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normal stresses
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In this paper, we study the role of shear-induced migration and particle-induced normal
stresses in the formation and stability of a particle-laden, gravity-driven shallow flow.
We first examine the modification of the base-state Nusselt flow due to the underlying
microstructure, how shear-induced migration leads to viscosity stratification. We inspect
the development of the base state via the boundary layer formation in the ‘shallow’ limit
and find a reduction in entrance length with increasing bulk particle concentration and an
increase in entrance length with increasing Péclet number (Pep = γ̇ a2/D0, where γ̇ is the
average shear rate, a is the particle size and D0 is the single particle diffusivity). A linear
stability analysis is then performed on the fully developed state to identify two modes
of instability typically found in gravity-driven falling films – the long-wave surface and
the short-wave shear modes. We find that when the associated Péclet number is Pep � 1,
increasing bulk particle volume fraction delays the onset of instability for both the surface
mode and shear mode. However, with Pep = O(1), we find an enhancement in both modes
of instability. We also find that, beyond a critical Péclet number, for a fixed particle volume
fraction, the surface mode is unstable even in the absence of fluid inertia. The enhanced
destabilisation is attributed to the combined effects of base-state viscosity stratification and
momentum forcing via particle concentration perturbations. We also show that the physics
behind the enhancement of instability is independent of the choice of the constitutive
model used to describe the dynamics of the particle phase, provided the chosen model
has elements of shear-induced migration.
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1. Introduction

Particle-laden falling films find relevance in numerous natural and industrial settings.
However, the complexity of having an evolving free interface and an underlying
microstructure makes this an intriguing, albeit a relatively unexplored, problem to study.
Falling liquid films without any underlying microstructure have been previously shown
to exhibit a variety of wavy dynamics, first studied by Kapitza & Kapitza (1949) and
further extended to incorporate the additional physics of an electric field (Verma et al.
2005), thermal effects (Pascal, D’Alessio & Hasan 2018), intermolecular forces (Witelski
& Bernoff 1999), topography (Gaskell et al. 2004) and surfactants (De Wit, Gallez
& Christov 1994) to name a few (also see reviews by Oron, Davis & Bankoff (1997)
and Craster & Matar (2009)). This study focuses on studying the role of shear-induced
migration and particle-induced stresses on the boundary layer formation and stability of a
particle-laden falling film.

Shallow free-surface flows, driven by gravity and devoid of any microstructure, have
been shown to exhibit two distinct modes of instability – the surface mode instability and
shear mode instability (Floryan, Davis & Kelly 1987). The surface mode instability, first
analysed via linear stability analysis by Benjamin (1957) and Yih (1963), occurs over long
wavelengths with the threshold of instability being O(1)Reynolds (Re = ρh0u0/μf , where
ρ is the density of the fluid, h0 is the film height, u0 is the average velocity of a falling film
devoid of particles and μf is the fluid viscosity). A characteristic feature of this instability
is the inception of waves travelling two times faster than the mean velocity of the fluid.
However, the shear mode instability occurs over short wavelengths and large Reynolds
numbers (except for small inclination angles), with waves propagating slower than the
mean velocity (Floryan et al. 1987). Another distinct feature is that the amplitude of the
disturbances peaks near the bottom substrate (Chin, Abernath & Bertschy 1986) for the
shear mode as opposed to it peaking at the free surface as in the case of the surface mode
instability. However, the role of the inclusion of particles and their induced normal stresses
in these modes of instability in gravity-driven free-surface shallow flows is unknown.

The presence of particles alters the fluid rheology, with the obvious changes being
density for negatively/positively buoyant particles and a concentration-dependent viscosity
(Russel, Saville & Schowalter 1989). Analytical models for viscosity were formulated by
Einstein (1906) for dilute suspensions and later extended by Batchelor & Green (1972),
incorporating two-body interactions. However, empirical models are preferred for higher
concentrations – the Krieger–Dougherty correlation being one of the widely used models
(Phillips et al. 1992; Merhi et al. 2005; Murisic et al. 2013; Espin & Kumar 2014).
Suspension physics, beyond viscosity modification, can be classified broadly based on
three non-dimensional numbers. The particle Reynolds number Rep = ργ̇ a2/μf describes
the role of fluid inertia, the Stokes number St = (2/9)a2ρpu0/μf h0 demonstrates the
importance of particle inertia and the Péclet number Pep = γ̇ a2/D0 provides a measure
of thermal fluctuations. Here, ρp is the density of the particle, γ̇ is the shear rate, a is the
particle size, D0 = kBT/6πμf a, kB is the Boltzmann constant and T is the temperature
of the system. Environmental flows such as avalanches and landslides involve a dispersed
phase that is associated with large Stokes and Péclet number, St � 1 and Pep � 1. Here,
owing to the high particle inertia, the interstitial fluid has little or no role on the dynamics
of these flows (Cassar, Nicolas & Pouliquen 2005). Such shallow granular flows have been
studied extensively in the literature (Pouliquen 1999; Forterre & Pouliquen 2003; Gray
& Edwards 2014; Kumaran 2014; Baker, Johnson & Gray 2016). In the opposite limit of
St = 0,Pep = 0 exist colloidal particles (< 1 μm) which undergo diffusive motion due to
thermal effects (Espin & Kumar 2014) characterised by the Einstein diffusivity D0. In the
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Stability of gravity-driven particle-laden flows

context of a spreading film, Espin & Kumar (2014) studied the role of colloidal particles on
the advancing contact line of a spreading film. For particles with finite values of the Péclet
number, hydrodynamic effects start to play an important role in the particle dynamics,
introducing non-Newtonian effects. Such particles are known to migrate towards zones of
low shear. This phenomenon, known as shear-induced migration, was first observed by
Gadala-Maria & Acrivos (1980) and then subsequently explained by Leighton & Acrivos
(1987). Following this, using a combination of three flux arguments – particles’ motion
towards zones of lower particle concentration, lower viscosity and lower shear stress –
Phillips et al. (1992) formulated a phenomenological model known as the diffuse flux
model. In the diffuse flux model, the expression for the particle flux is ∼ −∇γ̇ , γ̇ being the
local shear rate. Although this approach has been applied in various modelling studies, it
appears inadequate for curvilinear flows (Morris 2009). An alternative approach is to relate
the flux to an idea of particle pressure (∼∇ · Σp, where �p is the particle contribution to
bulk stress), associated with the fluctuating motion of particles (Jenkins & McTigue 1990).
This was an analogy drawn from dry granular systems, and building on this idea Nott &
Brady (1994) derived the suspension balance model. By balancing mass, momentum and
energy for the particle phase, Nott & Brady (1994) obtained macroscopic properties such
as particle concentration, viscosity and suspension temperature – a measure of the velocity
fluctuations of the particles about their local mean velocities. This subsequently came to
be known as the suspension balance model. Unlike the diffuse flux model, the suspension
balance model describes the migration of particles solely by gradients in particle-induced
normal stresses. This contribution of shear rate gradients in the particle migration is
written in the form of particle pressure, i.e. the normal stresses that the particles exert
on the fluid phase. The suspension balance model has since then been improved upon with
the inclusion of normal stress differences by several authors (Buyevich 1996; Buyevich &
Kapbsov 1999; Morris & Boulay 1999; Zarraga, Hill & Leighton 2000; Frank et al. 2003;
Miller & Morris 2006; Boyer, Guazzelli & Pouliquen 2011).

In the literature, stability studies on particle-laden pressure-/gravity-driven flows are
fewer than their other complex fluids counterparts, for example, polymeric liquids.
This sparsity in theoretical attempts could be attributed to the fact that the rheology
of suspensions continues to offer several unsettled questions (Guazzelli & Pouliquen
2018), especially for non-Brownian suspensions. The stability of a non-neutrally buoyant
particle-laden fluid flow in an inclined channel, with rigid boundaries at both top and
bottom, was studied by Carpen & Brady (2002). They used the suspension balance based
model by Morris & Brady (1998) to describe the particle phase, ignoring Brownian effects.
They observed that particle accumulation at the centre of the channel leads to a base
state with an unstable density profile, the degree of symmetry in concentration profiles
depending on inclination and the density ratio between the suspended and carrier phase.
This unstable density stratification leads to Rayleigh–Taylor instability in the suspension
flow. In the opposite limit of neutrally buoyant Brownian suspensions, Khoshnood & Jalali
(2012) identified a family of stable and unstable modes in a particle-laden pressure-driven
flow inside microchannels. Here, they use the diffuse flux model by Phillips et al. (1992)
for the particle phase with terms involving both the Brownian diffusion and shear-induced
migration. However, both works do not account for the particle-induced normal stress
differences. For a pressure-driven channel flow with a layer of fluid suspended with
negatively buoyant particles flowing below a layer of fluid devoid of any particles,
Abedi, Jalali & Maleki (2014) identified a Kelvin–Helmholtz-like interfacial instability.
In the specific context of particle-laden flows with free surfaces, experimental and
theoretical investigations have been performed by several authors to study the surface
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topography of gravity-driven, neutrally buoyant non-Brownian particle-laden free-surface
flows (Timberlake & Morris 2005; Ancey, Andreini & Epely-Chauvin 2013; Kumar,
Medhi & Singh 2016). Most studies find that an increase in particle concentration leads to
increased surface deformation and decreased entrance lengths. In this context, we ask what
would happen to the stability of such particle-laden free surface flows when the effects
of Brownian diffusion, shear-induced migration and particle-induced normal stresses act
simultaneously.

In this work we study the surface and shear instability modes in a gravity-driven,
particle-laden film flow by performing a linear stability analysis. We consider particles
with finite Péclet numbers such that their physics is dictated by a combination of Brownian
diffusion and hydrodynamic effects like shear-induced migration and particle-induced
normal stresses. However, we ignore the effects of shear-thinning/-thickening as they
become more pronounced at higher particle concentrations (Foss & Brady 2000). We
first begin by looking into how the choice of the constitutive model could affect the
base-state velocity and particle concentration profiles by selecting the two representative
models – the suspension balance model and the diffuse flux model. We also investigate the
attainment of the fully developed base state, how the particle concentration field transitions
from a plug flow profile with a uniform concentration to a non-uniform concentration
profile. The two instability modes are identified by performing a linear stability analysis on
the base state – a particle-laden falling film. As expected, increasing particle concentration
increases the instability threshold of both the surface and shear modes for a fixed value
of Péclet number. However, we find that an increase in Péclet number leads to further
destabilisation of the system. Finally, to assess how much the choice of constitutive
model can influence the predictions of the linear stability analysis, we compare the results
obtained using the model by Frank et al. (2003) with those of the diffuse flux model and
the analytical model by Brady & Vicic (1995).

