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Abstract

Trace inequalities for sums and products of matrices are presented. Relations between the given
inequalities and earlier results are discussed. Among other inequalities, it is shown that if A and B are
positive semidefinite matrices then

tr(AB)k ≤min{‖A‖k tr Bk, ‖B‖k tr Ak}

for any positive integer k.
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1. Introduction

Let Mn(C) be the algebra of all n × n matrices over the complex number field. The
singular values of A ∈ Mn(C), denoted by s1(A), s2(A), . . . , sn(A), are the eigenvalues
of the matrix |A| = (A∗A)1/2 arranged in such a way that s1(A) ≥ s2(A) ≥ · · · ≥ sn(A).
Note that s2

i (A) = λi(A∗A) = λi(AA∗), so for a positive semidefinite matrix A, we have
si(A) = λi(A) (i = 1, 2, . . . , n).

The trace functional of A ∈ Mn(C), denoted by tr A or tr(A), is defined to be the
sum of the entries on the main diagonal of A and it is well known that the trace of a
matrix A is equal to the sum of its eigenvalues, that is, tr A =

∑n
j=1 λ j(A). Two principal

properties of the trace are that it is a linear functional and, for A, B ∈ Mn(C), we have
tr(AB) = tr(BA). Trace inequalities are used in many applications such as control
theory, quantum information theory, computational statistics and communication
systems; see, for example, [5]. For the theory of trace functionals and their applications
the reader is referred to [10].

It is well known that the trace functional is submultiplicative, that is, for positive
semidefinite matrices A and B in Mn(C),

0 ≤ tr(AB) ≤ tr A tr B. (1.1)
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Yang et al. [13] show further that for any integer m,

tr(AB)m ≤ (tr A2m)1/2(tr B2m)1/2. (1.2)

Clearly, (1.2) implies (1.1) since (tr A2)1/2 ≤ tr A for any matrix A. Also, Ando [1]
proved a very strong form of Young’s inequality—it was shown that if A and B are in
Mn(C), then there is a unitary matrix U such that

|AB∗| ≤ U
( 1

p
|A|p +

1
q
|B|q

)
U∗,

where p, q are positive real numbers satisfying 1/p + 1/q = 1, which immediately
gives

tr |AB∗| ≤
tr |A|p

p
+

tr |B|q

q
.

Recently, trace inequalities for the product of positive semidefinite matrices
A1, A2, . . . , Am in Mn(C) were given in [6]:

tr |A1A2 · · · Am| ≤

m∏
i=1

(tr Api

i )1/pi (1.3)

and

tr |A1A2 · · · Am| ≤ tr
( m∑

i=1

1
pi

Api

i

)
, (1.4)

where p1, . . . , pm are positive semidefinite real numbers such that 1/p1 + · · · +

1/pm = 1. A special case of (1.3) which generalises (1.2) is: if A and B are
positive semidefinite matrices in Mn(C) and p, q are positive real numbers such that
1/p + 1/q = 1, then

tr(AB) ≤ (tr Ap)1/p(tr Bq)1/q. (1.5)

The main purpose of this paper is to establish trace inequalities for matrices.
In Section 2 we invoke the majorisation relations for singular values and Hölder’s
inequality for positive real numbers to get a general trace inequality which yields some
earlier results. In Section 3 we give trace inequalities for sums and powers of matrices.

2. Trace inequalities for products of matrices

In this section, new forms of Hölder and Young trace inequalities for matrices that
generalise (1.3), (1.4) and (1.5) are given. The following result will be helpful in
refining earlier results.

