
the system and the curvature of the parabola. In Section 7.1.1 it will be shown
that D ∝ �−2 for a superfluid nucleus.

In Sections 6.1–6.5 we discuss the general properties of the pairing phase
transition as a function of I , paying special attention to the energies, alignments
(derivative of the energies with respect to angular momenta) and moments of
inertia. The dependence of the moment of inertia on pair correlations is dis-
cussed in Section 6.2.1 to obtain an estimate of the critical angular momentum
for pair collapse. In Section 6.5 we discuss the role played by pairing in the
tunnelling between superdeformed and normal deformed nuclei, while in the
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6.1 The experimental situation 119

last section we discuss the role that pairing fluctuations play in the rotation of
nuclei.

6.1 The experimental situation

There are two mechanisms by which the nucleus can generate high angular
momentum: single-particle alignment along a common axis or by a collective
rotation of the nucleus as a whole. This is illustrated in Fig. 6.1, where level
schemes of 158Er and 147Gd are shown. The 158Er scheme is quite regular and
the dominant behaviour is collective rotation of a body displaying prolate defor-
mation. The spectrum of 147Gd is very irregular, with complicated decay path-
ways and isomeric states. Its dominant behaviour is very likely single-particle
alignment.

In spite of differences, both of these schemes contain elements of the other
type of behaviour. In particular, there are irregularities in the 158Er rotational
pattern at spins around 16 and 26. In fact, as the nucleus de-excites from a high

Figure 6.1. Level scheme for 158Er and 147Gd, together with illustrations of the dominant
source of angular momentum for each case (from Stephens (1985)).
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120 Phase transitions

Figure 6.2. Plots of the rotational period against time for the nucleus 158Er (top) and the
pulsar Vela (bottom) (from Stephens (1985)).

initial spin, the regular increase of the nuclear period (slowing-down) is inter-
rupted occasionally by rather marked decreases. These correspond to internal
rearrangements, ‘nuclear quakes’, and are generally called ‘backbends’. One
may compare them to another type of quakes – ‘star-quakes’. Neutron stars or
‘pulsars’ are also rapidly rotating systems that are slowing down (Chapter 1).
Occasionally they too display sudden speed ups of the rotational motion called
‘glitches’ (see Anderson et al. (1982), Ruderman (1972), Shapiro and Teukolsky
(1983), Pines et al. (1992)).

It is quite common for rapidly rotating objects to modify their internal structure
and thus their moments of inertia, and that these modifications revert back,
often in sudden jumps of the rotational period, as the system slows down. The
interesting question for each system has to do with the nature of the internal
modification. The slowing-down of the nucleus 158Er below spin 20 is compared
with the pulsar Vela in Fig. 6.2. The behaviours are quite similar, though the
percentage change in the nuclear case is much larger. The pulsar glitches are
not too well understood at present – early explanations had to do with a sudden
breaking of the solid crust on the neutron star, but more recent ones involve
vortices in the flow pattern (see e.g. Epstein and Baym (1988), Pizzochero et al.
(1997), Alpar (1977, 1998), Donati and Pizzochero (2003)). The nuclear glitch
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is due to the sudden pairing of two high- j particles. In the case of this first
backbend in 158Er, the particles are i13/2 neutrons. Above I ∼ 14 this pair of
aligned particles contributes 10� along the rotation axis, but this is lost below
I ∼ 14 when the particles suddenly couple to spin nearly zero (decoupling) and
begin to participate in the pairing correlations. The angular momentum has to
be made up by the collective rotation, which must speed up, thereby decreasing
the period.

Such a behaviour is now well studied in nuclei around 158Er, and the change
described above corresponds to a crossing of two rotational bands (Stephens and
Simon (1972)). A band with two aligned i13/2 neutrons crosses the ground-state
band, which has all particles participating in the pairing correlations (pairing
vacuum). Thus the discontinuity actually corresponds to a shift into another
band, though the mixing between these bands gives collective enhancement to
the transition connecting the bands, often to the point where they are stronger
than the ‘in-band’ transitions at the crossing. The energy of the aligned band
relative to the ground band gradually decreases with increasing spin because
of the Coriolis interaction. Just as a gyroscope will attempt to align its rotation
axis with that of its rotating frame, so a pair of high- j particles tends to align
its rotation axis (angular momentum) with that of the rotating nucleus, thereby
decreasing its energy relative to a band without such an alignment.

The shift in angular momentum between the orbital motion of individual
particles and the collective rotation of the nucleus is illustrated in Fig. 6.3,
where the top figure is the moment of inertia plotted against angular frequency
(�ω = Eγ /2) for a nucleus 158Er. The sharp increases in the moment of inertia
due to the alignments are apparent, the first one giving rise to a ‘backbending’
as the sequence shifts bands and the second to an ‘upbend’. In the centre of
Fig. 6.3, spin is plotted against angular frequency. The members of the three
different bands fall rather clearly on separate lines, and the difference in spin
between the lines at a given frequency represents the difference in aligned angular
momentum, �i , between the bands at that frequency. The i13/2 band has about
10� units on angular momentum aligned relative to the ground band of 158Er. The
next higher band has two more particles aligned (four-quasiparticle state), which
are believed to be h11/2 protons, and the additional�i is about 7�. Both the spin
and the angular frequency in Fig. 6.3 are directly measurable quantities. Another
is the interaction of the two bands as they cross. A strong interaction means heavy
mixing of the bands and a ‘smoothed-out’ crossing, whereas weak interactions
are associated with sudden sharp crossings. The crossing of rotational bands is
illustrated in Fig. 6.4 where the energy levels of 160Yb are plotted against spin. In
addition to the two bands crossing along the yrast sequence, there are many band
crossings in the levels above. In the case of 158Er there are three band crossings
in the first few MeV of excitation. The crossing points occur near the backbends
or upbends in Fig. 6.3.
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122 Phase transitions

Figure 6.3. Plots of the moment of inertia (top), spin (middle) and spin alignment (bottom)
against the rotational frequency for the yrast sequence in 158Er (Yrast states are the states
with lowest energy for each angular momentum). The angular velocity is obtained from the
measured γ -ray energies in the collective rotational band by 2�ω = Eγ . The moment of
inertia is defined by I = I/ω. The experimental alignment in the lower part of the figure
is defined by i(ω) = I − Is (ω) where Is (ω) is the angular momentum of a reference band
indicated by the dashed curves in the middle part of the figure. It is fitted to the smoothly
varying parts of the curve of angular momentum I (ω) (after Stephens (1985)).

6.2 Static pairing correlations: the BCS theory of pairing phase
transitions in strongly rotating nuclei

The nucleon orbitals in a static deformed potential are twofold degenerate, corre-
sponding to a time reversal of their motion (Kramers degeneracy). This situation
for an axially symmetric prolate nucleus is illustrated at the top of Fig. 6.5. The
angular momentum, j , of the nucleon has projections ±� along the symmetry
axis and, when occupied by two nucleons, results in total angular momentum
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Figure 6.4. Rotational-band trajectories on an E against I plot for the levels of 160Yb. The
observed levels are indicated by the horizontal marks (after Stephens (1985)).

zero. Every orbital, characterized by j, �, can give rise to such a spin-zero pair.
The nucleons in a filled orbital near the Fermi level can scatter as a pair into a
nearby empty orbital, and the coherent scattering pattern that develops comprises
the nuclear pairing correlation.

