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Abstract. Let S, T be subshifts of finite type, with Markov measures p, q on them,
and let <£: (5, p) -»(T, q) be a block code. Let Ip, Iq denote the information cocycles
of p, q. For a subshift of finite type T<^T, the pressure of -Iq\t equals that of
—Iq l*"'(f > • Applying this to Bernoulli shifts and using finiteness conditions on Perron
numbers, we have the following. If the probability vector p = (pu..., pk+i) is such
that the distinct transcendental elements of {pJPk+i, • • -,Pk/Pk+i) are algebraically
independent then the Bernoulli shift B(p) has finitely many Bernoulli images by
block codes.

1. Introduction
Let 5, T be subshifts of finite type, with Markov measures p, q on them, and let
<f>: S-» T be a continuous homomorphism (block code), so that p° <f>~1 = q. Let Ip, lq

denote the information cocycles of p, q. We show that, for a subshift of finite type
f <= T, the pressure of - / , | f equals that of -Ip\^-\t), taken in f and 4>~\f),
respectively. Applying this, we first find that subsystems of Markov chains (in the
sense of [6]) are respected by block codes. Then we specialize to Bernoulli shifts.
We denote by B(p) the Bernoulli shift defined by the probability vector p =
( P \ , P i , - - , Pk+i), p u t T , = p , / p k + i , T2 = p2/pk+i ,-•-, Tk = Pk/Pk+\, a n d c o n s i d e r t h e
case where the distinct transcendental elements of {T,, T2, . . . , rk} are algebraically
independent. This includes the case where {T, , . . . , rk} consists of algebraic numbers.
Relating to Perron numbers the entries of a vector q for which there exists a block
code <f>: B(p)-* B(q), we use finiteness conditions involving Perron numbers to
show that there are finitely many Bernoulli images of B(p) by block codes. The
clustering results of [4] and [5] may also be established by such arguments; the
paper ends with some related questions.

Throughout the paper, the case of interest is that of infinite-to-one codes, though
we never make this assumption; for the bounded-to-one case stronger results are
already known.

Most of the notation and terminology we use is well-known. For specificity, we
mostly follow [2] and make the definitions explicit when they differ from [2]. As
in [2], we use the same symbol to denote a subshift of finite type, its space, and its
transformation. Whenever we consider a Markov chain (T, q) we mean the support
of q to be the whole of T.
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2. Subsystems and pressure
Let (S, p) be a Markov chain, and let S<= S be a subshift. We write & for pressure.
In particular, restricting the information cocycle Ip to 5, we write 9{-Ip\s) for the
pressure of -Ip\§ taken on 5. See [11] for a detailed account of pressure.

THEOREM 1. Let </>: (S, />)-» (T, q) be a clock code between Markov chains, and let
T<= T be a subshift of finite type. Then <f>~i(T) is also of finite type, and

Proof. Without loss of generality, assume that S, T and f are 1-step subshifts of
finite type and </> is a 1-block map. It is well known that <f>~l( T) is then a (possibly
reducible) 1-step subshift of finite type - a simple proof of this appears in [6].
Observe that ^ ( - / J f ) is the growth rate of

Pn = I q[joji • • -jn],

where the sum is over all T-words of length n + 1 . Since <f> is measure-preserving,
we have

P-= I qljojr •-jn]= I />['"o'r • •<„]>

the last sum being over all 5-words io*i • • • *„ such that 0('o'i" ' ' '•) is a

On the other hand, ^(-/p|*-'(f)) is the growth rate of

where the sum is over all S-words ioir • • in such that (<f>(ioii- • •«'„) is a T-word
and) there exists a point x = (xm)eS with xox,• • • xn = ioix- • • in and <f>(x)et.
Clearly, an < (ln. Moreover, there exists / such that, for all large n and all ioi't • • • in

for which <t>(ioh" ' "'«) is a T-word, the sub-word i,- • • /„_, appears in an element
of 4>~\f). This is because every long ioii • • • in consists of periodic stretches separ-
ated by connecting blocks. That is, ioi'i • • • in looks like

and the length of the word before the first loop and that of the word following the
last loop are bounded above by an integer, I, independent of n. We can delete the
word before the first loop and that following the last loop and extend the remaining
sub-word of ioit • • • in to an element xeSby cycling around the first and last loops;
if <t>(ioir • -in) is a T-word, we will have </>(*)e f. It follows that /3n_2/San<j8n

and that

^(-/pL-'tf >) = Hm sup - log an = lim sup - log 0n = &(-Iq\f). •
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We first use Theorem 1 in the context of the induced measures defined in [6].
Let S c S be an irreducible subshift of finite type. The measure induced on 5 by p
is defined to be the unique equilibrium state of -Ip\§- This is a Markov measure,
denoted by p§. (See [6].)