The organisation of the paper is as follows. The description of the problem and the
governing system of equations are discussed in § 2. The base-state solution, along with
the route towards its development from an initial Poiseuille flow studied in the context of
a shallow flow, is discussed in § 3. Here, the effects of particle concentration and Péclet
number (Pep) associated with the particle size are explored. A more detailed survey of base
states arising from the usage of a variety of constitutive models to describe the evolution of
the particle concentration is in Appendix A. To see how these could affect the stability of
the system under study, we perform a linear stability analysis over the previously obtained
base state in § 4. Both the surface mode and the shear mode are explored. The surface
mode is also explored in the absence of fluid inertia. Finally, we draw conclusions based
on our predictions in § 5.

2. Problem formulation

We consider here a neutrally buoyant particle-laden suspension flowing on top of an
inclined substrate (inclination angle α) under the influence of gravity (see figure 1). As the
presence of particles alters the viscosity of the system, the effective viscosity is written
as a function of the particle volume fraction (φ) as μ(φ). The particles could also exert
normal stresses on the suspension – denoted here as ΣNS (Morris 2009). The governing
equations can be written as

∇ · u = 0, (2.1)

ρ

(
∂u
∂t

+ u · ∇u
)

= ∇ · T + ρg, (2.2)
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y

x

h(x,t)

∝

Figure 1. Schematic of a particle-laden falling film.

T = −PI + ΣNS + μ(φ)(∇u + ∇uT), (2.3)

where u = (u, v) is the velocity field, T is the stress tensor, P is the pressure field, ρ is
the density, g is the acceleration due to gravity and I is the identity tensor. The above
equations are complemented by

(i) the no-slip, no-penetration boundary conditions at the bottom rigid boundary, y = 0

u = 0; (2.4)

(ii) the balance of tangential and normal stresses at the free interface y = h(x, t)

T · n = σn (∇ · n) ; (2.5)

where σ is the surface tension and n is the outward unit normal and is given as
n = (−∂xh, 1)/

√
1 + (∂xh)2 and;

(iii) the kinematic boundary condition at the free interface y = h(x, t)

∂h
∂t

+ u
∂h
∂x

= v. (2.6)

The evolution of the particle volume fraction can be described in a general form as (Morris
& Boulay 1999)

∂φ

∂t
+ u · ∇φ + ∇ · J = 0, (2.7)

where J is the particle flux whose exact form would depend on the specific model, as
will be discussed in the later part of this section. This is complemented by the no-flux
boundary condition for the particle phase at the solid substrate y = 0 and at the free surface
y = h(x, t)

n · J = 0. (2.8)

This particle flux can be modelled as one that flows due to the divergence in particle
induced normal stresses as

J = 2
9

a2

μf
f (φ)∇ · Σp, (2.9)

Σp = ΣNS + (μ(φ)− μf
) (∇u + ∇uT) , (2.10)

where, Σp is the particle contribution to bulk stress, μf is the fluid viscosity, a is the
particle diameter and f (φ) is the hindered settling function. In this paper we use the
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Richardson–Zaki correlation for f (φ) as f (φ) = (1 − φ)5 (Richardson & Zaki 1997). The
exact form of ΣNS will depend on the constitutive model in use. The expression for ΣNS

for a few prominent constitutive models can be found in Appendix A – table 4. However,
this way of describing the particle flux is not applicable for the diffuse flux model, as
we will see in the later part of this section. For the particle volume fraction dependent
viscosity, we use the Krieger–Dougherty correlation for our calculations as given by the
relation (Russel et al. 1989)

μ = μf

(
1 − φ

φm

)−2

= μf κ(φ), (2.11)

unless specified otherwise. Since the particles under consideration here are frictionless,
we choose the maximum packing fraction (φm) to be 0.64. For convenience, the
non-dimensional part of viscosity is written as κ(φ) such that μ = μf κ(φ). The governing
equations are then rendered dimensionless with the film height (h0) for length scales, the
average velocity of a falling film devoid of particles (u0 = ρgh2

0 sinα/3μf ) for the velocity
scale and an inertial scale for pressure. With the Reynolds number as Re = ρh0u0/μf , the
film height (h0) to particle size (a) ratio as ξ = h2

0/a
2, the Péclet number associated with

the particle size as Pep = γ̇0a2/D0, where γ̇0 = u0/h0 is the average shear rate, and the
Weber number, We = σ/ρu2

0h0, the non-dimensional equations are written as

Re
(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
= −Re

∂P
∂x

+ ∂ΣNS
xx

∂x
+ ∂

∂x

(
κ(φ)

∂u
∂x

)
+ ∂

∂y

(
κ(φ)

∂u
∂y

)

+∂κ(φ)
∂y

∂v

∂x
− ∂κ(φ)

∂x
∂v

∂y
+ 3, (2.12)

Re
(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −Re

∂P
∂y

+ ∂ΣNS
yy

∂y
+ ∂

∂x

(
κ(φ)

∂v

∂x

)
+ ∂

∂y

(
κ(φ)

∂v

∂y

)

+∂κ(φ)
∂x

∂u
∂y

− ∂κ(φ)

∂y
∂u
∂x

− 3 cotα, (2.13)

ξ

[
∂φ

∂t
+ ∂

∂x
(uφ)+ ∂

∂y
(vφ)

]
+ ∂Jx

∂x
+ ∂Jy

∂y
= 0. (2.14)

With the boundary conditions at y = 0,

u = v = 0, Jy = 0, (2.15a,b)

and at y = h(x, t)

Re P = 2κ(φ)[
1 +

(
∂h
∂x

)2
]
[(

∂u
∂x

(
∂h
∂x

)2

− ∂v

∂x
∂h
∂x

)
− ∂u
∂y
∂h
∂x

+ ∂v

∂y

]

−∂
2 h
∂x2

We Re[
1 +

(
∂h
∂x

)2
]3/2 + 1[

1 +
(
∂h
∂x

)2
]
[(
∂h
∂x

)2

ΣNS
xx +ΣNS

yy

]
, (2.16)
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0 = 4κ(φ)
∂u
∂x
∂h
∂x

− κ(φ)

(
1 −

(
∂h
∂x

)2
)(

∂u
∂y

+ ∂v

∂x

)
+ ∂h
∂x

(
ΣNS

xx −ΣNS
yy

)
, (2.17)

∂h
∂x

Jx − Jy = 0. (2.18)

It is interesting to note the modulation of interfacial stress boundary conditions due to
particle stresses. In (2.16), particle stresses alter the normal stress boundary condition.
In (2.17), the particle normal stress difference at the interface leads to a modification of
the tangential stress balance analogous to the Marangoni terms that arise due to surface
tension gradients (Leal 2007). The tangential stress modification is absent in the current
study due to the assumption of infinitesimal disturbances. It could be of significance in
future finite-amplitude studies of nonlinear waves in particle-laden falling films. For a
suspension balance based model, the fluxes can be written as

Jx = 2
9

f
(
∂Σ

p
xx

∂x
+ ∂Σ

p
yx

∂y

)
, Jy = 2

9
f
(
∂Σ

p
xy

∂x
+ ∂Σ

p
yy

∂y

)
. (2.19a,b)

The particles we are interested in are of a specific size such that both thermal
and hydrodynamic contributions to the normal stresses are equally important (see
table 1). Hence, to include both thermal and hydrodynamic contributions, we write the
particle-induced normal stresses without loss of generality as

ΣNS
αα = −

[
9
2

1
Pep

A + Qαα

]
, (2.20)

where α = x, y or z. Here, A denotes the isotropic thermal contribution to the
particle-induced normal stresses – one that is dominant at Pep � 1, whereas, Qαα denotes
the anisotropic hydrodynamic contribution. Thus, the above expression allows one to easily
prescribe a combination of thermal and hydrodynamic stresses for a finite value of Pep,
while asymptoting to either thermal or hydrodynamic stresses alone being present in the
limits of Pep � 1 and Pep � 1, respectively. In the limit of small Péclet number and
particle concentration, Brady & Vicic (1995) obtained analytical expressions for normal
stresses to O(φ2Pep) to be,

A(φ) = φ + 4φ2, Qαα(φ) = aαφ2Pepγ̇
2. (2.21a,b)

Here, the constants aα contribute to the normal stress difference such that ax = 0.3654,
ay = 1.26, and the shear rate γ̇ = ‖∇u + ∇uT‖/4. It should be noted that the expressions
given by Brady & Vicic (1995) are modified here to account for the local shear rate.
However, since our focus is on particles with Pep = O(1), we turn to the expressions for
A and Qαα prescribed by Frank et al. (2003) as

A = 2.9φ
(

1 − φ

φm

)−1

, (2.22)

Qαα = γ̇
[
b−1
α (φ,Pepγ̇ )+ c−1

α (φ)
]−1

, (2.23)

bα(φ,Pepγ̇ ) = AλB
αPepγ̇ φ

(
1 − φ

φm

)−3

, (2.24)
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cα(φ) = λH
α 0.75

(
φ

φm

)2 (
1 − φ

φm

)−2

. (2.25)

The constants λα here contribute to the normal stress differences. Following Frank et al.
(2003), we prescribe their values as λH

x = 1, λH
y = 0.75, λH

z = 0.4, λB
x = 1, λB

y = 1.8,
λB

z = 1.2 and A = 0.4. The above mentioned expression for the thermal contribution to the
normal stress (A) prescribed by Frank et al. (2003) is one that is valid for larger particle
volume fractions (φ � 0.5) (Woodcock 1981). For smaller particle volume fractions, the
expression by Carnahan & Starling (1969) is more appropriate. To keep the expression
applicable for arbitrary ranges of particle volume fraction, the expression written by
Buyevich & Kapbsov (1999) using a combination of the two previously mentioned
expressions is

A(φ) = φ
(
1 + φ + φ2 − φ3)
(1 − φ)3

+ 2.9φ
(
φ

φm

)3 (
1 − φ

φm

)−1

. (2.26)

We use the above expression for A along with (2.23) to (2.25) in all of our subsequent
calculations unless mentioned otherwise. Numerous constitutive relations based on the
suspension balance model, especially for particles with Pep → ∞, can be found in the
literature (Shapley, Brown & Armstrong 2004). The expressions corresponding to few
prominent models are tabulated in table 4 (see Appendix A).