These pairing correlations affect the ability of the nucleus to generate angular
momentum. In fact, insofar as the pairs are coupled to spin zero, they can con-
tribute nothing towards generating angular momentum. This causes a reduction
factor of 2–3 in the nuclear moment of inertia, which is given reasonably well by
the BCS model (equation (3.91)). It follows that angular momentum will tend
to weaken the pairing correlations, thus increasing the moment of inertia and
reducing the rotational energy.

The mechanism of this weakening is the Coriolis force, which acts oppositely
on the two members of the pair, lifting their degeneracy. Ultimately the Coriolis
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Figure 6.5. The two important coupling schemes in deformed nuclei. In the absence of
rotation (top) particles with angular momentum j are in time-reversed orbits with projections
±� along the symmetry (z)-axis. At high rotational frequencies the particles couple to a J ,
aligned as well as possible with the rotation (x)-axis, along which they have projection i
(from Stephens (1985)).

force will align the particle angular momentum as well as possible with the
rotation axis, as illustrated at the bottom of Fig. 6.5. This process is analogous
to the effect of a magnetic field on the paired electrons in a superconductor.

6.2.1 Estimate of crossing frequency: gapless superconductivity

Pair correlations lead to a decrease in the rotational moment of inertia and, hence,
to an increase in the rotational energy for given I . Thus, for sufficiently large
rotational frequencies, the gain in energy associated with the pair correlation
is upset by the increased rotational energy, and one expects (Mottelson and
Valatin (1960), Bohr (1977)) a phase transition to normal nuclear matter (see
Fig. 6.6).
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Figure 6.6. Schematic comparison between yrast lines for superfluid and normal systems
(from Bohr and Mottelson (1981)). The quantity�2/2d is the pairing correlation energy (see
Section 3.5).

With pairing included, single-particle motion in a rotating potential can be
described by a Hamiltonian of the form

H ′ = Hsp + Vpair − λN̂ − �ω jx , (6.1)

with

Hsp − λN̂ =
∑
ν>0

2(εν − λ)a†
νaν, (6.2)

Vpair = −�
∑
ν>0

(a†
νa

†
ν̄ + aν̄aν), (6.3)

jx =
∑
ν1ν2

〈ν2| jx |ν1〉a†
ν2

aν1, (6.4)

where ν labels the eigenstates of Hsp and ν̄ is the time reverse of ν. The number
operator is denoted by N̂ . The pair potential includes only the monopole term
that creates and annihilates pairs of particles moving in single-particle states
conjugate under time reversal. Additional terms in the pair potential may be
present. The strength of the pair potential, as well as the shape of the nucleus, is
a function of ω characterizing the equilibrium for given rotational frequency.

The Hamiltonian (6.1) is a bilinear form in the particle creation and an-
nihilation operators a†, a and can be brought to diagonal form by a linear

https://doi.org/10.1017/9781009401920.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401920.007


126 Phase transitions

transformation to quasiparticle operators

α
†
i =

∑
ν

(Uiνa
†
ν − Viνaν̄), (6.5)

leading to

H ′ = const+
∑

i

E ′iα
†
i αi . (6.6)

The transformation (6.5) is a generalization of the more familiar one which
applies to time-reversal-invariant potentials (Bohr and Mottelson (1974), Bohr
(1977)). Essential new features are that the quasiparticle states no longer have
the twofold degeneracy and that the quasiparticle energies E ′ can be smaller
than � (in analogy to the situation in gapless superconductors (Goswami et al.
(1967))).

We can see the new features most easily for a nucleus rotating about the
symmetry axis. In this case, the eigenstates ν of Hsp are also eigenstates of jx

(with eigenvalue �). The quasiparticle transformation is now the usual one as
for τ -invariant potentials {

α†ν = Uνa†
ν − Vνaν̄ ,

a†
ν = Uνα†ν + Vναν̄,

(6.7)

which leaves the operator jx diagonal

jx =
∑
ν

�a†
νaν =

∑
ν

�α†ναν, (6.8)

and the quasiparticle energies are

E ′ν =
(
(εν − λ)2 +�2

)1/2 − �ω�. (6.9)

The quasiparticle spectrum (6.9) is illustrated schematically in Fig. 6.7. For
an even number of particles, the quasiparticle vacuum (v = 0) is the lowest state
for rotational frequencies that are smaller than the value for which the sum of the
two lowest quasiparticle energies vanishes. For larger ω, this two-quasiparticle
state becomes the lowest (so called ‘yrast’ state, i.e. the set of states that have
the lowest energy for each angular momentum), until the next pair of quasipar-
ticles has zero energy, after which the four-quasiparticle state moves to the yrast
line, etc. The characteristic frequency ω1 for the first of these crossings is of
order

ω1 ∼ �

�max
, (6.10)
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Figure 6.7. Quasiparticle energies E ′ corresponding to a schematic single-particle spectrum
(from Bohr (1977)). Copyright © Società italiana di Fisica.

where �max(= jmax) is the largest single-particle angular momentum near the
Fermi surface. Systematics obtained from experimental data are fitted well by
an empirical relation (see equation (1.43))

�ω1 ≈ 1.67�

j1
.

Estimates for band crossings for some high-j shells are found in Garrett et al.
(1988). Note that the empirical estimate is always larger than the limiting theo-
retical value. This is because band crossing occurs in deformed nuclei and the
limiting value (6.10) assumes a spherical system.

The possibility of negative-energy quasiparticle excitations appears as a gen-
eral feature of pairing in rotating potentials. In fact, the rotational-alignment
effect implies that quasiparticles carry a non-vanishing component �x of angu-
lar momentum; thus the excitation of a quasiparticle, for fixed I , is associated
with a decrease in the collective rotational energy, corresponding to the last term
in (6.9). When the sum of two quasiparticle energies vanishes, one expects a
band crossing on the yrast line. For example, in an even–even nucleus, a v = 2
band with a large value of 〈 j1〉 + 〈 j2〉 may cross the v = 0 band.

For nuclei with mass around A ∼ 150, the first pairs of particles which align
are those associated with the i13/2 orbital. Making use of standard values of
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� ∼ 1.2 MeV for this mass region, one expects the frequency of the first crossing
to be �ω ∼ 1.2 MeV/6 ∼ 0.2 MeV. This rough estimate is consistent with the
observed values. The estimate of Garrett et al. (1988) given by the equation
above for 158Er leads to �ω1 ≈ 0.3 MeV (see Fig. 6.3).

An estimate of the critical angular momentum for total pairing collapse can
be obtained making use of Fig. 6.6. Accordingly

�2

2d ≈ (Erot)S − (Erot)N ∼
(

�2

2I� − �2

2Irig

)
I 2
c

≈ (
1

60 − 1
120

)
I 2
c MeV ≈ (

I 2
c /120

)
MeV,

(6.11)

where the values for the moments of inertia were taken from Fig. 6.3. Note
that Irig/�

2 ∼ 60 coincides with the value extracted from the analysis of γ –
γ correlation (Garrett, Hagemann and Herskind (1986)). Making use of � ∼
1.2 MeV and of a standard value d ∼ 0.3− 0.2 MeV, one obtains

Ic ≈ 20�. (6.12)

Making use of the semiclassical relation Iωc = Ic (see (6.45)), where �
2/2I ≈

(1/80) MeV, one obtains �ωc ≈ 0.5 MeV (see Section 1.9 and Fig. 6.3).
Note that relation (6.11) is equivalent to that used in superconductivity in bulk

matter to determine the critical magnetic field.