COROLLARY. Let <f>: (S, p)^(T, q) be a block code between Markov chains, and let
t<^T be an irreducible subshift of finite type. If S is an irreducible component of
4>~X(T) with SP(-IP\§) = ^(- /pL- 'cf)) . then the restriction <f>: S-> Tis surjective and
satisfies p§° </>' = qt-

Proof. Since ^(-/pl^-'cf)) is the maximum of ^(- /P | s) over the finitely many
irreducible components S of </>"'( t), there exists S with Sf{-Ip\§) = 9{—Ip\^-\t))-
Suppose, for such an S, we have <j>{S) ^ t. It is not hard to see that we could then
find a subshift of finite type f with « />(5)cfcf and 7V f. As faf and 7V f,
we have $ > ( - / , | f ) < ^ ( - J j f ) - On the other hand, using Theorem 1,

This contradiction shows that <f>(S) = T. Write

In showing that <f>:S->T sends p§ to qt, we will consider positive functions on
cylinders [jojt • • -jn~\ of t and, for two such functions/, g, write f~g if there exist
positive constants k, K such that

for all [joji • • -jn]. For instance, the definition of qt implies that

qrVhu • • -Jn]~-^;qUoji • • -in]-

Assume, without loss of generality, that S, T and T are 1-step subshifts of finite
type and 4> is a 1-block map, and let / be as in the proof of Theorem 1. Considering
all possible extensions/_,• • -j-Jo' • -jjn+i' • -jn+i of j0- • -jn in f, we have

qt[jo---jn\—^ I q[j-c--in+i\ = — I p[i-r ••'„+/],
c j-r--j,,+i c i-r-jn+i

where the last sum is over all 5-words »_,• • • in+l such that <£('_/• • ''«+;) is a f-word
and </>('_/• • • in+i) =j-r • -j-ijo- • -jjn+i • • -jn+i for somej_,- • -y'-i andyn+1 • • -jn+l.
Let W denote the set of all 5-words i0- •,-/„ with the property that <£(i'o- ' •'«) =

j 0 - • -jn and there exists an extension »"_,- • • in+l of i0- • • »„ such that <f>(i-r • • in+t)

is a T-word. Using the last sum, it is easy to see that

flfL/o- • \/n] n I P['O- • • ! „ ] .
C i o - . - i n e W

Moreover, our choice of / implies (see the proof of Theorem 1) that

W = {i0- • -in:i0- • -in is a </>"'(f)-word and <f>(i0- • -in)=jo- • -jn}-
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Hence,

j n ] ^ I P[O n] I
C i0- •i, ,£VV C Swords

io-i,,ew

where the sum on the right hand side of the inequality is over all S-words i0 • • • in

with <f>(i0- • •in)=j0- • -jn,jin<lj>~l[jo- • -jn] stands for the inverse image of [i0- • • iB]
under the restriction {f>:S^T. This shows p§° <£"'« qt and, using ergodicity, we
conclude that p§° <£~' = qt- •

3. Bernoulli shifts and Perron numbers
We now restrict to Bernoulli shifts. We use the same symbol, say p, to denote a
probability vector and the Bernoulli measure defined by this vector; B(p) denotes
the resulting Bernoulli shift. Let p,,... ,pk, pk+l be the distinct entries of p, and let
a{ be the multiplicity with which /?, occurs, so that Y!i=\ atPi = 1- F ° r i—\,---,K
put T, = Pi/Pk+i • (This notation differs slightly from the one used in the introduction.)