For comparison, we also use the diffuse flux model by Phillips et al. (1992). This
phenomenological model describes the particle flux as a combination of gradients in
particle volume fraction, viscosity and shear rate. However, the diffuse flux model does
not take into account the particle-induced normal stresses. For studying the dynamics of
the advancing contact line of a particle-laden thin-film flow, Murisic et al. (2013) has
previously used this diffuse flux model in the limit of Pep → ∞. The particle fluxes for
the diffuse flux model can be written as

Jx = −Kcφ
∂

∂x
(γ̇ φ)− Kvφ2γ̇ κ(φ)−1 dκ(φ)

dφ
∂φ

∂x
− 1

Pep

∂φ

∂x
, (2.27)

Jy = −Kcφ
∂

∂y
(γ̇ φ)− Kvφ2γ̇ κ(φ)−1 dκ(φ)

dφ
∂φ

∂y
− 1

Pep

∂φ

∂y
. (2.28)

Here, we choose the values of the constants as Kc = 0.03 and Kv = 5Kc (Khoshnood
& Jalali 2012). Also, we assign the values of the parameters as ξ = 104, We = 1000
and inclination angle α = 45◦ for all of our subsequent calculations unless mentioned
otherwise. The above fluxes along with assigning ΣNS = 0 in the governing equations
gives us the corresponding equations for the diffuse flux model.

3. The base state – Nusselt flow for non-Brownian suspensions

The base state is a steady, uniform flow of a flat film whose height is assumed to be h = 1.
With these assumptions, the corresponding equations for the base state become

d
dy

(
κb(φb)

dub

dy

)
= −3, (3.1)

938 A29-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

17
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.176


Stability of gravity-driven particle-laden flows

Re
dPb

dy
−

dΣNS
b,yy

dy
= −3 cotα, (3.2)

dJb
y

dy
= 0, (3.3)

with the boundary conditions now being

ub = 0
Jb

y = 0

}
at y = 0, (3.4)

dub

dy
= 0

Pb −ΣNS
b,yy = 0

Jb
y = 0

⎫⎪⎪⎬
⎪⎪⎭ at y = 1. (3.5)

To ensure that the particle volume fraction inside the domain remains conserved, an
additional integral constrain can be written as∫ 1

0
φbdy = φ0. (3.6)

Here, φ0 is the bulk particle volume fraction. Another physical constraint is to impose an
integral constraint on the particle flux (

∫ 1
0 ubφb dy = const.) instead. However, introducing

the constraint on the particle flux does not introduce any qualitative change to the results,
especially the prediction of instability thresholds. The previous stability analysis by
Carpen & Brady (2002) had used (3.6) as the integral constraint to obtain their base state,
and we present results in this paper with the same constraint. Frank et al. (2003) also
noted that there is minimal difference between the results obtained using two constraints.
From (3.3) and the boundary conditions, it can be seen that ΣNS

b,yy remains constant in the
domain. For the choice of particle induced normal stress, we use the constitutive model by
Frank et al. (2003), as discussed in § 2. The system of equations for the base state does not
admit an analytical solution and must be solved numerically. The corresponding velocity
and (3.1) and (3.3) concentration profiles are obtained by solving with the boundary
conditions (3.4) and (3.5), while ensuring the integral constrain in (3.6) is satisfied. To
study the influence of particle-induced normal stresses on the base state, we compare the
results with the diffuse flux model (Phillips et al. 1992) for different Péclet numbers. The
corresponding system of equations, while using the diffuse flux model, does admit an
analytical solution for the limit of Pep → ∞. The solution in terms of hypergeometric
functions is

ub = AqΓ (2 + q)
Γ (3 + q)

{2F1(q, 2 + q; 3 + q;−A)

− (1 − y)q+2
2F1(q, 2 + q; 3 + q;−A(1 − y))}, (3.7)

φb = φm

1 + A(1 − y)
. (3.8)

Here, A can be obtained from the relation φ0 = (φm log (1 + A))/A and q = 1.82.
However, for arbitrary values of Pep in the diffuse flux model, the solution can only
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Figure 2. Comparison of base-state velocity and particle concentration profiles obtained using the model by
Frank et al. (2003) (blue lines) and the diffuse flux model by Phillips et al. (1992) (red lines) for Pep = 0.1
(− · − · −), Pep = 1 (· · · ) and Pep = 10 (—). The insets in (a,c) show the velocity profiles zoomed-in near the
free surface; (a) φ0 = 0.1, (b) φ0 = 0.1, (c) φ0 = 0.3, (d) φ0 = 0.3.

be obtained numerically. Figure 2 shows the velocity and the particle volume fraction
profiles compared between the two models. Between the different bulk particle volume
fractions (φ0), increasing volume fraction invariably leads to increased viscosity, which
subsequently leads to a reduction of fluid velocity. However, there is minimal difference in
the velocity profiles between the two constitutive models.

The particle motion along the gradient direction is dictated by the gradient of the particle
stress in the case of the suspension balance model, and is dictated by the gradients in shear
rate, viscosity and particle volume fraction in the case of the diffuse flux model (Phillips
et al. 1992; Frank et al. 2003). In the limit of Pep � 1, the particle volume fraction
distribution remains almost constant, as is evident from figure 2(b,d). This is because
Brownian diffusion becomes the dominant physics, which always equilibrates the particle
volume fraction field. With the non-Brownian components of the particle fluxes from both
models being proportional to the gradients in shear rate and particle volume fraction, it
is evident that the particles tend to get accumulated in the free interface for finite values
of Péclet number. The accumulation becomes more prominent with increasing Pep values.
Comparing the two models plotted here, this accumulation of the particles at the free
interface is more pronounced in the predictions of the suspension balance model by Frank
et al. (2003) than that of the diffuse flux model for a fixed value of Péclet number (see
figure 3b). The feature of particle accumulation near the free surface is constitutive model
agnostic, provided the model has elements of shear-induced migration. Comparisons of the
base-state plots for a few prominent constitutive models and their corresponding equations
are presented in Appendix A. In § 4, we will learn that this trait of the concentration
gradient directed towards the interface appears as one of the prominent destabilising
mechanisms for a particle-laden falling film.
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Figure 3. Comparison of the base-state surface velocity (a) and particle concentration at the interface (b) for a
range of Pep obtained using the model by Frank et al. (2003) (blue lines) and the diffuse flux model by Phillips
et al. (1992) (red lines) for φ = 0.1 (- - -) and φ = 0.3 (—).

3.1. Developing region of the flow – boundary layer analysis
In the previous section, we studied the modification of the streamwise velocity profile in a
falling film due to particle-induced stresses. It is equally important to study the developing
region and understand the role particle-induced stresses play in the entrance length. For
free surface flows there is an additional complexity in the boundary layer analysis – the
height of the fluid flow could vary with the bulk particle volume fraction and the Péclet
number. In the current study, we will analyse the development of a particle-laden Nusselt
flow from a Poiseuille, with the particles in a well-mixed state at the inlet. The transition
from a plug flow/pipe flow to a fully developed Nusselt flow with a free surface was studied
in the context of a clear liquid by Cerro & Whitaker (1971) and for a dense granular flow
by Kumaran (2014). Here, we look into the role that the presence of particles and their
contribution to the normal and shear stresses in the flow can have on this transition. For
this, we use the boundary layer approximation to simplify the governing equation, similar
to the approach of Cerro & Whitaker (1971) and Kumaran (2014). Exploiting the disparity
in streamwise and transverse gradients and velocity components, we write the simplified
steady equations as

u
∂u
∂x

+ v
∂u
∂y

= ∂ΣNS
xx

∂x
+ ∂

∂y

(
κ(φ)

∂u
∂y

)
+ 3, (3.9)

ξ

[
∂

∂x
(uφ)+ ∂

∂y
(vφ)

]
= −2

9
∂

∂y

(
f
∂Σ

p
yy

∂y

)
. (3.10)

The presence of a free interface implies that the exact form of the height field has to be
solved iteratively, making the system relatively difficult to handle numerically. Instead we
use the von Mises transformation; the new coordinate system is transformed as x → ζ and
y → ψ (Schlichting & Gersten 2016), where

ζ = x, (3.11)

ψ =
∫ y

0
u dy′. (3.12)

Subsequently, the derivatives are written in the new coordinate system as
∂

∂x
→ ∂

∂ζ
− v

∂

∂ψ
, (3.13)

∂

∂y
→ u

∂

∂ψ
. (3.14)
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This transformation allows us to solve the equations in a rectangular domain. Subsequently,
the transformed equations in steady state can be finally written as

u
∂u
∂ζ

= u
∂

∂ψ

(
κ(φ)u

∂u
∂ψ

)
+ ∂ΣNS

xx

∂ζ
− v

∂ΣNS
xx

∂ψ
+ 3, (3.15)

ξ
∂φ

∂ζ
= −2

9
∂

∂ψ

(
fu
∂ΣNS

yy

∂ψ

)
, (3.16)

with the corresponding boundary conditions at ψ = 0

u = v = 0, (3.17)

∂ΣNS
yy

∂ψ
= 0, (3.18)

and at ψ = 1

∂u
∂ψ

= 0, (3.19)

∂ΣNS
yy

∂ψ
= 0. (3.20)

For simplicity, the boundary condition in (3.19) is written after ignoring the term arising
from the particle-induced normal stress difference and surface tension. Eventually, the
transformation back to the x–y plane is done using the relation

y =
∫ ψ

0

dψ ′

u
. (3.21)

We perform all the numerical calculations in this section with ξ = 100. As noted by
Semwogerere, Morris & Weeks (2007), higher values of ξ (implying smaller particles)
leads to the entrance lengths becoming progressively longer. Therefore, to make the
calculations more accessible numerically, we choose a smaller value of ξ . This value of ξ
would imply that the film height to particle size ratio is merely 10, bringing the validity
of the continuum approximation into question. However, several authors in the literature
have used similar film/channel height to particle size ratios in experiments and simulations,
and obtained reasonable agreement with continuum models (Nott & Brady 1994; Zarraga
et al. 2000; Frank et al. 2003; Timberlake & Morris 2005). Nevertheless, as stated earlier,
we choose a higher value of ξ as 104 for the calculations other than the boundary layer
analysis in this section. To quantify the entrance lengths – the location along the flow
direction where the particle volume fraction field reaches its fully developed state – we
begin by defining a scalar measure for the development of the particle volume fraction
field given by an evolution parameter Ep as defined by Semwogerere et al. (2007) as

Ep(x) =
∫ 1

0

∣∣∣∣ φ(x, y)
〈φ(x, y)〉 − φ(0, y)

〈φ(0, y)〉
∣∣∣∣ dy. (3.22)

Here, 〈φ〉 is the local cross-sectional average particle volume fraction. This evolution
parameter will asymptotically reach a constant value downstream as the flow moves
towards a fully developed particle volume fraction profile, as seen in figure 4(a). Using
this evolution parameter, we define the entrance length (L) as the location along the flow
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Figure 4. Plots of the evolution parameter and entrance lengths. (a) Compares the evolution parameter (Ep)
between two bulk particle volume fractions φ0 = 0.1 (black lines) and φ0 = 0.3 (blue lines) for two values of
Péclet numbers – Pep = 1 (- - -) and Pep = 10 (—). The inset shows specifically the case of Pep = 1. (b) Shows
the entrance lengths for a range of Péclet numbers with a bulk particle volume fraction of φ0 = 0.1.

direction where the evolution parameter attains 95 % of its asymptotic value (Hampton
et al. 1997; Miller & Morris 2006; Semwogerere et al. 2007). When comparing the
evolution parameter between two bulk particle volume fractions of φ0 = 0.1 and 0.3, it
is apparent that an increase in bulk particle volume fraction leads to shorter entrance
lengths (see figure 4a). This reduction in entrance length with increasing particle volume
fraction is attributed to the increased particle migration due to stronger particle interactions
(Semwogerere et al. 2007).