6.2.2 Pairing in D-states

In Fig. 6.8 the aligned angular momentum i (measured by the difference in
angular momentum between the band under consideration and a reference band)
of two i13/2 neutrons in nuclei around mass 160, is plotted against rotational
frequency (approximately half the rotational γ -ray energy) for three bands. The
critical frequency is about 0.26 MeV and the aligned angular momentum is∼10�

(12� is the maximum for two i13/2 neutrons). The dashed lines are for two bands
in the nucleus 163Yb with one additional neutron located in an orbital labelled
either E or F . These orbitals comprise a time-reversed pair at zero rotational
frequency and are not very pure shell model states, though their dominant compo-
nent is h9/2. In the even–even nucleus 162Yb, this pair of states (E , F) is available
for the pairing correlations, and, in particular, a pair of i13/2 neutrons can scatter
into it. On the other hand, in 163Yb it is blocked by the odd nucleon for the bands
based on either E or F . The pairing correlations are thereby weaker in general,
and in particular for a pair of i13/2 neutrons. It is easier to unpair and align the i13/2

neutrons, and this occurs at a lower rotational frequency,∼0.22 MeV, as seen in
Fig. 6.8. This shift can be related to the change in the pairing correlations involved
and turns out to correspond to a (20÷ 30)% reduction in pairing. Thus we learn
that blocking just one orbital near the Fermi level reduces the pairing correlations
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Figure 6.8. The aligned angular momentum, i , is plotted against rotational frequency, ω,
for the first backbend (i13/2 alignment) region of the lowest-lying (yrast) sequence in 162Yb
(continuous line) and for two bands in 163Yb (labelled E and F). The midpoint of the sharp
rise is approximately the crossing frequency (after Stephens (1985), Garrett et al. (1986)).

appreciably, a result that is confirmed by other kinds of experiments like transfer
of pairs of nucleons and directly from the odd–even mass difference. Pairing
correlations although playing an extremely important role in the structure of
nuclei close to the ground state are weak, and two to three blocked levels of either
type (protons or neutrons) are enough to destroy the correlations for that nucleon
type.

Conspicuous deviations from the systematic discussed above have been ob-
served (see Fig. 6.9) in specific nuclei. In fact, in 161Er, for example, the crossing
of the rotational band based on the [521]3/2− level shows the effect but not
the band based on the [505]11/2− state. In fact, the δ(�ω) associated with the
[521]3/2− orbit is ∼ 40 keV, while δ(�ω) ∼ 0 for [505]11/2−.

Both orbitals are close to the Fermi surface at rotational frequency ω = 0.
However, the [521]3/2− orbital has an intrinsic quadrupole moment qν > 0,
as all the rest of levels in this energy region, while the [505]11/2− orbital has
qν < 0 (see Fig. 6.10).

This has important consequences as the nucleus displays quadrupole pairing
correlations, aside from monopole pairing correlations. The pairing gap is in this
case state dependent (Bes et al. (1972), Van Rij and Kahana (1972) and Shimizu
et al. (1989)), and can be written as (see Section 5.3)

�ν = G0

∑
ν ′>0

Uν ′Vν ′ + G2qν
∑
ν ′>0

Uν ′Vν ′qν ′ . (6.13)
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(a)

(b)

(c)

Figure 6.9. Alignment plot for selected decay sequences of rotational states illustrat-
ing the observed shifts in crossing frequency: (a) curve 1) 181Os (7/2−[514]), curve
2) 181Os (7/2−[521]), curve 3) 182Os (yrast); (b) curve 1) 173W (5/2−[512]), curve 2)
173W (1/2−[521]), curve 3) 172W (yrast); (c) curve 1) 161Er (11/2−[505]), curve 2) 161Er
(3/2−[521]), curve 3) 162Er (yrast). The crossing frequencies are shown by the vertical dashed
lines for the ground-state decay sequences in both even- and odd-N isotopes. Signature zero
and 1/2 decay sequences are indicated by solid sysmbols, and the α = −1/2 sequence is
indicated by open symbols. Reprinted from Physics Letters B, Vol. 118, Garrett et al., ‘Con-
figuration dependent pairing from band crossing frequencies’, page 298, Copyright 1982,
with permission from Elsevier.
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Figure 6.10. Spectrum of neutron Nilsson orbits, identified by the quantum numbers N, nz and
λ (see Nilsson and Ragnarsson (1995)), for rare-earth nuclei calculated assuming β2 = 0.25.
The position of the Fermi surface, λ, for ω = 0.90 MeV is also indicated for odd neutron
numbers. The asymptotic quantum numbers and the quadrupole and hexadecapole moments,
q2(ν) and q4(ν), in units of fm2 and fm4, respectively, are indicated for each configuration
(from Garrett et al. (1982)).

Blocking the orbital νb leads to a change in �ν measured by

δ�ν(νb) = �ν −�ν(νb) = GUνb Vνb (1+ qνqνb ) ≈
G

2
(1+ qνqνb ), (6.14)

where we have assumed Uνb ≈ Vνb ≈ 1/
√

2 (correct for levels close to the Fermi
surface). Making use of the fact that (Nilsson and Ragnarsson (1995))

q ∼ (3nz − N )/(N + 3/2),
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we obtain for the case under discussion

[660] 1/2+ 1.6
[651] 3/2+ 1.2
[642] 5/2+ 0.8

⎫⎬⎭ 1.2,

[521] 3/2− 0.15
[530] 1/2− 0.6

}
0.4,

[505] 11/2− −0.8.

Setting G ≈ 27/A MeV, one obtains

δ�i13/2 ([521]3/2−) ≈ 1

2

(
27

161
MeV

)
× (1+ 1.2× 0.4) ≈ 130 keV,

δ�i13/2 ([505]11/2−) ≈ 1

2

(
27

161
MeV

)
× (1− 1.2× 0.8) ≈ 0 keV. (6.15)

This result implies that two particles moving in time-reversal states in the orbital
[505]11/2− do not feel they are in a superfluid nucleus and thus do not contribute
to the pairing gap.

The correlation between the shape of a valence quasi-neutron orbital and
the shift in band crossing frequencies between neighbouring odd- and even-N
isotopes is shown in Fig. 6.11.

6.2.3 Time-reversal violation due to rotation (the i13/2 model)

In this subsection we discuss some aspects of the phenomenon of pairing collapse
under the influence of strong rotations within a pure i13/2 model (Broglia et al.
(1985a)). We assume the system under study to display axial symmetry around
the z-axis, and moreover symmetry with respect to the (x, y)-plane.

The axis of rotation is chosen to be perpendicular to the symmetry axis, which
leads to collective rotations. The motion of the particles is controlled by the
Nilsson Hamiltonian. The associated single-particle Routhian reads

hωsp = hN(ε)− ω jx , (6.16)

with

hN(ε) = Q j2
x , (6.17)

where Q is proportional to the quadrupole moment of the system. The
Hamiltonian hωsp is invariant under space reflection (parity) and under rotations
through 180◦ about the x-axis, i.e. rotations induced by the operator

Rx = exp[−iπ jx ]. (6.18)
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Figure 6.11. Correlation between δ�ωc (see equation (6.15)) and the quadrupole moment,
q2(ν), of the orbit of the valence quasi-neutron ν: • Er, ◦ Yb, � Hf, � W, � Os (see Fig.
6.10). The asymptotic quantum numbers of the various configurations are given at the top of
the figure. The dashed line is drawn only to guide the eye. Reprinted from Nuclear Physics,
Vol. A400, Garrett et al., ‘The structure of rotating deformed nuclei,’ page 113, Copyright
1982, with permission from Elsevier.