T 2.1. Let Ai ∈ Mn(C) and let pi be a positive real number (i = 1, 2, . . . , m)
such that

∑m
i=1 1/pi = 1. Then

tr
∣∣∣∣∣ m∏

i=1

Ai

∣∣∣∣∣r ≤ m∏
i=1

(tr |Ai|
rpi )1/pi for r ≥ 1. (2.1)
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P. It is well known that the trace of a matrix equals the sum of its eigenvalues, so

tr
∣∣∣∣∣ m∏

i=1

Ai

∣∣∣∣∣r = n∑
j=1

λ j

(∣∣∣∣∣ m∏
i=1

Ai

∣∣∣∣∣r) = n∑
j=1

λr
j

(∣∣∣∣∣ m∏
i=1

Ai

∣∣∣∣∣).
Since the singular values for any matrix are the eigenvalues of its absolute value,

n∑
j=1

λr
j

(∣∣∣∣∣ m∏
i=1

Ai

∣∣∣∣∣) = n∑
j=1

sr
j

( m∏
i=1

Ai

)
.

Using the weak majorisation of the product of singular values (see, for example,
[7, p. 247]),

n∑
j=1

sr
j

( m∏
i=1

Ai

)
≤

n∑
j=1

( m∏
i=1

sr
j(Ai)

)
.

Now Hölder’s inequality for positive real numbers implies that

n∑
j=1

( m∏
i=1

sr
j(Ai)

)
≤

m∏
i=1

( n∑
j=1

srpi

j (Ai)
)1/pi

=

m∏
i=1

( n∑
j=1

λ
rpi

j (|Ai|)
)1/pi

=

m∏
i=1

( n∑
j=1

λ j(|Ai|
rpi )

)1/pi

=

m∏
i=1

(tr |Ai|
rpi )1/pi .

This completes the proof. �

A special case of (2.1) is the following. If A, B ∈ Mn(C) and p, q are positive real
numbers such that 1/p + 1/q = 1, then

tr |AB|r ≤ (tr |A|rp)1/p(tr |B|rq)1/q,

which generalises (1.5).
Inequality (2.1) can be considered as a Hölder trace inequality, while the Yong trace

inequality can be stated as follows.

C 2.2. Let Ai ∈ Mn(C) and let pi be a positive real number (i = 1, 2, . . . , m)
such that

∑m
i=1 1/pi = 1. Then

tr
∣∣∣∣∣ m∏

i=1

Ai

∣∣∣∣∣r ≤ tr
( m∑

i=1

|Ai|
rpi

pi

)
for r ≥ 1. (2.2)

P. Using (2.1) and Young’s inequality for the positive real numbers tr |A1|
rp1 ,

tr |A2|
rp2 , . . . , tr |Am|

rpm ,

tr
∣∣∣∣∣ m∏

i=1

Ai

∣∣∣∣∣r ≤ m∏
i=1

(tr |Ai|
rpi )1/pi ≤

m∑
i=1

1
pi

tr |Ai|
rpi = tr

( m∑
i=1

|Ai|
rpi

pi

)
,

as required. �
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C 2.3. Let Ai ∈ Mn(C) be positive semidefinite and αi be a positive real
number (i = 1, 2, . . . , m) such that

∑m
i=1 αi = 1. Then, for r ≥ 1,

tr
∣∣∣∣∣ m∏

i=1

Aαi
i

∣∣∣∣∣r ≤ m∏
i=1

(tr Ar
i )
αi (2.3)

and

tr
∣∣∣∣∣ m∏

i=1

Aαi
i

∣∣∣∣∣r ≤ m∑
i=1

αi tr Ar
i . (2.4)

P. Replacing Ai by Aαi
i in (2.1) and letting αi = 1/pi (i = 1, 2, . . . , m), we

obtain (2.3). Inequality (2.4) follows from (2.3) and Young’s inequality. �

For r = 1 in (2.3),

tr
∣∣∣∣∣ m∏

i=1

Aαi
i

∣∣∣∣∣ ≤ m∏
i=1

(tr Ai)αi ,

which improves a result of Chen and Wong [3], namely∣∣∣∣∣tr m∏
i=1

Aαi
i

∣∣∣∣∣ ≤ m∏
i=1

(tr Ai)αi .