Having fixed p, let q = (q,, q2,..., qi) be another probability vector. The vector
q is called a clustering of p if there exist non-negative integers bih l < / < f c + l,
1 <j< / such that £j=i b^ = a, for all / and Y,^=\ fy/Pi = 9; f° r a " J- 1° t n i s case, there
is a 1-block map <f>: B(p)-* B(q). It was conjectured in [4] that the existence of a
block code <f>:B(p)^> B(q) forces q to be a clustering of p. [4] and [5] contain
positive results in this direction. Counter-examples are given in [2] and [9]. Accord-
ing to [4] and [10], for q^p, a block code <j>: B{p)-> B(q) must be infinite-to-one.

A Perron number is an algebraic integer A such that A > 1 and A is strictly greater
than the absolute values of its conjugates (other than itself). According to [7], a
number is Perron if and only if it is the spectral radius of an aperiodic non-negative
integral matrix. Furthermore, a positive real number is the spectral radius of a
non-negative integral matrix if and only if a (positive integral) power of it is a
Perron number; we will call these PF numbers (for Perron-Frobenius). For details,
and other properties of Perron numbers, see [7].

Given the existence of a block code <f>: B(p)^> B(q), we will relate the entries of
q to Perron numbers and use algebraic arguments to recover results of [4,5] and
establish further finiteness results. To illustrate this method, we start with a proof
of the following.

THEOREM [5]. Suppose px,..., p^+% are rational and N is their common denominator.
If there exists a block code </>: B(p)-* B(q) then qj = bj/N for some tyeN and
7 = 1 , . . . , / .

LEMMA 1. If k, fi and B are PF numbers and A + /* = B, then A, ft e Q(B).

The proof of Lemma 1 is similar to that of Proposition 5 of [7]. Lemma 1 is also
a special case of Lemma 2, whose proof is given in the next section.

Proof of the theorem. Applying Theorem 1 to each fixed point of B{q), we find that
each qj is the spectral radius of a matrix whose entries lie in {0,/>,,... ,pk + 1} .
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Extracting the common denominator N, we have

qj=-spv(AJ)=-\J,

where Aj is a non-negative integral matrix and A, = spr(Aj) is its spectral radius.
Since £j=i q}•, = 1, we get £j=i A, = N, and Lemma 1 shows that \j e Q. Since A, is
an algebraic integer and A,- a 1, this implies A, e f̂ J. D

A consequence of the foregoing theorem is the fact [4] that the only continuous
Bernoulli images of B(N',..., TV"1) are its clusterings. A generalization of the
proof will give us:

THEOREM 2. Suppose T, , . . . , rk are algebraic numbers. Then there exists a Perron
number a with the following property: if B(q) is a continuous image of B(p) then
each qj = \jpk+1/a for some PF number\}eQ(a). In particular, there are finitely many
Bernoulli images of B(p) by block codes.

Proof. Put K = Q(T , ,...,rk). By 5.3.8. of [12] and 3.1 of [3], there exists an algebraic
integer a E K with a > 1 > \d(a)\ for all monomorphisms 8: K -> C other than the
identity. Replacing a by a large power a" if necessary, we assume that <x, =
aru ... ,(jk = ark are also Perron and K =Q(a,) = • • • =Q(ak) = Q(a). Write crk+x =
a.

Suppose 4>: B(p)^> B(q) is a block code. For each fixed point j°° of B(q), the
singleton {jx} is a subshift of finite type. As before, an application of Theorem 1
to {j°°} shows that q is the spectral radius of a matrix whose entries lie in
{0, pu..., pk+i}- Extracting pk+l/a from this matrix, we have

Pk+\ / A \ Pk+l .
q, = spr (Aj) = A,-

a a
for a matrix Aj with entries in {0, c r , , . . . , ak+x) and A, = spr (A,). By Perron-
Frobenius theory [8], A, is an eigenvalue of Aj. Since the non-zero entries of Aj are
Perron numbers, it follows that A, is an algebraic integer and Â  > 1. We will show
that each A7 is a PF number. Assume this for the moment. The equation YJt=\ atPi = 1
implies

I k a k + 1
= I a^ + ak+i and = £ a,cr,

Pk+l i = l Pk+l i = l

which, in turn, show that a/pk+l is a Perron number and l/pk+i e K = Q ( a ) . Since
Zj=i<7, = l, we have £ j = l Aj> = a/pk+l. Now Lemma 1 implies Xj eQ(a/pk+l) =
Q(a) = K. Hence, each A, is a PF number, A, e Q(a) and A, = qja/pk+i == a/pk+x. As
in Proposition 3 of [7], it follows that there are finitely many possibilities for the
A,, so that there are only a finite number of possibilities for q also.