The eigenvalues εων and the eigenstates |νω〉 of the cranking Hamiltonian

hωsp|νω〉 = εων |νω〉 , (6.19)

can thus be labelled by the parity of the state and by the signature quantum number
(Bohr and Mottelson (1974)), which is intimately related to the eigenvalues of
the operator (6.18).

Let us denote by |ν,�ν〉 the eigenstates of the Nilsson Hamiltonian hωN(ε) and
adopt the following phase convention{

Rx |ν,�ν〉 = i(−1)�ν−1/2|ν, �̃ν〉,
Rx |ν, �̃ν〉 = i(−1)�ν+1/2|ν,�ν〉,

(6.20)

where |ν, �̃ν〉 is the time-reversal state to |ν,�ν〉, while �ν is the magnetic
quantum number of the state.
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The states

|χ〉 = 1√
2
{(−1)�ν+1/2|ν,�ν〉 + |ν, �̃ν〉} (6.21)

and

|χ̃〉 = 1√
2
{−|ν,�ν〉 + (−1)�ν−1/2|ν, �̃ν〉}, (6.22)

which are still related by the time-reversal operation, are eigenstates of Rx with
eigenvalues

Rx |χ〉 = −i|χ〉 (6.23)

and

Rx |χ̃〉 = i|χ̃〉. (6.24)

The state (6.21) is said to have signature α = + 1
2 , while the state (6.22) has

signature α = − 1
2 .

In the basis |χ, χ̃〉 the eigenvalue equation (6.19) is block-diagonal, i.e.(
hN − jxω 0
0 hN + jxω

)(
G
H

)
= εω

(
G
H

)
. (6.25)

The resulting eigenstates can be written as

| j〉 = |π, α = 1
2〉 =

∑
χ

G j
χ |χ〉 (6.26)

and

| ĵ〉 = |π, α = − 1
2〉 =

∑
χ

H ĵ
χ̃ |χ̃〉. (6.27)

Note that the states | j〉 and | ĵ〉 are related by the operation of time reversal only
at ω = 0 (zero rotational frequency). The violation of time-reversal symmetry is
measured by the deviation from 1 of the pairing matrix element

〈 j ĵ ′|P†|0〉 =
∑
χχ ′

G j
χH ĵ ′

χ ′ 〈χχ ′|P†|0〉, (6.28)

where

P† =
∑

να>0,νβ>0

〈ν̃β |τ |να〉a†
να

a†
ν̃β

(6.29)

and

〈χχ ′|P†|0〉 = 〈χ ′|τ |χ〉 = �(χ ′, χ̃ ), (6.30)
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Figure 6.12. Eigenvalues εων and alignments iων associated with the eigenstates of the cranked
Hamiltonian, for the case of a 1i13/2 orbital. The eigenvalues are defined through equation
(6.25), while the alignment is given by equation (6.32).

the time-reversal operator having been denoted by τ (see Appendix A). Note
that the pair field (6.29) coincides with the transfer operator which creates two
particles in time-reversal state. From the result (6.30) one obtains

M j ĵ ′ = 〈 j ĵ ′|P†|0〉 =
∑
χ

G j
χH ĵ

χ̃ . (6.31)

The fact that the pairing field only connects states of different signature can be
understood by the fact that at ω = 0, | j〉 → |χ〉 and | ĵ〉 → |χ̃〉 ∼ τ |χ〉, which
are time-reversal states.

In Fig. 6.12 we display the energies εων associated with the diagonalization of
hsp in the i13/2 single-particle orbital as a function of rotational frequency. In the
same figure we also give the alignments

i = −d〈hωsp〉
dω

= 〈 jx〉 (6.32)

associated with each level.
The square of the pairing matrix elements or pairing overlaps are shown in

Fig. 6.13 for a variety of configurations. The most conspicuous features dis-
played by these quantities can be summarized as follows (see also Broglia
(1985c), Nikam and Ring (1987), Nikam et al. (1986, 1987), Vigezzi et al.
(1988)):
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Figure 6.13. Square of the pairing matrix elements as defined in equation (6.31) connecting
different eigenstates of the cranking Hamiltonian, as a function of the rotational frequency.

(a) Matrix elements that start being 1 at ω = 0 decrease with increasing values
of ω, the opposite being true for those matrix elements which are zero at
ω = 0. Many of them become zero again at ω→∞ displaying a maximum
for finite values of ω.

(b) Aside from the matrix elements 〈1, ĵ |P†
2 |0〉 all other matrix elements oscil-

late. The first property can be understood making use of the sum rule∑
j j ′
〈 j ĵ ′|P†|0〉2 = �, (6.33)

where� = j + 1/2 is the number of pairs one can place in the shell, and from
the fact that at ω = 0 the twofold degenerate Nilsson states are time-reversal
partners, while for ω jx � hN(ε), where mx is a good quantum number, the
time-reversal states are those associated with the values±�x of the magnetic
quantum number jx .

6.2.4 Detailed numerical calculations

In Fig. 6.14 self-consistent calculations (Shimizu et al. (1989)) of the BCS
neutron pairing gap and of the alignment as a function of the rotational frequency
are shown for the nucleus 168Yb.
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Figure 6.14. The static (BCS) neutron pair gap � and the alignment of the lowest (π, α) =
(+, 0) configuration of 168

98 Yb. Reprinted with permission from Shimizu et al., Rev. Mod. Phys.
61:131 (1989). Copyright 1989 by the American Physical Society.

A significant decrease, of the order of 400 keV, is predicted at the frequency
of the first crossing (∼0.26 MeV). From here on the pairing gap decreases rather
smoothly until, at ωrot ∼0.45 MeV it goes to zero.

A simple estimate of the crossing frequencies and of the critical valueωc based
on equations (6.10) and (6.11) is shown in Table 6.1 and demonstrates overall
agreement with the detailed calculations.

From the above discussions and the present results, one can conclude that
pairing collapse under the influence of rotation is controlled by the progressive
splitting of signature partners and the associated reduction of the pairing ma-
trix elements (time-reversal overlaps). For definite frequencies these overlaps
become so small that the corresponding state ( j ĵ ′) is blocked, and does not con-
tribute to the sum appearing in the BCS equations of the pairing gap. At the
frequency where two to three signature pairs are blocked, these equations lead
to the trivial solution � = 0.

The phenomenon of pairing collapse can be also viewed in terms of the cross-
ing of 2, 4 . . . quasiparticle bands with the original ground-state band. This is a
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Table 6.1. Alignments and crossing frequencies for particles mov-
ing in a variety of orbitals of 168Yb. The average value 〈 jx〉 =
((l + 1/2)+ (l − 1/2))/2 was used to estimate an average crossing
frequency through equation (6.10). From the analysis of the irregu-
larities in the I − ω relation associated with the first band crossing in
the rare-earth nuclei (i13/2 alignment), it is found that the alignment
is less (∼25%) than the maximun value i = j = 13/2. The particle
retains a strong coupling to the symmetry axis, and it is only the
component of angular momentum along this symmetry axis that can
easily be aligned. The quantity jx = 〈 jx〉 − 25% was used to obtain
somewhat more realistic estimates ω1 of the crossing frequencies (see
discussion following equation (6.10)).

