ON THE DIRECT SUM DECOMPOSITION OF AN ALGEBRA OF CONTINUOUS FUNCTIONS

R.D. MEHTA AND M.H. VASAVADA

Let A and B be closed subalgebras of $C_{p}(K)$ whose direct sum is $C_{p}(K)$. According to a result of Stephen Fisher the set of common zeros of elements of B is a retract of K. We give examples to show that this result is not correct.

1. Introduction

Let K be a compact Hausdorff space and $C_p(K)$ the algebra of all continuous real-valued functions on K. Fisher [1] has proved that if $C_p(K)$ is the direct sum of proper closed subalgebras A and B with $l \in A$, then Z(B), the set of common zeros of elements of B, is nonempty and it is a retract of K. While the first assertion about Z(B)is true, we give simple examples to show that the second assertion is false. We also show that the corollary in [1] is false, but examples therein are still valid.

2. Examples

EXAMPLE 1. Let K = [-1, 1],

 $A_{1} = \{ f \in C_{n}[-1, 1] : f \text{ is constant on } [0, 1] \}$

Received 12 December 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 \$A2.00 + 0.00.

and

$$B_1 = \{g \in C_n[-1, 1] : g \text{ is even, } g(1) = 0\}$$

Then A_1, B_1 are proper closed subalgebras of $C_p[-1, 1]$, $1 \in A_1$ and $C_p[-1, 1] = A_1 \oplus B_1$. However, $Z(B_1) = \{-1, 1\}$ which is not a retract of [-1, 1].

It is worth noting that while $Z(B_1)$ is not a retract of [-1, 1], if we take $B_2 = \{g \in C_p[-1, 1] : g|_{[-1,0]} = 0\}$, then B_2 is a proper closed subalgebra of $C_p[-1, 1]$, $C_p[-1, 1] = A_1 \oplus B_2$ and $Z(B_2) = [-1, 0]$ is a retract of [-1, 1]. This raises the following question.

QUESTION. If a proper closed subalgebra A of $C_{p}(K)$ containing l is complemented by a proper closed subalgebra B, does there exist a proper closed subalgebra B' which complements A and for which Z(B') is a retract of K?

The following example shows that the corollary in [1] is also not correct.

EXAMPLE 2. Let $A = \{f \in C_p[-1, 1] : f \text{ is even}\}$ and $B = \{g \in C_p[-1, 1] : g|_{[-1,0]} = 0\}$. Then A and B are proper closed subalgebras of $C_p[-1, 1]$, $1 \in A$, and $C_p[-1, 1] = A \oplus B$. Here Z(B) = [-1, 0] is a retract of [-1, 1]. Now if $p \in [-1, 0)$ and $W = \{x \in [-1, 1] : f(x) = f(p) \text{ for all } f \in A\}$, then $W = \{p, -p\}$ is not a retract of [-1, 1], contrary to the corollary in [1].

REMARKS. (i) If $A \oplus B = C_p(K)$ and B is a closed ideal of $C_p(K)$, then it is well known [2] that Z(B) is a retract of K. In fact, if Z is a closed subset of K, then the closed ideal I_Z of functions vanishing on Z is complemented in $C_p(K)$ by a subalgebra if and only if Z is a retract of K. Consequently Example 4 in [1] follows as the unit circle T is not a retract of the closed unit disc Δ .

(ii) If F is a closed subset of K and A_F is the algebra of all

70

functions on K which are constant on F, then $A_F = I_F \oplus \mathfrak{C}$. Hence such an algebra is complemented by a closed subalgebra if and only if I_F is complemented by a subalgebra. Therefore F must be a retract. This validates the last remark at the end of Example 4 in [1].

Finally we note that the theorem of Fisher [1, p. 220] would be correct if the phrase "and there is a retraction of K onto Z " were deleted. We further note that this modified result of Fisher would be valid for complex-valued functions if A and B were self-conjugate.

References

- [1] S.D. Fisher, "The decomposition of C_n(K) into the direct sum of subalgebras", J. Funct. Anal. 31 (1979), 218-223.
- [2] Z. Semadeni, Simultaneous extensions and projections in spaces of continuous functions (Lecture Notes, 4. Aarhus University, Denmark, 1969).

Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar - 388 120, Gujarat, India.