R 2.4. Yang [11] presents the following conjecture. Let Ai be a positive definite
operator (1 ≤ i ≤ m) in C1. Does the inequality

|tr(A1A2 · · · Am)|m ≤
m∏

i=1

tr Am
i

hold? For matrices the answer is yes. Indeed, for r = 1 in (2.1),

tr
∣∣∣∣∣ m∏

i=1

Ai

∣∣∣∣∣ ≤ m∏
i=1

(tr |Ai|
pi )1/pi .

Letting pi = m (i = 1, 2, . . . , m),

tr |A1A2 · · · Am| ≤

( m∏
i=1

tr Am
i

)1/m

.

But
|tr(A1A2 · · · Am)| ≤ tr |A1A2 · · · Am|,

so

|tr(A1A2 · · · Am)|m ≤ (tr |A1A2 · · · Am|)m ≤

m∏
i=1

tr Am
i .

A special case of (2.2) is the following. For positive semidefinite matrices A and B,

tr |AB∗|r ≤ tr
(
|A|rp

p
+
|B|rq

q

)
(2.5)

https://doi.org/10.1017/S0004972712000627 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712000627


[5] Trace inequalities 143

for positive real numbers r, p and q such that r ≥ 1 and 1/p + 1/q = 1. The following
theorem introduces an inequality related to (2.5), but the relation between these two
forms will be discussed in the next section.

T 2.5. Let A, B ∈ Mn(C) and r, p and q be positive real numbers such that r ≥ 1
and 1/p + 1/q = 1. Then

tr |AB∗|r ≤ tr
(
|A|p

p
+
|B|q

q

)r

. (2.6)

P. Since the trace of a matrix is equal to the sum of its eigenvalues,

tr |AB∗|r =
n∑

j=1

λ j(|AB∗|r) =
n∑

j=1

λr
j(|AB∗|) =

n∑
j=1

sr
j(AB∗).

By using the matrix version of Young’s inequality (see, for example, [14]), we have,
for j = 1, 2, . . . , n,

s j(AB∗) ≤ s j

(
|A|p

p
+
|B|q

q

)
.

Hence

tr |AB∗|r ≤
n∑

j=1

sr
j

(
|A|p

p
+
|B|q

q

)
=

n∑
j=1

s j

((
|A|p

p
+
|B|q

q

)r)
=

n∑
j=1

λ j

((
|A|p

p
+
|B|q

q

)r)
= tr

(
|A|p

p
+
|B|q

q

)r

.

This completes the proof. �

For p = q = 2 and r = 1 in (2.6), we have the arithmetic–geometric trace inequality

tr |AB∗| ≤ 1
2 tr(A∗A + B∗B).

The following theorem depends on Hölder’s inequality and singular value
majorisation to get a trace inequality for a sum of matrices.

T 2.6. Let Ai, Bi ∈ Mn(C) (i = 1, 2, . . . , m) be positive semidefinite matrices
and p, q be positive real numbers such that 1/p + 1/q = 1. Then

tr
( m∑

i=1

AiBi

)
≤

(
tr
( m∑

i=1

Ap
i

))1/p(
tr
( m∑

i=1

Bq
i

))1/q

.

In particular, (
tr
( m∑

i=1

AiBi

))2

≤

(
tr
( m∑

i=1

A2
i

))(
tr
( m∑

i=1

B2
i

))
.
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P. Since the trace functional is linear,

tr
( m∑

i=1

AiBi

)
=

m∑
i=1

tr(AiBi) =
m∑

i=1

n∑
j=1

λ j(AiBi) =
m∑

i=1

( n∑
j=1

|λ j(AiBi)|
)
.

The last equality follows from the fact that the eigenvalues of the product of positive
semidefinite matrices are positive. Since the modulus of the eigenvalues of any matrix
are weak majorised by its singular values,

m∑
i=1

( n∑
j=1

|λ j(AiBi)|
)
≤

m∑
i=1

( n∑
j=1

s j(AiBi)
)
=

n∑
j=1

( m∑
i=1

s j(AiBi)
)

≤

n∑
j=1

( m∑
i=1

s j(Ai)s j(Bi)
)
=

m∑
i=1

( n∑
j=1

s j(Ai)s j(Bi)
)
.