Figure 4(b) shows the variation of entrance lengths over a range of Péclet numbers
for bulk particle volume fractions of φ0 = 0.1 and 0.3. We find that the entrance lengths
increase with increasing Péclet number, after which it plateaus. This is because, at
lower values of Péclet number, Brownian motion dominates over hydrodynamic effects
(Semwogerere et al. 2007). As the effect of particle migration driven by hydrodynamic
effects takes over, we see the entrance lengths saturate with further increase in Péclet
number. The transition between the dominance of hydrodynamic effects over Brownian
diffusion can be seen to happen at Pep ≈ 100 (see figure 4b). A more detailed explanation
of this phenomenon can be found in Semwogerere et al. (2007). These results are consistent
with the experimental observations by Hampton et al. (1997) and experimental and
theoretical calculations by Semwogerere et al. (2007), both of which explore particle-laden
pressure-driven flows with no free surface. To better show the transition of the particle
volume fraction field, we also show contour plots of the particle volume fraction field
along with the film height for a bulk particle volume fraction of φ0 = 0.3 with Pep = 1
and 10 in figure 5. It is evident from the particle volume fraction field that between Pep = 1
and 10, Pep = 10 requires a longer entrance length to fully develop.

4. Linear stability analysis

With the base state of the system and the route towards the fully developed base state
evaluated in § 3 and 3.1, we now proceed to perform a linear stability analysis on the
full system of (2.12)–(2.14). This is done by perturbing all the physical variables in
the problem as a sum of their base states, and a sinusoidal wave of wavenumber k
and wave speed c. Thus, each physical variable in the system (say X) is written in
the form X = Xb + X̂ exp(ik(x − ct)), with Xb referring to the base flow variables and
X̂ referring to the infinitesimally small amplitude of the disturbances (|X̂| � |Xb|). We
consider two-dimensional disturbances in the present study. The resulting equations after
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Figure 5. Evolution of a Poiseuille flow with an inlet height hi to a fully developed particle-laden Nusselt flow
for a system with bulk particle volume fraction φ0 = 0.3. The contour plot shows the particle volume fraction
field; (a) Pep = 1, (b) Pep = 10.

linearisation are

{ikRe[(ub − c)(D2 − k2)− u′′
b] − 2κ ′

b(D2 − k2)D − κb(D2 − k2)2 − κ ′′
b (D2 + k2)}ψ̂

= ikDN̂1 + (D2 + k2)(κb1u′
bφ̂), (4.1)

ik ξ [(ub − c)φ̂ − φ′
bψ̂] = −ikĴx − DĴy. (4.2)

Here, ψ̂ and φ̂ are the perturbation streamfunction and particle volume fraction,
respectively, D and primes denote the derivatives with respect to y of the perturbation
and base-state quantities, respectively, and κb1 = dκb(φb)/dφb, with κb1φ̂ being equal to
viscosity perturbation and N̂1 = Σ̂NS

xx − Σ̂NS
yy corresponds to the normal stress difference

perturbation. Subsequently, the linearised boundary conditions at y = 1 are{
κb

(
D2 + k2

)
− (ikNb1 + 3)

1
(c − ub(1))

}
ψ̂ = 0, (4.3)

{
κ ′

b(D2 + k2)+ κb(D2 − 3k2)D + ikRe(c − ub(1))D

−
(

3 cotα + k2We Re
) ik
(c − ub(1))

}
ψ̂ + D(κb1u′

bφ̂)+ ikN̂1 = 0, (4.4)

−Jxb
ik

(c − ub(1))
ψ̂ + Ĵy = 0, (4.5)

and at y = 0

ψ̂ = Dψ̂ = 0, (4.6)

Ĵy = 0. (4.7)
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Here, Nb1 = ΣNS
b,xx −ΣNS

b,yy is the base-state normal stress difference. The above system of
modified Orr–Sommerfeld equations is similar to the corresponding system for a flow with
viscosity stratification as first derived by Drazin (1962) for a parallel flow and subsequently
for free-surface flows by Craik & Smith (1968). However, the presence of additional terms
arising from the particle-induced normal stress differences (Nb1, N̂1) and particle flux
terms (Jxb, Ĵx, Ĵy) makes the above system of equations (4.1)–(4.7) unique. The terms
arising from normal stress differences are absent while using the diffuse flux model as
it does not account for the particle-induced normal stresses. Also, the term arising from
the base-state normal stress difference, ikNb1, in the boundary condition (4.3) is zero since
the base-state normal stresses vanish at y = 1. In the interest of brevity, the expressions for
perturbation particle fluxes (Ĵx, Ĵy) and particle normal stresses (N̂1) have been relegated
to Appendix B.

4.1. Surface mode – long-wave instability
A gravity-driven liquid film on an inclined surface is unstable to long-wave disturbances
(Benjamin 1957; Yih 1963). The linear and nonlinear regimes of the falling film instability
for a Newtonian fluid have been studied extensively (Kalliadasis et al. 2011). Taking cues
from Yih (1963), we look for the surface mode of instability as one that is unstable at long
wavelengths (k � 1). For this, we pose expansions of the form ψ = ψ0 + kψ1 + . . . and
c = c0 + kc1 + . . .. Subsequently, the leading-order equations become

D2(κbD2ψ̂0 + κb1u′
bφ̂0) = 0, (4.8)

DĴy0 = 0, (4.9)

with the boundary conditions at y = 1{
κbD2 − 3

(c0 − ub(1))

}
ψ̂0 = 0, (4.10)

D(κbD2ψ̂0 + κb1u′
bφ̂0) = 0, (4.11)

Ĵy0 = 0, (4.12)

and at y = 0

ψ̂0 = Dψ̂0 = 0, (4.13)

Ĵy0 = 0. (4.14)

Solving for the above system, a dispersion relation can be obtained as

d1c3
0 + d2c2

0 + d3c0 + d4 = 0. (4.15)

Here, d1, d2, d3 and d4 are combinations of integrals that can be evaluated from the
base-state solution. The expressions for evaluating the integrals in the above system are
given in Appendix C. Equation (4.15) gives three roots, all of which are real. One of
the roots corresponds to the surface mode; the one found by Yih (1963), albeit modified
by the presence of particles (see figure 6). The other two modes are associated with the
transport of the dispersed phase. This implies that we need to evaluate the system until
O(k) to obtain the growth rates, consistent with the behaviour known for the particle-free
scenario. The O(k) calculation of growth rate is algebraically tedious, involving several
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Figure 6. Variation of the Doppler shifted wave speed, c0 − ub(1), of the surface mode, plotted for a range of
bulk particle volume fractions (φ0) and Péclet numbers (Pep) obtained from the long-wave dispersion relation –
(4.15).

integrals that must be evaluated numerically. It is no more economical than an entire
numerical computation. Such semi-analytical expressions for growth rates would also be
dependent on the choice of constitutive model. We will instead focus on exploring why the
presence of a microstructure should destabilise a falling film and then attempt to identify
mechanisms that are not reliant on the choice of constitutive model.

4.1.1. Mechanism of surface mode instability
In this section we discuss the mechanism of the surface instability, building on the
insightful explanation of Smith (1990) for the falling film instability of a particle-free film.
Consider perturbations to the system, leading to disturbances to the interface of the form
h̄(x, t) = h(x, t)− 1. The base-state shear stress at the perturbed interface is non-zero, and
can be written as (κbu′

b)
′h̄(x, t) acting along the flow direction (see figure 7a). Since the

surface is a stress free zone, there must be a cancelling shear stress from the perturbations
acting on the unperturbed surface. This compensatory shear stress now drives a flow that
acts as the initial driving mechanism for the disturbance (see figure 7b). If we next consider
the O(k) equations, the x−momentum balance at this order is written as

D(κbDû1) = i Re P̂0 − i Σ̂NS
xx0

+ Re[i(ub − c0)û0 + u′
bv̂1] − D(u′

bκb1φ̂1). (4.16)

Here, the leading-order equation (Re P̂0 − Σ̂NS
xx0
) = −N̂10 − Σ̂NS′

b,yy + 3 cotα, is essentially
the hydrostatic pressure term that acts to flatten the interface and drive a flow away from
the crest. Inspecting the first inertial stress term, iRe(ub − c0)û0, it is obvious from the
figure 8(a) that the sign of the term (ub − c0) would determine whether this term would
have a stabilising or a destabilising effect since the û0 is positive throughout the domain.
For the surface mode, ub < c0 (see figure 6) throughout the domain as the disturbance
tends to travel faster than the base-state fluid velocity. Thus the first inertial stress term has
a destabilising effect. The second inertial term iRe(−iu′

bv̂1) is also a negative term as u′
b

and iv̂1 are positive. Thus both the inertial stress terms contribute to the destabilisation of
the system. The presence of the viscous term D(u′

bκb1φ̂1) in (4.16) hints at the possibility
of there being an instability even in the absence of fluid inertia. In § 4.2.1, we explore this
and find the system to be unstable beyond a critical Péclet number.