〈 jx 〉(�) 〈ω1〉(MeV) jx (�) ω1(MeV)

i 6 0.20 4.5 0.27
h 5 0.24 3.8 0.32
g 4 0.30 3.0 0.40
f 3 0.40 2.3 0.50

valid interpretation to the extent that one does not require that all bands have a
strict existence at all rotational frequencies. In fact, in the case under discussion
only the first crossing is clearly seen experimentally.

6.3 Pairing fluctuations

For rotational frequencies ω smaller than the critical frequency ωc, where the
BCS gap becomes zero, the pairing contribution to the ground-state energy
is proportional to the square of the number of particles. That is, E0 ∼ G N 2,
typical of a pairing rotational band (see Chapters 4 and 5). The contribu-
tion to E0 of the zero-point fluctuations associated with the pairing modes is
Egsc ∼ G N , leading to a ratio r ∼ Egsc/E0 ∼ N−1. For rotational frequencies
ω > ωc, that is for normal systems, Egsc ∼ G N as before, while E0 ∼ G N typ-
ical of pairing vibrational bands. The ratio r is in this case of order 1. It is thus
expected that the effects of zero-point fluctuations associated with pairing
vibrations will be much more important at rotational frequencies ω � ωc than
at ω < ωc.

In the present subsection we study some of the consequences these fluctuations
have on a variety of properties of strongly rotating nuclei. We carry out our
investigations for high rotational frequencies ω > ωc, i.e. for normal systems.
The calculations are done in the framework of the cranked shell model treating the
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6.3 Pairing fluctuations 139

pairing vibrations of the normal system in the RPA. By decreasingω, but keeping
it always larger than ωc, we gradually approach the pairing phase transition.
That is, we study the onset of the normal to superfluid phase transition at zero
temperature, taking into account the fluctuations induced by pairing vibrations
(see Barranco et al. (1987)).

The equations determining the properties of pairing vibrations in normal sys-
tems, i.e. in systems with fixed number of particles, are, in the random-phase
approximation (Broglia et al. (1986), Shimizu et al. (1989)),∑

n(β = +2) = 1

G
, (6.34)

∑
n(β = +2) =∑

kk ′
M2

kk̂ ′
U 2

k U 2
k̂ ′

ek + ek̂ ′ −W+2(n)
+

∑
i î ′

M2
i î ′

U 2
i U 2

î ′

ei + eî ′ +W+2(n)
(6.35)

and ∑
kk ′

X2
kk̂ ′(+2, n)−

∑
i i ′

Y 2
i î ′(+2, n) = 1. (6.36)

The amplitudes X and Y are defined as⎧⎪⎪⎪⎨⎪⎪⎪⎩
Xkk̂ ′(+2, n) = �+2(n)Mkk̂ ′U

2
k U 2

k̂ ′

ek + ek̂ ′ −W+2(n)
,

Yiî ′(+2, n) = �+2(n)Miî ′U
2
i U 2

î ′

ei + eî ′ +W+2(n)
,

(6.37)

the quantity �+2(n) being the particle-vibration coupling strength determined
from the normalization condition (6.36). The quantities Miî ′ are the pairing
matrix elements connecting states with different signatures, while ei and eî ′ are
the associated single-particle energies measured from the Fermi energy. The
pairing vibrations are labelled by the transfer quantum number β = ±2. The
quantities U 2 and V 2 are either 1 or 0 according to the occupancy of the state.
The equations above thus describe the pair addition modes, i.e. vibrations which
increase the number of particles by 2. The index n indicates whether the solution
of equation (6.35) one considers corresponds to the state with lowest energy
(n = 1), next to lowest (n = 2), etc.

Similar equations describe the pair removal modes, i.e. vibrations which di-
minish the number of particles by two units. It is noted that all quantities in
equation (6.35), with the exception of the pairing coupling constant G, depend
on the rotational frequency ω. This is, of course, an oversimplification of the
problem, in view of the fact that a non-negligible contribution to G arises from
the exchange of collective vibrations between pairs of nucleons forming Cooper
pairs (see Chapters 8–10).
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The Mottelson–Valatin (1960) critical rotational frequency for which the BCS
equations have a solution � = 0 coincides with the frequency for which the
energy of the pair-addition and pair-removal modes of the normal system goes
to zero, i.e.

(W+2(n))ωc = (W−2(n))ωc = 0. (6.38)

In fact, in this case equation (6.35) is equivalent to the BCS gap equation if one
interprets the energies e j as quasiparticle energies.

The influence of pairing fluctuations on different nuclear properties can be
calculated in the RPA. In particular, the contribution to the energy of a given
configuration of parity π and signature α is given by (see Section 8.4)

Egsc(π, α) = 1

2

∑
β=±2,n

Wβ(πα; n)− 1

2

∑
j j ′

(e j + e ĵ ′), (6.39)

which is the sum of the energies of the pair-addition and subtraction modes
measured from the energy of the unperturbed two-particle poles (e j + e ĵ ′). With
j we indicate both levels above ( j > k) and below ( j < i) the Fermi energy.
The quantity Egsc is thus equal to the sum of the correlation energies of all
pair-addition and pair-subtraction modes.

The total energy of the variety of configurations calculated in the rotating
frame (‘Routhian’) is

e(π, α) = 〈hωsp〉 + Egsc. (6.40)

The average angular momentum associated with these configurations along the
axis of rotation can be written as

ix (π, α) = −∂e(π, α)

∂ω
= 〈 jc〉 − ∂Egsc

∂ω
. (6.41)

Examples of the quantities, again for 168Yb, are shown in Fig. 6.15. The bands
have different parity signature quantum numbers (π, α).

The ease with which the (+, 0) configuration reacts to pairing correlations,
leading to smaller alignments, reflects the fact that in this configuration the lowest
levels of both even and odd parity are filled with an even number of particles.
Consequently the configuration (+, 0) is the analogue to the BCS vacuum at
ω > ωc.

The configuration (−, 0) or (−, 1) is associated with situations where one
has an odd number of particles in both even- and odd-parity levels. They thus
correspond to two-quasiparticle configurations at ω < ωc, relative to the (+, 0)
configuration. This implies that the (−, 0) and (−, 1) configurations are affected
by a high degree of blocking. Consequently, pairing vibrations typical of normal
systems can develop at a lower frequency than in the case of the (+, 0) configu-
rations. That is, one needs only moderate values of ω to achieve the situation in
which the fluctuations of the pairing gap are as large as its average value.
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Figure 6.15. Comparison of calculated Routhians, with fluctuations (middle portion) and
without fluctuations (top portion), and experimental Routhians (bottom portion), e′ (left-
hand side), and alignments, i (right-hand side), for various configurations in 168

92 Yb. The
(+, 0) configuration is denoted by solid lines and solid dots, (−, 0) by dot-dashed lines and
open triangles and (−, 1) by double-dashed lines and solid triangles. The calculated and
experimental values are referred to reference configurations with constant moment of inertia
of 62�

2 MeV−3 and 66�
2 MeV−1, respectively. Reprinted with permission from Shimizu

et al., Rev. Mod. Phys. 61:131 (1989). Copyright 1989 by the American Physical Society.