Using Hölder’s inequality for the nonnegative real numbers s1(Ai), s2(Ai), . . . , sn(Ai)
and s1(Bi), s2(Bi), . . . , sn(Bi),

n∑
j=1

s j(Ai)s j(Bi) ≤
( n∑

j=1

sp
j (Ai)

)1/p( n∑
j=1

sq
j(Bi)

)1/q

=

( n∑
j=1

s j(A
p
i )

)1/p( n∑
j=1

s j(B
q
i )
)1/q

= (tr(Ap
i ))1/p(tr(Bq

i ))1/q.

Hence,

tr
( m∑

i=1

AiBi

)
≤

m∑
i=1

(tr(Ap
i ))1/p(tr(Bq

i ))1/q.

Again using Hölder’s inequality for real numbers,

tr
( m∑

i=1

AiBi

)
≤

( m∑
i=1

tr(Ap
i )

)1/p( m∑
i=1

tr(Bq
i )
)1/q

,

and the proof is complete. �

Using Young’s inequality and (2.5), we have the following corollary.

C 2.7. Let Ai,Bi ∈ Mn(C) (i = 1, 2, . . . , m) be positive semidefinite matrices
and p, q be positive real numbers such that 1/p + 1/q = 1. Then

tr
( m∑

i=1

AiBi

)
≤ tr

( 1
p

m∑
i=1

Ap
i +

1
q

m∑
i=1

Bq
i

)
.

We end this section with the following theorem.

T 2.8. Let Ai,Bi ∈ Mn(C) (i = 1, 2, . . . , m) be positive semidefinite matrices
and p, q be positive real numbers such that 1/p + 1/q = 1. Then, for any natural
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number k,

tr
( m∑

i=1

(AiBi)k
)
≤

( m∑
i=1

‖Ai‖
pk
)1/p( m∑

i=1

(tr Bk
i )q

)1/q

(2.7)

and

tr
( m∑

i=1

(AiBi)k
)
≤

( m∑
i=1

‖Bi‖
pk
)1/p( m∑

i=1

(tr Ak
i )q

)1/q

. (2.8)

In particular, if A and B are positive semidefinite matrices then

tr(AB)k ≤min{‖A‖k tr Bk, ‖B‖k tr Ak}. (2.9)

P. Using the linearity of the trace,

tr
( m∑

i=1

(AiBi)k
)
=

m∑
i=1

tr(AiBi)k =

m∑
i=1

n∑
j=1

λ j((AiBi)k) =
m∑

i=1

n∑
j=1

λk
j(AiBi). (2.10)

But the eigenvalues of AiBi are positive (i = 1, 2, . . . , m), so
m∑

i=1

n∑
j=1

λk
j(AiBi) =

m∑
i=1

n∑
j=1

|λk
j(AiBi)| ≤

m∑
i=1

n∑
j=1

sk
j(AiBi).

Since
s j(AiBi) ≤ ‖Ai‖s j(Bi) (2.11)

for j = 1, 2, . . . , n,
m∑

i=1

n∑
j=1

λk
j(AiBi) ≤

m∑
i=1

n∑
j=1

‖Ai‖
k sk

j(Bi) =
m∑

i=1

(
‖Ai‖

k
n∑

j=1

sk
j(Bi)

)
.

Now,
n∑

j=1

sk
j(Bi) =

n∑
j=1

λk
j(Bi) =

n∑
j=1

λ j(Bk
i ) = tr Bk

i .

Using Hölder’s inequality for positive real numbers,
m∑

i=1

n∑
j=1

λk
j(AiBi) ≤

m∑
i=1

(‖Ai‖
k)(tr Bk

i )

≤

( m∑
i=1

‖Ai‖
pk
)1/p( m∑

i=1

(tr Bk
i )q

)1/q

.