Inhomogeneity in the particle concentration field could affect the dynamics in two
ways: viscosity stratification in the base state and concentration perturbations in the
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|(κbu′
b)′ h̄|

|(κbu′
b)′ h̄|

û0

û0 û0

(a) (b)

Figure 7. Base-state shear stress developed on the perturbed interface – (a), leading to a leading-order
perturbation flow in the film – (b). The dash lines indicate the unperturbed free surface.

Re [i(ub – c0)û0 + ûbv̂1] D(u′
bκb1φ̂1)

3 cot α

(a) (b)

(c)

Figure 8. Directions of the disturbance flow field generated by individual terms in the O(k) equations drawn in
the reference frame moving with the phase velocity. (a) Denotes the inertial stress, (b) denotes the term arising
due to the perturbative viscosity and (c) denotes the gravity.

momentum (4.16). To see how the variation in viscosity could affect stability, let us look at
a reduced problem. Motivated by base-state profiles obtained in § 3, we consider a linearly
viscosity stratified base state

κb = 1 + ε( y − yc). (4.17)

We further simplify it by choosing the particle-free Nusselt flow as the unperturbed
velocity field and assume the measure of stratification ε � 1. A long-wave analysis reveals
the instability criterion to be

Rec =
{

5
6

− ε
95
64

(
yc − 137

399

)}(
cotα + k2

3Ca

)
+ O(ε2). (4.18)

Our previous discussion of the O(k) flow field (see schematic in figure 8) has highlighted
the destabilising roles of different terms on the right-hand side of (4.16). Thus the viscosity
stratification, particle induced in the present problem due to shear-induced migration,
destabilises the system further depending on location in the film (yc) where the particle
concentration exceeds its bulk value. The base-state concentration profiles discussed in
§ 3 (also see figure 2b,d) have a yc ≈ 0.5, indicating a likelihood of enhanced instability
as per the reduced model discussed above.

The reduced model is a one-way coupled system with the assumption of a particle-free
Nusselt base-state flow. The base-state flow consistent with the linear viscosity
stratification would provide a numerical estimate of the critical Reynolds number (4.18)
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as a function of ε and yc, but the conclusions remain unchanged. The complete two-way
coupled system (4.1)–(4.7) would continue to exhibit the enhanced stability characteristics,
which we will discuss further in the next section using finite wavenumber analysis. The
current system has an interesting analogy with the stability of film flow down heated or
cooled inclined plates. Most studies on the role of thermal forces on the stability of falling
film focus on thermocapillary effects, ignoring thermal effects in the bulk (Kalliadasis
et al. 2011). The study by Craik & Smith (1968) and then by Goussis & Kelly (1985)
examined the role of viscosity stratification on the stability of a falling film. Goussis &
Kelly (1985) motivated viscosity stratification as a consequence of a heated or cooled
substrate and thus removed the restriction in the study of Craik & Smith (1968), of
viscosity being purely convected by the flow. They observed that the instability threshold
gets lowered when the viscosity gradients are directed towards the free surface (heated
plate). This behaviour is consistent with observations in the current study, although the
underlying physics behind a viscosity stratification directed towards the interface is a
different one – shear-induced migration.

4.2. Finite wavenumber analysis
In the previous section, we discussed the mechanism of the surface instability using a
long-wave theory. We will now probe the system’s stability to disturbances of arbitrary
wavelengths, analysing the modification of the surface instability and the possibility of any
additional instabilities. The subsequent paragraphs provide a detailed account of particles’
effect on the system’s stability. We show the presence of two modes of instability –
a surface mode described in the previous section and a shear mode instability and
discuss the destabilising role of particles on both modes of instability. A key takeaway
from this section is the plot of neutral stability curves (see figure 12), depicting the
existence of the two unstable modes in the Re − k plane for combinations of φ0 and
Pep. Subsequently, we present the results of specific cases to understand the source of
destabilisation. The ‘unstable’ viscosity stratification set up by the shear-induced migration
of particles plays the most dominant role in enhancing the instability. Notably, we also
demonstrate the independence of this enhanced instability on the choice of constitutive
model. The previous section also showed that the destabilisation mechanism due to
viscosity perturbations does not depend on fluid inertia. Therefore, in § 4.2.1, we probe
the possibility of this instability persisting in the limit of Re = 0. In the inertialess limit,
we find that the surface mode does get destabilised beyond a critical Pep, for a fixed φ0.

To study the stability of the system subjected to disturbances of arbitrary wavelengths,
we solve the system of linear equations (4.1)–(4.7) by framing it as an eigenvalue
problem, with c as the eigenvalue. This eigenvalue problem is solved numerically using the
Chebyshev spectral collocation method (Trefethen 2000). With the spatial discretisation
done on a Chebyshev domain, we use MATLAB to solve the resulting linear equations
forming the eigenvalue problem. To gain confidence in our numerical solver, we validate it
with the results by Floryan et al. (1987) for instabilities in a particle-free falling film, over
a range of Reynolds numbers and wavenumbers. The comparisons thus made are listed in
table 2. We begin by looking at the surface mode instability using the model by Frank et al.
(2003) to describe the particle phase. Figure 9 shows plots of the growth rate (ci) of the
surface mode compared between Pep = 0.1 and 1. The two curves are indistinguishable for
a bulk particle volume fraction of φ0 = 0.1. However, when we increase the bulk particle
volume fraction, φ0 = 0.3, Pep = 1 can be seen to predict a higher growth rate. This trend
of increasing Péclet number leading to increased growth rate follows as seen in the plot
of maximum growth rates obtained for a range of Péclet numbers in figure 10(a). We also
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Parameter Value Non-dimensional numbers Value

Film thickness, h0 (m) 10−5–10−3 Film height – particle size ratio, ξ = h2
0

a2 104–108

Flow length, l (m) 10−2–10−1 Reynolds number, Re = ρu0h0

μf
10−3–101

Fluid density, ρ (kg m−3) ∼103 Weber number, We = σ

ρu2
0h0

102–108

Particle density, ρp (kg m−3) ∼103 Capillary number, Ca = 1
WeRe

10−6–10−2

Surface tension, σ (kg s−2) ∼10−1 Péclet number, Pe = u0h0

D0
10–109

Fluid viscosity, μf (kg m−1 s−1) 10−3–10−1 Péclet number, Pep = γ̇ a2

D0
10−4–10

Particle diameter, a (m) 10−8–10−7 Schmidt number, Sc = μf
ρD0

105–109

Table 1. Estimates of physical parameters in a particle-laden falling film.

Numerical results – Floryan et al. (1987) Numerical results – present work

We Rec kc cr Rec kc cr

0 5601.73 1.052 0.263658 5601.73 1.052 0.263658
0.0111094 5513.85 1.070 0.263560 5513.85 1.070 0.263560
0.0226752 5414.59 1.091 0.263420 5414.59 1.091 0.263420
0.0453505 5188.11 1.143 0.263101 5188.11 1.143 0.263101

Table 2. Comparisons for validation of the stability code with the results by Floryan et al. (1987) for α = 10.
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Figure 9. Comparisons of the imaginary part of the wave speed corresponding to the surface mode for (a)
φ0 = 0.1 and (b) φ0 = 0.3; Pep = 0.1 (- - -); Pep = 1 (—) over a range of wavenumbers (k) with Re = 20.

track the wavenumber corresponding to the maximum growth rates – kmax. We observe
that, with increasing Pep, the maximum growth rate is attained for progressively longer
waves for the case with a higher bulk particle volume fraction (φ0 = 0.3). However, for
φ0 = 0.1, there is no perceptible change in the wavenumber at which the maximum growth
rate occurs.

The long-wave surface instability is not the only mode of destabilisation for a falling
film. The background velocity profile, a parabolic Nusselt flow in the particle-free case,
admits a viscous Tollmien–Schlichting shear instability similar to those found in plane
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Figure 10. Plots of the maximum growth rate – cmax
i (a) and the wavenumber at which the maximum growth

rate occurs – kmax (b) for the surface mode over a range of Pep for φ0 = 0.3 (blue lines) and φ0 = 0.1 (black
lines) with Re = 20.
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Figure 11. Vorticity fields for the surface mode (a) and shear mode (b) at t = 0.001 for the case of φb = 0.3
and Pep = 1: (a) k = 0.01, Re = 20; (b) k = 0.5, Re = 106.

Poiseuille and Blasius boundary layer flows (Drazin & Reid 2004). The shear mode is a
short-wave instability that occurs at a large Reynolds number, not involving any interfacial
disturbances. For the shear mode, viscous effects play a dual role. They do the expected
stabilisation of the flow via viscous dissipation, but they also introduce a phase shift
between the streamwise and wall-normal velocity disturbances due to viscous effects in
the critical layer (the location where the flow speed matches the wave speed). This phase
shift is responsible for a non-zero Reynolds stress and creates a possibility for the growth
of disturbance kinetic energy. Since the two viscous effects compete against each other, the
shear mode for a falling film is expected to manifest at a large Reynolds number. We plot
the vorticity fields corresponding to the surface mode and shear mode in figure 11. The
structures of the eigenfunctions are distinctly different, with the shear mode exhibiting a
localised peak near the bottom substrate as previously noted by Chin et al. (1986). The
wall-normal coordinate for the shear mode is scaled with (kRe)1/3, consistent with critical
layer arguments (Maslowe 1986). Floryan et al. (1987) analysed the dynamics of the two
modes in a falling film and observed that the shear mode could prevail over the surface
mode only the inclination angle is very small.

To see the role of bulk volume fraction and Péclet number in the instability thresholds
of both the surface and shear mode instabilities, we plot neutral curves for both the modes
of instability in the Reynolds number–wavenumber plane. For a fixed Pep, we anticipate
that an increase in bulk particle volume fraction leading to an increase in suspension
viscosity would have a stabilising effect. The novel result in the present study is the
role non-Brownian effects play for fixed φ0 but varying Pep. Figure 12 shows that the
surface mode instability threshold is lowered when the value of Pep is increased from 0.1
to 1. For Pep = 1, the instability threshold is lowered even below the instability threshold
for a film devoid of particles! The enhanced instabilities due to the dispersed phase are
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Figure 12. Neutral stability curves corresponding to the surface mode (a) and the shear mode (b), for
φ0 = 0.3 (blue), φ0 = 0.1 (black); Pep = 0.1 (- - -), Pep = 1 (—).