6.4 Moments of inertia

As a consequence of the interplay between collective and single-particle mo-
tions, there are a variety of moments of inertia one can measure and compare
with detailed calculations (Broglia et al. (1985b), Szymanski (1985)). The first
distinction to be made is between kinematic and dynamic values (Bohr and
Mottelson (1974)).

The moment of inertia defined as the first derivative of the rotational energy
with respect to spin

I (1)

�2
= I

(
dE

dI

)−1

= I

�ω
(6.42)

is the so-called ‘kinematic’ moment of inertia, because it has to do with the
motion of the system, the ratio of angular momentum to angular frequency. It is
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also apparent that the second derivative leads to the definition

I (2)

�2
=

(
d2 E

dI 2

)−1

= dI

d(�ω)
, (6.43)

where I (2) is called the ‘dynamic’ moment of inertia, because it has to do with
the way the system will respond to a force.

In general I (1) and I (2) are different in rotating nuclei, because of the effect
of the Coriolis term ∼ I · j .

A simple approximation for the rotational energy is

E(I ) = E0 + (I − i0)2

2I , (6.44)

where I is identified as the second moment of inertia. The quantity i0 is related
in some general way to the part of angular momentum carried out by the single-
particle motion. It should not, however, be confused with the actual particle
alignment, as can be seen from Fig. 6.16.

I
I

(2)

(2)

I
(1)

0.2 0.4
(MeV)ω

ω

h–

I

I

x

x

=
i 0+

ω
I(2

)

0

10

20

h–( )

i0

Figure 6.16. Illustration of apparent alignment i0. Apparent alignment (i0), the ω = 0 inter-
cept of an extrapolation of the local dynamic moment of inertia, I (2), can be defined as the
difference between the kinematic, I (1), and dynamic moments of inertia. The various quanti-
ties entering this definition are indicated in the figure. The Ix (ω) data are for the ground-state,
(−, 1/2) configuration of 159

91 Er. Reprinted with permission from Shimizu et al., Rev. Mod.
Phys. 61:131 (1989). Copyright 1989 by the American Physical Society.
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Figure 6.17. The kinematic and the dynamic moment of inertia, I (1) and I (2), associated with
the superdeformed band of 152Dy (see Fig. 6.18) as functions of the rotational frequency
(for a quadrupole deformation parameter) (ε2 = 0.58): (a) results without taking into account
pairing fluctuations, (b) results including pairing fluctuations: theory: −I (2), −−− I (1);
experiment: • • • I (2), ��� I (1). The absolute value of I is overestimated because the
Strutinsky renormalization of the angular momentum was left out. Reprinted from Physics
Letters B, Vol. 198, Shimizu et al., ‘Role of static and dynamic pairing correlations in the
superdeformed band of 152Dy, page 35, Copyright 1987, with permission from Elsevier.

The parametrization (6.44) arises from the cranking model where the canonical
frequency ω, which determines the magnitude of the rotational perturbation, is
approximately given by

ω = 1

I0
(I − i0) ∼ R

I0
, (6.45)

where R is the angular momentum of the collective rotation and I0 the moment
of inertia of the rotor in the particle-rotor model.

Examples of the role played by pairing fluctuations in the behaviour of I (1)

and I (2) with rotational frequency are shown in Fig. 6.17 for the case of the
superdeformed band of 152Dy.
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6.5 Condensation-induced tunnelling

The interplay between collective degrees of freedom and single-particle motion
common to all many-body systems is encountered in the study of nuclear struc-
ture in a particular concrete form. This is because of the possibility of detailed
studies of individual quantum states, as carried out, for example, in the case of the
nuclear potential energy considered as a function of the shape. While the general
features of this ‘potential-energy function’ can be described in terms of bulk
properties of the nuclear matter such as surface tension and electrostatic energy,
the specific geometry of the quantized orbits of the individual nucleons con-
tributes important anisotropic effects; a striking consequence is the occurrence
of nuclear-equilibrium shapes deviating strongly from spherical symmetry.

The effect of the shell structure on the nuclear potential energy has come into
perspective in the study of superdeformed bands, the first one observed (see
e.g. Nolan and Twin (1988)) being that of the nucleus 152Dy (see Fig. 6.18,
see also Åberg (1987)). Superdeformed states are associated with quadrupole
deformed nuclear shapes, where the ratio between the larger and the smaller

Low-deformation band

Superdeformed band
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Figure 6.18. The experimental knowledge about 152Dy includes states at three different defor-
mations: non-collective oblate states, a collective low-deformation band (presumably prolate)
and a collective superdeformed band. Some typical decay paths de-exciting the superdeformed
band to oblate states are illustrated (dots). Reprinted, with permission, from the Annual Review
of Nuclear Science, Volume 23 © 1973 by Annual Reviews www.annualreviews.org
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radii is 2 : 1. This is probably the largest deformation a nucleus can hold without
fissioning, hence the name. The microscopic basis for the appearance of su-
perdeformed configurations reflects a special stability associated with the shell
structure, and is intimately connected with that found for the existence of fission
isomers (Michaudon (1973)).

The nature of these shells can be understood in a simple manner by reference to
one-particle motion in a spheroidal deformed harmonic-oscillator potential. As
illustrated in Fig. 6.19, the degeneracies of the isotropic oscillator are removed
by the deformation, but new major shells (degeneracies) reappear when the
oscillator frequencies in the different directions have rational ratios.

Especially large effects occur for a deformation with the frequency ratio
ω⊥ : ω3 = 2 : 1, and the associated nucleon numbers for closed shells are
N = 80, 110, 140, . . . . The nuclear potential differs from the harmonic oscilla-
tor in the radial dependence and in the occurrence of a large spin-orbit coupling.
The inclusion of these effects leaves intact the main features of the oscillator
shell structure in the 2 : 1 potential, but modifies the closed-shell numbers to
N = . . . , 86, 116, . . . (Bohr and Mottelson (1973)).

Once the superdeformed yrast band of 152Dy is populated with a spin I ∼ 60�,
the nucleus remains in it through eighteen collective E2 transitions (Twin et al.
(1986)) until suddenly at spin I = 24� and about 5 MeV above the yrast line it
terminates within an angular interval �I ∼ (2÷ 4)�. This observation requires
that a mechanism be identified which within a narrow range of 2÷ 4 units of �

can change the tunnelling probability between the superdeformed and the normal
minimum by about six orders of magnitude.

Although the barrier between the superdeformed and the normal minima
changes with spin, all calculations predict a smooth variation of it (Ragnars-
son and Åberg (1986)) (see Fig. 6.20).

The sudden transition out of the superdeformed minimum at spin I = 24�

is likely to be related to the onset of pairing caused by the disalignment of the
lowest pair of j15/2 quasiparticles, taking place at frequency∼0.3 MeV (Shimizu
et al. (1987)) (see Section 6.2), although other mechanisms may play a role (see,
e.g. Åberg (1999), Andreoiu et al. (2003), Sergeant et al. (2002)). This change
in the pairing gap strongly reduces the inertial parameter D (see equations (7.6)
and (7.8)), leading to a large increase of the tunnelling probability, as shown
in Fig. 6.21. It is likely that these results are the clearest indication to date of
a pairing collapse taking place in nuclei as a function of the angular momenta.
The discussion of this subject is continued in Chapter 7.