(2.12)

Now, (2.7) follows from (2.10) and (2.12). If, instead of (2.11), we use the inequality

s j(AiBi) ≤ ‖Bi‖s j(Ai),

we obtain (2.8). �

Inequality (2.9) improves the famous trace inequality (1.1). For further discussion
of the submultiplicativity of the trace functional see [4, 12, 13].
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3. Trace inequalities for the sum of matrices

This section introduces an important trace inequality that helps us to compare
inequalities (2.5) and (2.6). Related inequalities are also presented.

T 3.1. Let Ai ∈ Mn(C) (i = 1, 2, . . . , m) and r ≥ 1. Then

tr
∣∣∣∣∣ m∑

i=1

Ai

∣∣∣∣∣r ≤ mr−1 tr
( m∑

i=1

|Ai|
r
)
. (3.1)

In particular, for A, B ∈ Mn(C),

tr |A + B| ≤ tr(|A| + |B|). (3.2)

P. Using the fact that the trace of a matrix is equal to the sum of the eigenvalues,

tr
∣∣∣∣∣ m∑

i=1

Ai

∣∣∣∣∣r = n∑
j=1

λ j

(∣∣∣∣∣ m∑
i=1

Ai

∣∣∣∣∣r) = n∑
j=1

λr
j

(∣∣∣∣∣ m∑
i=1

Ai

∣∣∣∣∣) = n∑
j=1

sr
j

( m∑
i=1

Ai

)
.

By the Fan singular value majorisation theorem [7, p. 243],

k∑
j=1

s j(A1 + A2 + · · · + Am) ≤
k∑

j=1

(s j(A1) + s j(A2) + · · · + s j(Am))

for k = 1, 2, . . . , n. Hence, for any increasing function f on [0,∞),

n∑
j=1

f (s j(A1 + A2 + · · · + Am)) ≤
n∑

j=1

f (s j(A1) + s j(A2) + · · · + s j(Am)).

In particular,

n∑
j=1

sr
j(A1 + A2 + · · · + Am) ≤

n∑
j=1

(s j(A1) + s j(A2) + · · · + s j(Am))r

≤ mr−1
n∑

j=1

(sr
j(A1) + sr

j(A2) + · · · + sr
j(Am))

= mr−1
n∑

j=1

(λr
j(|A1|) + λr

j(|A2|) + · · · + λr
j(|Am|))

= mr−1
n∑

j=1

(λ j(|A1|
r) + λ j(|A2|

r) + · · · + λ j(|Am|
r))

= mr−1 tr(|A1|
r + |A2|

r + · · · + |Am|
r).

This completes the proof. �
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In view of (3.2), it is known that the inequality

‖|A + B|‖ ≤ ‖|A| + |B|‖ (3.3)

does not hold in general for arbitrary matrices A and B in Mn(C) (see, for example, [2,
p. 27]). But (3.3) holds for normal matrices A and B in Mn(C). It should be mentioned
here that a generalisation of (3.3) for normal matrices was given in [9].

C 3.2. Let A, B ∈ Mn(C) and r ≥ 1. Then

tr(|A|r + |B|r) ≤ tr(|A + B|r + |A − B|r).

P. Let A1 = A, A2 = B and m = 2 in (3.1). Then

tr |A + B|r ≤ 2r−1 tr(|A|r + |B|r).

Replacing A by A + B and B by A − B,

tr |A|r ≤ 1
2 tr(|A + B|r + |A − B|r). (3.4)

Again, replacing A by A + B and B by B − A,

tr |B|r ≤ 1
2 tr(|A + B|r + |A − B|r). (3.5)

Adding (3.4) and (3.5), we get the result. �

We end this paper with the following remark.

R 3.3. Using (3.1) we can compare the two inequalities (2.5) and (2.6). For the
case p = q = 2,

tr
(
|A|2 + |B|2

2

)r

≤ 2r−1 tr
((
|A|2

2

)r

+

(
|B|2

2

)r)
= tr

(
|A|
2

2r

+
|B|2r

2

)
,

so, in this case, (2.6) is better than (2.5). It should be mentioned here that related
inequalities for unitarily invariant norms were presented in [8].
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