Case 1 N̂1 = 0 and ignoring κb1 – One-way coupled system
Case 2 κ ′

b = 0 and κ ′′
b = 0

Case 3 κ ′
b = 0, κ ′′

b = 0 and κb1 = 0

Table 3. Cases run to identify the destabilising terms.

present for both the surface and shear modes of instability. Why should the underlying
microstructure destabilise a falling film further? We have partially answered this query in
our discussion of the long-wave surface mode of a one-way coupled reduced model via a
‘unstable’ viscosity stratification that naturally arises due to shear-induced migration. The
two-way coupled full model has additional terms, and it is not apparent what plays the role
of the leading destabilising actor. Moreover, we also wish to include the shear mode of
instability in our attempt, excluded earlier in the long-wave discussion.

To answer the above question, we revisit the modified Orr–Sommerfeld equation
(4.1). In comparison with the Orr–Sommerfeld equation corresponding to a system
devoid of any particles, we find additional terms arising from the first and second
derivatives of the base-state viscosity (κ ′

b and κ ′′
b ), a term arising from the perturbation of

viscosity (D2(κb1u′
bφ̂)) and a term involving the gradient to the perturbation normal stress

difference (DN̂1). To see how these additional terms contribute to the enhancement of
instability, we run three model cases listed in table 3. With case 1, we have a problem that
accounts only for the base-state particle volume fraction dependent viscosity gradients –
a one-way coupled problem. Case 2 is one where we switch off the derivatives of the
base-state viscosity alone. Finally, case 3 is when the derivatives of the base-state viscosity
and the perturbative viscosity term (κb1) are all switched off. Figure 13(a) shows the
neutral stability curve of the surface mode instability corresponding to these special
conditions for a bulk particle volume fraction of φ0 = 0.3. The most obvious conclusion
is that the viscosity perturbation term makes the largest contribution as it single handedly
pushes the threshold of instability below that of an analogous clear film. However, the
term arising from the normal stress difference does not have any noticeable impact on
the instability threshold. Comparing case 1 and case 2, we see that the derivatives of
the base-state viscosity, representative of viscosity stratification, play second fiddle in the
instability.

Unlike the surface mode that is unstable over long wavelengths, the shear mode is
unstable over shorter wavelengths and large Reynolds numbers. Looking at figure 12(b),
we see that increasing bulk volume fraction invariably leads to increasing the instability
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Figure 13. Neutral stability curves corresponding to the surface mode (a) and the shear mode (b), for φ0 = 0.3
(blue lines), Pep = 0.1 (- - -) and Pep = 1 (—) . The red lines correspond to the special cases – case 1 (—),
case 2 (- - -) and case 3 (· · · ) listed in table 3 for φ0 = 0.3 and Pep = 1 with all other parameters being the
same.

threshold. However, we still see that, with Péclet number Pep = 1, the instability threshold
does lower for a given bulk particle volume fraction. Looking at the results of the model
cases (see figure 13b), we again note that the derivatives of the base-state viscosity play a
secondary role in the enhancement of instability here. Wazzan, Okamura & Smith (1968)
has previously shown this enhancement of instability arising from the derivatives of the
base-state viscosity in the context of Tollmien–Schlichting disturbances on a flow over a
heated plate. Typically, the studies on wall-bounded viscosity stratified flows indicate that,
when viscosity increases along the gradient direction away from the wall, the system gets
stabilised (Wall & Wilson 1996; Sameen & Govindarajan 2007). This is due to the velocity
profile becoming fuller with such a viscosity stratification (Sameen & Govindarajan
2007). Also, a viscosity stratification that decreases along the gradient direction away
from the wall is in turn known to have a destabilising effect (Sameen & Govindarajan
2007). Moreover, Ranganathan & Govindarajan (2001) (see also Govindarajan 2004)
found that the location of the viscosity stratification relative to the critical layer can
have a stabilising/destabilising effect on the system. However, particle migration leads
to lowering of the viscosity below the viscosity corresponding to the bulk particle volume
fraction near the bottom wall and higher than the same near the free surface. This in turn
leads to the velocity profiles becoming less full in the region towards the wall and blunt
near the free surface, leading to a destabilising role in the system. Also, as seen with the
surface mode, the viscosity perturbation term has the most significant role in enhancing
the instability.

A valid criticism of linear stability studies involving any complex fluid, flowing
suspensions being an example, is to what extent the reported instabilities stem from
realistic physics? There is a possibility that the instabilities are due to the choice of the
constitutive model, arising due to the linearisation of empirical relations. Here we have
attempted to discuss mechanisms for the enhanced instabilities in a particle-laden falling
film that are agnostic of the choice of the constitutive model. To investigate further how
the choice of constitutive model can alter the predictions of the instability threshold, we
next compare the neutral curves predicted while using the model by Frank et al. (2003)
with the predictions of the diffuse flux model (see figure 14). We find that, for the case
of Pep = 0.1, the instability threshold predictions corresponding to both the surface and
shear modes are indistinguishable between the two models. However, the diffuse flux
model underpredicts the instability threshold for the surface and shear instability mode
for Pep = 1. This behaviour can be reasoned by looking at the base-state comparisons
between the two models (see figure 2). It is immediately apparent that the corresponding
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Figure 14. Neutral stability curves corresponding to the surface mode (a) and the shear mode (b), with
comparisons between the suspension balance based model by Frank et al. (2003) (blue lines) and the diffuse
flux model by Phillips et al. (1992) (red lines) for φ0 = 0.3, Pep = 0.1 (- - -) and Pep = 1 (—).

magnitude of the derivatives of base-state viscosity is lower for the diffuse flux model
in comparison with the model by Frank et al. (2003). Since this magnitude directly
contributes to destabilising the flow, the instability threshold also gets underpredicted.
It is, however, possible to push the instability thresholds from the diffuse flux model
closer to the predictions of the model by Frank et al. (2003) by altering the values of
the constants Kc and Kv . The arbitrariness can be eliminated if the values of Kc and Kv
are determined from experimentally determined velocity and concentration profiles of a
falling film suspension flow. However, the observation that the inclusion of particles with
their associated Péclet number at Pep = 1 does push the instability threshold below that of
even a clear film continues to be correct. Also, the enhancement of instability of the shear
mode for a given bulk volume fraction remains faithful between the predictions of the two
models.

Having compared a suspension balance based model and the diffuse flux model,
we make one last check of consistency by comparing the results with the predictions
obtained using the theoretical model of Brady & Vicic (1995) – one that is valid for
dilute particle volume fractions and small Péclet numbers (2.21a,b). Figure 15 shows
comparisons between the model by Brady & Vicic (1995) and the model by Frank et al.
(2003) for a bulk volume fraction of φ0 = 0.1. Here again, our observations regarding
the enhancement of instability remain consistent for both the surface and shear mode.
However, the threshold of instability is uniformly lowered for both values of Péclet number
(Pep = 0.1 and 1) in comparison with the prediction when using the model by Frank et al.
(2003). This behaviour can be attributed to the choice of the particle volume fraction
dependent viscosity, as the analytical expression underpredicts the viscosity compared
with the Krieger–Dougherty correlation. A similar linear stability analysis can also be
performed using any of the other particle migration models listed in Appendix A.

4.2.1. Limit of zero fluid inertia
Thus far, we have studied the role of particles on the surface mode as a modulator acting
on top of the destabilising fluid inertia. However, the destabilising viscosity stratification
set up by the particles is independent of fluid inertia. Therefore, it is now appropriate to ask
if the presence of particles can solely act to destabilise the system without the aid of fluid
inertia. To study this, we take the limit of Re = 0 in the linearised equations (4.1)–(4.7).
It must be noted that, to retain the surface tension term at Re = 0, we replace We Re with
Ca−1 in (4.4). The subsequent calculations are done with a capillary number Ca = 10−3.
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Figure 15. Neutral stability curves corresponding to the surface mode (a) and the shear mode (b), with
comparisons between the suspension balance based model by Frank et al. (2003) (black lines) and the analytical
model by Brady & Vicic (1995) (red lines) for φ0 = 0.1, Pep = 0.1 (- - -) and Pep = 1 (—).
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Figure 16. Plots of the maximum growth rate – cmax
i (a) and the wavenumber at which the maximum growth

rate occurs – kmax (b) for the surface mode over a range of Pep for φ0 = 0.3 (blue lines) with Re = 0. Dashed
lines denote the case of Re = 20.

Figure 16(a) shows the maximum growth rate achieved by the surface mode for a
range of Péclet numbers. The trend of increasing Péclet numbers leading to increased
growth rates observed in the finite fluid inertia case (dashed lines in figure 16a) remains
true with the absence of fluid inertia as well. Comparing the growth rates obtained
both with and without fluid inertia, we observe that shear-induced migration and fluid
inertia complement each other in enhancing the instability. We also track the wavenumber
corresponding to the maximum growth rate – kmax. As expected, we find the need for
the longest waves near the vicinity of the critical Péclet number. After this, kmax goes
on to increase and subsequently decrease. Therefore, for higher Péclet numbers, there
is a need for progressively longer waves to achieve the highest growth rates. This again
remains consistent with the observations made in the finite fluid inertia case (dashed
lines in figure 16b). To further ascertain the instability, we plot the neutral curves in the
wavenumber–Péclet number plane (figure 17). Unlike the finite fluid inertia case, we find
that the envelope of the unstable region is larger for the higher particle volume fraction
φ0 = 0.3 than with φ0 = 0.1. This can be attributed to the particle volume fraction being
the sole destabilising agent in this system. Also, we observe that the threshold of instability
is lowered for the higher particle volume fraction.

5. Discussion and conclusions

We have explored the role of particles and the normal stresses they exert on the stability
of a particle-laden, gravity-driven, shallow flow down an incline. The particles studied
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Figure 17. Neutral stability curves corresponding to the surface mode in the kc–Pep plane for φ0 = 0.3
(blue), φ0 = 0.1 (black) for Re = 0.

were of a specific size range such that the particle-induced normal stresses have a
combination of thermal and athermal contributions. A conservation equation describes
the evolution of the particle phase with the particle fluxes described either by a suspension
balance based model or the diffuse flux model. The fluid experiences the role of the
particulate phase through the modification of the viscosity and the additional stresses
contributed by the particles. The choice of the exact form of these fluxes, stresses and
particle volume fraction dependent viscosity would depend on the specific choice of
constitutive model. We first explored the effect of the choice of constitutive model – the
suspension balance model and diffuse flux model – and Péclet number (Pep) on the steady
and unidirectional base-state solution of a flat film flow. Nott, Guazzelli & Pouliquen
(2011) found that the form of suspension balance model as written by Nott & Brady (1994)
(see (2.10)) is inadequate. However, we used an empirical version of the suspension model
proposed by Frank et al. (2003) in our calculations. Therefore, as noted by Nott et al.
(2011), the particle phase stress could have been captured by the phenomenological form
chosen for Σp. Nevertheless, it will be evident in further discussions that this choice
of constitutive model does not influence the nature of instability. Independent of the
choice of constitutive model, we observed that smaller Péclet numbers led to an almost
uniform distribution of particles as Brownian diffusion became dominant. However,
increasing values of Pep led to increased accumulation of particles at the free surface.
This accumulation was due to the interface being stress free. The fluxes indicated that
particles migrated towards zones of low stresses, hence the accumulation at the stress-free
surface.