6.6 Response function technique to calculate RPA fluctuations

In the present section we shall study the behaviour of the pairing correlation
energy, and of the pairing gap of a superfluid, for deformed strongly rotating
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Figure 6.19. Shell structure in anisotropic harmonic-oscillator potential. This figure shows the
single-particle energy levels, as a function of deformation, in a prolate axially symmetric os-
cillator potential. V = (1/2)M(ω2

⊥(x2
1 + x2

2 )+ ω2
3x2

3 ), E = �ω⊥(n⊥ + 1)+ �ω3(n3 + 1/2).
The frequencies ω3 and ω⊥ refer to motion parallel and perpendicular to the symmetry axis,
while ω is the mean frequency. The single-particle states can be specified by the number of
quanta n3 and n⊥, and each energy level has a degeneracy 2(n⊥ + 1), due to the spin and
the degeneracy in the motion perpendicular to the axis. Additional degeneracies leading to
the formation of major shells may occur when the ratio of the frequencies ω⊥ :ω3 is equal
to the ratio between integers. The deformations corresponding to the most prominent shell
structure effects are indicated by the arrows labelled by the corresponding frequency ratio.
For the shells with frequency ratio 1 : 1 (spherical shape) and 2 : 1, the figure gives the particle
numbers for closed-shell configurations (from Bohr and Mottelson (1973)). Reprinted, with
permission, from the Annual Review of Nuclear Science, Volume 23 © 1973 by Annual
Reviews www.annualreviews.org

nuclei as a function of the rotational frequency, taking into account pairing
fluctuations in the RPA.

In the quasiparticle basis, the correlation energy takes the form

ERPA
corr =

1

2

[∑
n

ωn −
∑
α<β

Eαβ
]
, (6.46)
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Figure 6.20. Potential energy of 152Dy as a function of deformation parameter ε2 for different
values of the angular momentum.

where ωn are the RPA eigenfrequencies, Eαβ ≡ Eα + Eβ being the unperturbed
two-quasiparticle energies. Because the different RPA modes contribute demo-
cratically to ERPA

corr , to calculate this quantity one needs to determine very many,
closely spaced, RPA eigenmodes. This is particularly true in the case where
symmetries of the mean field are spontaneously broken, such as in the case of
superfluid and deformed nuclei, where the detailed computation of the contribu-
tion of every single RPA root to ERPA

corr becomes unfeasible. To avoid this problem,
Shimizu et al. (1989) developed a method to calculate the correlation energy,
making use of response function techniques, and applied it to the study of pairing
correlations in rapidly rotating nuclei. The essence of the method consists in ex-
pressing the RPA correlation as an integral in terms of the RPA response function,
which can be calculated without explicitly solving the RPA eigenvalue problem.
These techniques have been extended to deal with the Anderson–Goldstone–
Nambu modes (Donati et al. (1999a)), and to calculate the nucleon effective
mass in superfluid, deformed, rotating nuclei (Donati et al. (1999b)). An equiv-
alent method was developed by Dönau et al. (1999).

Following Shimizu et al. (2000), we start from the Hamiltonian,

H = H0 + V, (6.47)

where H0 is the unperturbed one-body (mean-field) Hamiltonian and V is
the residual two-body interaction, which is assumed to be of multi-separable
form,

V = −1

2

∑
ρ

χρQρQρ, (6.48)
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Figure 6.21. Four different possibilities for the variation of the square of the pairing gap with
angular momentum are considered. (a) illustrates its influence on the barrier penetrability.
Shown in graphs (b) and (c) is the associated variation of the inertial-mass parameter D
and the penetrability factor P(I ). In (d) the relative intensity of the superdeformed band is
shown as a function of the angular momentum in comparison with the experimental datum
in comparison with the experimental data. Reprinted with permission from Herskind et al.,
Phys. Rev. Lett. 59: 2416–19 (1988). Copyright 1988 by the American Physical Society.

with Qρ being a one-body Hermitian operator while χρ is the strength of the
interaction in channel ρ. The associated ground-state energies and state vectors
of H0 and H are denoted E0, |
0〉 and E , |�〉, respectively. Turning on the
interaction adiabatically, the correlation energy can be written as (Fetter and
Walecka (1971))

Ecorr ≡ E − E0 =
∫ 1

0
dλ 〈�(λ)|V |�(λ)〉. (6.49)
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In this equation |�(λ)〉 is the ground state of the λ-scaled Hamiltonian H (λ) ≡
H0 + λV . Within the RPA approximation, the above expression can be rewritten
by making use of a contour integration as

ERPA
corr = −

1

2

∫ 1

0
dλ

∑
ρ,n

χρQ(λ)∗
ρ,n Q(λ)

ρ,n

= − 1

4π i

∫ 1

0
dλ

∮
C

dz
∑
ρ

[
R(λ)
ρρ (z)χρ

]
, (6.50)

in terms of the λ-scaled RPA response function (matrix),

R(λ)
ρσ (ω) ≡

∑
n

[Q(λ)∗
ρ,n Q(λ)

σ,n

ω
(λ)
n − ω

+ Q(λ)
ρ,nQ(λ)∗

σ,n

ω
(λ)
n + ω

]
, (6.51)

whereQ(λ)
ρ,n = 〈n(λ)|Qρ |�(λ)〉RPA, and the contour C encloses all the positive λ-

scaled RPA eigenvalues z = ω(λ)
n clockwise. Note that R(λ)

ρσ (ω) can be calculated
as

R(λ)(ω) = [
1− R(ω) χλ

]−1
R(ω), (6.52)

in terms of χ = (�ρσχρ) and the unperturbed response function (matrix),
Rρσ (ω), which is defined by replacing Q(λ)

ρ,n and ω(λ)
n in equation (6.51) with

unperturbed quantities, qρ,αβ = 〈αβ|Qρ |0〉 and Eαβ .
By choosing a common contour C for all values of 0 < λ < 1, one may ex-

change the order of integration in equation (6.50) (Pines (1963), Appendix C).
The selected path is the one shown in Fig. 6.22 passing through the origin
of the complex z-plane in keeping with the presence of (non-normalizable)
zero-energy modes (the symmetry-recovering or Anderson–Goldstone–Nambu
modes, Chapter 4) in the RPA spectrum (ωn=AGN → 0 as λ→ 1). In this case the
λ-integration in equation (6.50) converges because |Q(λ)

ρ,n=AGN|2 ∼ 1/
√

1− λ as
λ→ 1. After performing the λ-integration analytically, one obtains

ERPA
corr =

1

4π i

∮
C1a

F(z)dz, (6.53)

Figure 6.22. An illustration of the integration contour in the complex z-plane used in equa-
tion (6.53). Crosses denote the positions of all the λ-scaled RPA roots for arbitrary values of
0 < λ < 1, i.e. Re(A2) = Re(B2) > max

n,λ
{ω(λ)

n }.
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where

F(z) ≡ −
∫ 1

0
Tr

[
R(λ)(z)χ

]
dλ = log

(
det

[
1− R(z)χ

])
. (6.54)

Rewriting the determinant as a function of the RPA and unperturbed energies,
one obtains

F(z) =
∑

n

[
log(z − ωn)+ log(z + ωn)

]
−

∑
α<β

[
log(z − Eαβ)+ log(z + Eαβ)

]
. (6.55)

Thus, equation (6.53) is the sum of integrals of the complex multi-valued log-
arithmic functions of type log(z − p), where the real value p (in our case ωn

or Eαβ) indicates a branch point. Here the principal branch of the logarith-
mic function should be taken in accordance with the choice of path C1a , i.e.
−π < arg log(z − p) ≤ π , and the segment of the real axis with z < p is the
branch-cut. One can now integrate equation (6.53) around all the branch points
within C1a by deforming the path and using for each of them a clockwise circular
path C p centred at the point itself, i.e.∫

C p

log(z − p) dz = 2π i Rp, (6.56)

where Rp is the radius of the circle C p. Considering that Rp is ωn or Eαβ ,
it can be shown that equation (6.53) leads to the original expression given in
equation (6.46). The contribution associated with the zero mode vanishes in
keeping with the fact that in this case the path of integration becomes a semicircle.
This can also be seen by direct evaluation of the integral in equation (6.56) in
the case where C p is a semicircle centred at zero with Rp=0 → 0.