After studying the fully developed base state, we investigated the route towards
the fully developed state if one were to start from a Poiseuille flow with uniform
particle distribution. We did this under the boundary layer approximation to obtain the
velocity field, particle volume fraction field and the free interface. Previous studies have
experimentally and theoretically studied this development in the context of particle-laden
pressure-driven flows, without a free interface (Hampton et al. 1997; Miller & Morris
2006; Semwogerere et al. 2007). We found that the entrance lengths decrease with
increasing bulk particle volume fractions. A similar reduction in entrance lengths on
a particle-laden pressure-driven flow inside a circular conduit was first observed in
experiments by Hampton et al. (1997). We also found that increasing Péclet number
led to an increase in the entrance length. This observation was consistent with the
experimental and theoretical calculations of Semwogerere et al. (2007) for a particle-laden
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pressure-driven flow with rigid top and bottom boundaries. Thus, we found that the
thermal contribution to the particle-induced normal stresses makes a huge contribution in
the development towards a fully developed state, a point previously noted by Semwogerere
et al. (2007).

To study the effect of these particles on the system’s stability, we then performed a
linear stability analysis over the previously obtained base states. For small values of Péclet
number, increasing bulk particle volume fractions led to an increase in the threshold of
instability for both modes of instability, thus having a stabilising effect. This can be
attributed to the particles’ almost uniform distribution, leading to a uniform increase in
viscosity throughout the domain. We also found that, for a Péclet number of Pep = 1, the
instability threshold decreased for a given bulk particle concentration for both the shear
and surface modes. This was due to the increase in the magnitude of the gradients of
the base viscosity and the presence of the perturbative viscosity term as shown in § 4.2
and in the stability calculations on the problem of a flow overheated/cooled plates by
Wazzan et al. (1968). However, we also found that the instability threshold gets lowered
beyond the case of a system devoid of particles for the surface mode of instability. The
terms mentioned above were again found to be responsible for this enhanced instability
of the surface mode. This remains consistent with the findings of Goussis & Kelly (1985)
who studied the effects of viscosity stratification arising from heating/cooling the bottom
substrate.

Finally, to see how the choice of constitutive model for the particle phase can
influence the predictions of instability thresholds, we compared the predictions obtained
using three models – the suspension balance based model by Frank et al. (2003), the
phenomenological model by Phillips et al. (1992) and the analytical model by Brady &
Vicic (1995). While the exact values of the instability thresholds predicted varied between
the three and were also largely dependent on the empirical constants associated with each
of these models, we found that the observation that an increase in Péclet number led to an
enhancement of the instability remained consistent across the three models. This showed
that the predictions of the enhanced instability were a direct consequence of shear-induced
migration of particles and not an artefact of the choice of model as long as the chosen
model accounted for shear-induced migration.

With the destabilising role of particles in the system well established, we then explored
the possibility of instability triggered purely by the presence of particles. This was done
by taking the limit of Re = 0, thereby removing the destabilising fluid inertia. A similar
linear stability analysis on the resulting system revealed the presence of an unstable surface
mode beyond a critical Péclet number. We found that increased particle volume fractions
decreased the stability threshold. The findings of the presence of instability even with
the absence of fluid inertia and an increased destabilisation of the system with increasing
particle volume fractions is consistent with the experimental observations of Timberlake
& Morris (2005) performed for highly viscous flows (Re < 0.01). They observe higher
surface corrugations with increasing bulk particle volume fractions, albeit for higher Péclet
numbers. This is attributed to the particle volume fraction being the sole destabilising
agent in the system with the lack of fluid inertia. It must be noted that, in this limit, there
is no possibility of a shear mode instability as it is exclusive to high Reynolds numbers.

After discussing the instability in detail, it is now worth attempting to quantify the
role of particles in terms of physical parameters. An interesting question here would be
to ask the difference in the wavelength of disturbance required to trigger the surface
mode instability between two liquids of comparable bulk viscosity – one laden with
particles and the other devoid of particles. Suppose we consider an experimental set-up

938 A29-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

17
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.176
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with the following physical parameters – a = 0.04 μm, ρ = 1000 kg m−3, g = 9.81 m s−2,
h0 = 10−2 m, μf = 0.46 kg m−1 s−1 and α = 45◦. For the system devoid of particles,
these parameters would correspond to a Reynolds number in the vicinity of the criticality
condition. We predict that a disturbance with wavelength � 7.5 m is required to trigger the
instability. But for the corresponding system with particles (here Pep ≈ 6.7), we predict
the critical wavelength required to be � 1.1 m. With increasing fluid inertia, we predict
that the critical wavelength is almost the same between the two systems (see figure 12).

Surface corrugations arising due to shear-induced migration of particles in free-surface
flows have been experimentally observed in the context of shear flows (Tirumkudulu,
Tripathi & Acrivos 1999; Loimer, Nir & Semiat 2002), gravity-driven film flows
(Timberlake & Morris 2005) and open channel flows (Singh, Nir & Semiat 2006; Kumar
et al. 2016). Our predictions of an enhanced instability of the surface mode remained
consistent with the experimental observations by Timberlake & Morris (2005). Although
they study particle suspensions with Péclet numbers that are significantly larger, the
experiments showed surface deformations happening in a highly viscous slow flow down
an incline with Re � 1. The occurrence of larger surface corrugations with suspensions
of larger particles reported by Kumar et al. (2016) can also be related to our predictions of
higher growth rates for increasing Péclet number. However, our analyses were limited to
infinitesimal disturbances and dealt with the waves’ inception, whereas the experimental
observations showed highly nonlinear wave formations. To be able to better relate to the
experimental observations, future work could involve studying the nonlinear regime of
particle-laden free-surface flows.

We have specifically refrained from accessing higher particle volume fractions and
Péclet numbers in our calculations, both of which could lead to a jammed state at the
interface. Accumulation of particles at the free interface can lead to the interface behaving
like an elastic solid (Dixit & Homsy 2013a) and also alter the surface tension (Dixit &
Homsy 2013b). Another aspect that becomes important is the glass transition that typically
occurs at volume fraction ≈ 0.59 (Ikeda, Berthier & Sollich 2012). These additional
physics are safely ignored in the current study as we choose smaller particle concentrations
and lower Péclet numbers. However, accommodating higher particle concentrations and
Péclet numbers would entail using a concentration dependent surface tension and surface
viscosity (Hu, Fu & Yang 2020) with the inclusion of Marangoni effects, and using
constitutive models for the particle phase that incorporate the physics of glass and jamming
transitions (Ikeda et al. 2012; Ikeda, Berthier & Sollich 2013).

In the current study, we have focused solely on the role of neutrally buoyant particles on
the stability of a gravity-driven shallow flow. However, flows occurring in both natural
and engineering scenarios could be laden with non-neutrally buoyant particles, with
non-negligible particle inertia. Modelling sediment transport in free-surface flows is one
such scenario that continues to be a challenging multiphase problem (Ouda & Toorman
2019). In the inertialess regime, the presence of negatively buoyant particles can lead to
the creation of an unstable density profile arising due to particle migration in the flow, as
shown previously by Carpen & Brady (2002) in the context of fluid flow in an inclined
channel with rigid boundaries. In their study, particle migration led to an accumulation
of particles in the centre of the channel. An interesting future direction could involve
understanding what would happen to the stability of a gravity-driven free-surface flow
when laden with negatively buoyant particles. The presence of a free surface could create
an unstable density profile that is set up due to the competition between shear-induced
migration, which would encourage particles to migrate towards the free surface, and the
buoyancy forces.
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Appendix A. Base-state comparisons of various particle migration models

We discuss some of the particle migration models mentioned in the literature. Table 4
lists the models to be discussed and the corresponding equations. We first have the

Model Equations

Phillips et al. (1992) Particle concentration evolution equation

e
[
∂φ

∂t
+ ∇ · (uφ)

]
= ∇ · J

J = kcφ∇(γ̇ φ)+ kvφ2γ̇ κ(φ)−1 dκ(φ)
dφ

∇φ + 1
Pep

∇φ

κ(φ) =
(

1 − φ

φm

)−1.82

Nott & Brady (1994) J = − 2
9
∇ · [f (φ)∇ · Σp]

Σp = −p(φ)
√

TI + 2μp(φ)E

From Carpen & Brady (2002):

p(φ) = μp(φ) κ(φ) = 1 + μp(φ) =
(

1 − φ

φm

)−2

f (φ) = (1 − φ)5

Brady & Vicic (1995) Σp = −
(

9
2

1
Pep

AI + Q
)

+ 2μp(φ)E

A(φ) = φ + 4φ2, Qαα(φ) = aαφ2Pepγ̇
2

κ = 1 + 5
2
φ + 5.91φ2

Buyevich & Kapbsov (1999) Σp = −φG
{

9
2

1
Pep

I + Re
a2

h2 Aφ2χ2
[(

π2

4
− 1
)

E · E + I2(E)I
]}

G(φ) = 1 + φ + φ2 − φ3

(1 − φ)3
+ 2.9

(φ/φm)
3

1 − φ/φm
χ(φ) = 1 − 0.5φ

(1 − φ)3
+ 1.08

(φ/φm)
3

1 − φ/φm

M0(φ) = (1 − φ)−5/2 + 1.3

[(
1 − φ

φm

)−2

−∑2
j=0(1 + j)

(
φ

φm

) j
]

M∞(φ) = (1 − φ)−5/2 − 2
[

ln
(

1 −
(
φ
φm

)1/3
)

+∑6
j=1

1
j

(
φ
φm

)j/3
]

κ(φ) = M0 + χM∞Pep

1 + χPep

Here E is the strain tensor, I2 is the second invariant of E

and I is the unit tensor.

Table 4. For caption see next page.
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Model Equations

Morris & Boulay (1999) Σp = −μn(φ)γ̇Q + 2μp(φ)E

Q =
⎛
⎝1 0 0

0 λ2 0
0 0 λ3

⎞
⎠

μn(φ) = Kn

(
φ
φm

)2 (
1 − φ

φm

)−2

μp(φ) = 2.5φm

(
1 − φ

φm

)−1 + Ks

(
φ
φm

)2 (
1 − φ

φm

)−2

κ(φ) = 1 + μp(φ) f (φ) = (1 − φ)4

Zarraga et al. (2000) Σp = −α(φ)κ(φ)γ̇Q + 2μp(φ)E

α(φ) = e2.34φφ3 κ(φ) = e−2.34φ
(

1 − φ
φm

)−3

f (φ) = (1 − φ)5.1 (from Ramachandran 2013)

Frank et al. (2003) Σp = −
(

9
2

1
Pep

AI + Q
)

+ 2μp(φ)E

A = 2.9φ
(

1 − φ

φm

)−1

Qαα = γ̇
[
b−1
α (φ,Pepγ̇ )+ c−1

α (φ)
]−1

bα(φ,Pepγ̇ ) = AλB
αPepγ̇ φ

(
1 − φ

φm

)−3

cα(φ) = λH
α 0.75

(
φ

φm

)2 (
1 − φ

φm

)−2

Miller & Morris (2006) Σp = −μn(φ)[γ̇ + γ̇NL]Q + 2μp(φ)E

μn(φ) = Kn

(
φ

φm

)2 (
1 − φ

φm

)−2

γ̇NL = asγ̇s

μp(φ) = 2.5φm

(
φ

φm

)(
1 − φ

φm

)−1

+ Ks

(
φ

φm

)2 (
1 − φ

φm

)−2

f (φ) =
(

1 − φ

φm

)
(1 − φ)β−1

Here β = 2–5, γ̇s = umax/h; as = a/h, (a/h)2

Table 4. Model equations.

diffuse flux model – a phenomenological model formulated by Phillips et al. (1992). This
model can accommodate particles with arbitrary Péclet numbers due to the inclusion of
the Brownian diffusion term. We then have the suspension balance model, first derived
by Nott & Brady (1994) exclusively for particles with Pep → ∞, and later extended to
accommodate the presence of particle-induced normal stress differences using functional
arguments by Morris & Boulay (1999), and using empirical relations by Zarraga et al.
(2000). Miller & Morris (2006) included a non-local shear stress term to avoid the
unphysical blow-up of particle volume fraction at zones of zero shear rate. Frank et al.
(2003) wrote down the relation for the particle-induced normal stress with a combination
of thermal and athermal stress contributions, making it valid for particles with arbitrary
Péclet numbers. However, all of the previously mentioned models did not account for
the shear-thinning aspect of these suspensions. Buyevich & Kapbsov (1999) on the other
hand, wrote down expressions for the shear viscosity while accounting for shear-thinning
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Figure 18. Comparison of base states obtained using the models by Phillips et al. (1992) – diffuse flux model
(magenta lines), Buyevich & Kapbsov (1999) (cyan lines), Nott & Brady (1994) (green lines), Miller & Morris
(2006) with as = 0.1 (grey lines) and with as = 0.01 (black lines) for bulk particle volume fractions φ0 = 0.01
(a,b), φ0 = 0.3 (c,d) and φ0 = 0.5 (e, f ).

and particle-induced normal stresses with contributions from both thermal and athermal
effects.

To compare the predictions of these models when applied to calculating the base state of
a gravity-driven falling film, we solve the (3.1) and (3.3) with the boundary conditions (3.4)
and (3.5). Figure 18 shows the base-state comparisons between the diffuse flux model, the
suspension balance based models by Nott & Brady (1994) and Miller & Morris (2006) and
the model by Buyevich & Kapbsov (1999) (solved at the Pep → ∞ limit). For φ0 = 0.01,
the velocity profiles vary minimally between the different models. However, there is a
significant difference between the predictions of the particle volume fraction profiles, even
for this low bulk volume fraction. For increasing bulk concentration, all models except for
the model by Miller & Morris (2006) predict that the particle volume fraction reaches
maximum packing fraction at the free interface. This is attributed to the inclusion of the
non-local shear stress term. Figure 19 shows the comparisons of the velocity and particle
concentration profile predictions between models exclusively based on the suspension
balance approach – Nott & Brady (1994), Zarraga et al. (2000), Morris & Boulay (1999)
and Miller & Morris (2006).
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Figure 19. Comparison of base states obtained using the models by Zarraga et al. (2000) (red lines), Nott &
Brady (1994) (green lines), Morris & Boulay (1999) (blue lines), Miller & Morris (2006) with as = 0.1 (grey
lines) and with as = 0.001 (black lines) for bulk particle volume fractions φ0 = 0.01 (a,b), φ0 = 0.3 (c,d) and
φ0 = 0.5 (e, f ).

Appendix B. Linearised expressions corresponding to the models in consideration

Model Equations

Phillips et al. (1992) Ĵx = −ik
{

Kcφbγ̇b + Kvφ2
b γ̇bκ

−1
b

dκb

dφb
+ 1

Pep

}
φ̂

−ik{Kcφ
2
b(D2 + k2)}ψ̂

Ĵy = − {Kc(2φbγ̇
′
b + φbγ̇bD + φ′

bγ̇
′
b)

+Kv

(
φ2

b γ̇bκ
−1
b

dκb
dφb

D + φ2
b γ̇bκ

−1
b

d2κb
dφ2

b
φ′

b + φ2
b γ̇b

dκb
dφb

dκ−1
b

dφb
φ′

b

+γ̇bκ
−1
b

dκb
dφb

2φ′
bφb

)
+ 1

Pep
D
}
φ̂

− {Kc(φ
2
b(D2 + k2)D + φbφ

′
b(D2 + k2))

+Kvκ−1
b

dκb
dφb
φ2

bφ
′
b(D2 + k2)

}
ψ̂

Table 5. For caption see next page.
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Model Equations

Suspension balance models:

Frank et al. (2003) Jxb = 2
9

fb((κb − 1)u′
b)

′

Jyb = 0

Ĵx = 2
9
{fb(ikFx + (u′

bκb1)
′ + u′

bκb1D)+ fb1((κb − 1)u′
b)

′}φ̂

+ 2
9

fb{ikGx(D2 + k2)− ik2κbD + k2κ ′
b + D((κb − 1)D2)}ψ̂

Ĵy = 2
9
{fb(DFy + ikκb1u′

b)}φ̂

+ 2
9

fb{DGy(D2 + k2)+ ik3(κb − 1)− ik(2κ ′
bD + (κb − 1)D2)}ψ̂

ΣNS
b,αα = −

[
9
2

1
Pep

Ab + Qαα,b

]

Σ̂NS
αα = Fαφ̂ + Gα(D2 + k2)ψ̂

Fα = − 9
2

1
Pep

dAb

dφb

−γ̇ 2
b Xα

Yα(χφb)
2 − 3Yαχ

dχ
dφb

φ3
b + 2PepZαχγ̇bφb − 2PepZα

dχ
dφb

γ̇bφ
2
b

χ3(Yαφbχ + ZαPepγ̇b)2

Gα = −γ̇bXα
2Yαχ2φ3

b + ZαPepχγ̇bφ
2
b

χ3(Yαφbχ + ZαPepγ̇b)2

Brady & Vicic (1995) Fα = − 9
2

1
Pep

dAb

dφb
− Pepγ̇

2
b 2aαφb

Gα = −Pepγ̇b2aαφ2
b

Table 5. Linearised expressions of the particle fluxes and/or particle-induced stresses corresponding to the
models in consideration.

Appendix C. Expressions for the long-wave analysis

The expressions for solving the dispersion relation in (4.15) are

d1 = ξJ4, (C1)

d2 = −L2 + ξ (J2 − J3 + 9I2J6 − J4(3I1 + 9I3 + 2ub(1))) , (C2)

d3 = −3I2(Jxb(1)+ 3L1)+ 3I1L2 + 9I3L2 + 2L2ub(1)

+ξ [−3(I1 + 3I3)(J2 − J3)+ (−2J2 + 2J3 + 3I1J4 + 9I3J4)ub(1)

+J4ub(1)2 + 9I2(J1 − J5 − J6ub(1))
]
, (C3)

d4 = 3I2(Jxb(1)+ 3L1)ub(1)− L2ub(1)(3I1 + 9I3 + ub(1))

+ξ [ub(1)(9I2(J5 − J1)+ (J2 − J3)(3I1 + 9I3 + ub(1)))] . (C4)

At O(1), the particle-induced stress can be written as Σyy0 = Fy(φb)φ0 + Gy(φb)D2ψ0.
With this, the relevant expressions are listed below

r1 = (Fy + 3Gyκb1κ
−2
b ( y − 1))−1, (C5)
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r2 = −Gyκ
−1
b r1, (C6)

J1 =
∫ 1

0
φ′

b

∫ y

0

∫ y′

0

[
κ−1

b + 3κb1κ
−2
b ( y − 1)r2

]
dy dy′ dy′′, (C7)

J2 =
∫ 1

0
φ′

b

∫ y

0

∫ y′

0

[
3κb1κ

−2
b ( y − 1)r1

]
dy dy′ dy′′, (C8)

J3 =
∫ 1

0
ubr1 dy, (C9)

J4 =
∫ 1

0
r1 dy, (C10)

J5 =
∫ 1

0
ubr2 dy, (C11)

J6 =
∫ 1

0
r2 dy, (C12)

I1 =
∫ 1

0

∫ y

0
κ−1

b dy dy′, (C13)

I2 =
∫ 1

0

∫ y

0
κb1κ

−2
b ( y − 1)r1 dy dy′, (C14)

I3 =
∫ 1

0

∫ y

0
κb1κ

−2
b ( y − 1)r2 dy dy′, (C15)

L1 = 2
9

∫ 1

0
fb
[
((κb − 1)u′

b)
′r2 − Q′

1
]

dy, (C16)

L2 = 2
9

∫ 1

0
fb
[
((κb − 1)u′

b)
′r1 − Q′

2
]

dy, (C17)

Q1 = κ−1
b + 3κb1κ

−2
b ( y − 1)r2, (C18)

Q2 = 3κb1κ
−2
b ( y − 1)r1. (C19)
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