Making use of a limiting procedure and the following properties of the function
F(z),

[F(z)]∗ = F(−z∗), F(−z) = F(z), (6.57)

F(z)→ o(1/z2) as |z| → ∞, (6.58)

it can be shown that equation (6.53) can be written as

ERPA
corr =

1

2π
lim
ε→0+

∫ ∞

0
Im

[
F(ω + iε)

]
dω, (6.59)

which is the formula utilized in (Shimizu et al. (1989)). To obtain this result
one deforms the path shown in Fig. 6.22 taking the part A2 and B2 to infinity
and A1B1 infinitely close to the origin (ε→ 0). In this case the contributions
from segments A2B2 and A1B1 vanish, those arising from A1A2 and B1B2 being
equal.
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(a) (b)

Figure 6.23. Modified integration contour from Fig. 6.22 found to be more suitable to cal-
culate the RPA correlation energy. Taking the limit of infinite radius of the semicircle, the
corresponding contribution vanishes.

In order to present a more efficient way to evaluate the RPA correlation energy,
the integration path in Fig. 6.22 is modified to the one shown in Fig. 6.23a. Then
the contribution from the semicircle vanishes as its radius goes to infinity because
of the asymptotic property given in equation (6.58). Using also the properties
given in equation (6.57), we obtain

ERPA
corr =

1

2π

∫ ∞

0
Re

[
F(iω)

]
dω. (6.60)

Note that the modification of the path of integration from one parallel to the
real axis into one parallel to the imaginary axis is quite useful for making the
numerical calculations efficient. This is because ImF(z) is an oscillating func-
tion of Re(z) on the path shown in Fig. 6.22, while ReF(z) is a monotonically
decreasing function along the imaginary axis on the path shown in Fig. 6.23a.
Consequently, the number of mesh points needed in the calculation is strongly
reduced after a suitable transformation of the integration variable.

In Shimizu et al. (1989) and Shimizu and Broglia (1990), pairing correlations
in rapidly rotating nuclei have been studied using the general method discussed
above. In these references, in addition to the RPA correlation energy, another
measure of pairing correlations was introduced, namely the RPA pairing gap,
�RPA (called the ‘effective’ pairing gap). It is defined as

�RPA ≡
√
�2 + 1

2 G2 S0(RPA), (6.61)

with

S0(RPA) ≡
∑

n �=AGN

[
|〈n|P|0〉|2 + |〈n|P†|0〉|2

]
RPA
, (6.62)

where � = G 〈0|P†|0〉HB is the standard, static BCS pairing gap (the order
parameter of mean field), while G is the pairing force strength. The non-energy
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weighted sum rule S0(RPA) describes the contribution of pairing fluctuations,
associated with the monopole pair-transfer operator, P† =∑

i>0 a†
i a†

ĩ
, to the

effective (RPA) gap. Note that
∑

n �=AGN means that the divergent contribution
from the zero energy mode (pairing rotation) is to be excluded, in keeping with
the fact that its contribution to equation (6.61) is included through the static
(BCS) pairing gap�. In Shimizu et al. (1989), S0(RPA) was calculated making
use of the expression

S0(RPA) ≈ 1

π

∫ ∞

ωcut

Im Tr
[R(ω + iε)

]
dω, (6.63)

where R(ω) ≡ R(λ=1)(ω) is the RPA response function, whose dimension is 2
corresponding to Q1 = (P† + P)/

√
2 and Q2 = i(P† − P)/

√
2. A finite value

of ε and a low-energy cutoffωcut are used to get rid of the AGN mode contribution
numerically. This is the same approximation as that used in calculating the RPA
correlation energy, and can then be avoided using the path shown in Fig. 6.23(b).
In this way one avoids the singularity associated with an eventual zero mode, as

Figure 6.24. RPA pairing gap (upper panel) and RPA correlation energy (lower panel) for
neutrons in 164Er as a function of the rotational frequency. Both quantities are in MeV. The
dash-dotted curves denote the results of calculations with ε = 200 keV and �ωcut = 400 keV.
The value of the static (mean-field) pairing gap �, which vanishes at �ωrot = 0.34 MeV, is
also displayed in the upper panel (continuous curve). The results of the number-projection
(NP) calculations are shown as dotted curves.

https://doi.org/10.1017/9781009401920.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401920.007


6.6 RPA fluctuations 153

in this case R(z) has a second-order pole at the origin (see Donati et al. (1999a)):

S0(RPA) = 1

π

∫ ∞

0
Re Tr

[R(a + iω)
]
dω. (6.64)

Since the function Tr
[R(z)

]
has poles as singularities, the integral is independent

of the choice of a. Summing up, making use of equations (6.60) and (6.64), both
the RPA correlation energy and the RPA pairing gap can be exactly evaluated in
a numerically efficient way.

In Fig. 6.24 we compare the results of the exact and approximate calculations
of both ERPA

corr and �RPA in the case of deformed, superfluid nuclei as a function
of the rotational frequency. The average correlation energy is −4 MeV. This is
much larger than the BCS pair correlation energy (≈ −1.5 MeV) calculated in
Section 3.5. The difference is the RPA correlation energy (see also Section 8.4).

There is another method which allows us to go beyond mean-field approxi-
mation, namely the number-projection (NP) (see e.g. Ring and Schuck (1980),
see also Section 4.2.2, in particular equation (4.45)). In Fig. 6.24 we also in-
cluded the NP results for comparison. The NP correlation energy is defined as
the energy difference between the NP and mean field (Hartree–Bogoliubov),
E (NP)

corr ≡ ENP − EHB (the exchange energy is included in ENP). Although RPA
leads to larger values of the correlations, especially in the superfluid phase, the
rotational frequency dependences are quite similar. The advantage of the NP
method over the RPA is to lead to smooth functions for both the correlation
energy and the pairing gap at the pairing phase-transition point.

Pairing vibrations in the RPA framework have also been considered in the
phase transition of metallic clusters as a function of temperature (see Fig. 1.15
and Mühschlegel et al. (1972), Lauritzen et al. (1993)). Within this context, it is
of interest to consider the effect the dynamical pairing gap (see also Dang and
Arima (1998, 2003)) may have on the width of the giant dipole resonance at low
temperature (see N. Dinh Dang and A. Arima, Key Topics in Nuclear Structure,
Paestum, 23–27 May, 2004, abstracts, p. 63).
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