It remains to show that A, is a PF number. If a e Q then c r , , . . . , crk+x e Q and,
being algebraic integers, c r , , . . . , crk+x e f̂ J, so that Â  is a clearly a PF number. So,
let us assume a i. Q, and write A = A,, A = Aj. Let C be the companion matrix of
a = o-k+l. The spectrum <x(C) of C consists of the conjugates of the Perron number
a, and a is a simple eigenvalue. Letting d denote the degree of a, an eigenvector
corresponding to a is (1, a,..., ad^). Since a j£Q, one of the results in [3] yields
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a matrix MeSL(d,l) such that B = MCM~l is eventually positive, that is, B" is
strictly positive for all large n. Write Bk+i = B. Let 0 , , . . . , 0d be the distinct embed-
dings (monomorphisms) of K into C and, for, for i = 1 , . . . , k, let TT, G Q [ X ] be such
that 77,(a) = cr,. Put Bi = Tri(B). Recalling Q(<r,) = .K, we see that the spectrum
o-(Bi) = 77,(<T(B)) = 7T-,(O-(C)) then consists of the d distinct conjugates

of the Perron number cTj. Moreover, fora vector v and 1 < h < d, we have fit) = 0j,(a)v
if and only if B-o = i7j(0/,(a))u. It follows that each Bt is eventually positive. In fact,
there exists L such that:

any product BC<BC2- • • BCn, with c , , . . . , cn e { 1 , . . . , k +1} is strictly positive as long
as n > L. (*)

Let v > 0 be such that Bu = av. By restricting ,4 to an irreducible component with
spectral radius A, we assume that A is irreducible and let r > 0 be such that Ar = \r.
Putting Bo = 0, cr0 = 0, we have Btv — a-jV for j = 0 , 1 , . . . , k +1. Define a new matrix
D as the block matrix obtained by replacing, in A, each entry that equals at by the
corresponding matrix Bt. Let w be the vector obtained from r on replacing each
entry r(s) by r{s)v. Explicitly, if we index A by {s} and B, by {li} and identify
Bv. = Bit then D is indexed by pairs {(s, h)} and

Also, w(s, h) = r(s)v(h). Now

(Dw)(s,A)= I D((s,h)As',h'))r(s')v(h')

= lr(s')A(s,s')v(h)
s'

s) = \w(s, h).

That is, w is an eigenvector of D corresponding to A. Moreover, (*) implies that D
is eventually non-negative and, because we also have w>0 , the Perron-Frobenius
theorem shows that A = spr (D). Since D is a rational matrix, we can write D = N~lE
for some integral matrix E and TV e N. Eventual non-negativity then gives n e N and
a PF number fj. such that A" = /i//V". We already know that A is an algebraic integer
and A > 1. It follows that A" = fi/N" is a PF number. •

I would like to thank Brian Marcus for pointing out, while I was trying to carry
out the above proof with non-negative matrices, that Handelman's theorem can be
used to make the argument work in the setting of eventually positive matrices.
Motivated by this, Doug Lind has proved, in general, that if the non-zero entries
of a matrix are PF numbers, then its spectral radius is also a PF number.

4. When the transcendental elements of {T, , . . . , rk} are algebraically independent
Retaining the notation of the preceding section, we now consider the case where
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B(p) is such that the transcendental elements of {ri,...,Tk} are algebraically
independent. Re-ordering T, , . . . , Tk if necessary, we assume that T, , . . . . , rr are
algebraically independent and Tr+l,...,rk are algebraic numbers. We put K =
Q(rr+1,... ,rk), R = Z [ T , , . . . , r r ] , let 3) denote the ring of integers of K, and let
F= R/ R be the field of fractions of R. If a number A satisfies a monic polynomial
whose coefficients are elements of R, then A is called an algebraic integer over R.
Since R is a unique factorization domain, an algebraic integer A over R has a
minimal polynomial which is monic, over R, and divides every polynomial, over F,
that A satisfies. Thus, we can talk of the conjugates of A over R. We say that a
number A is Perron over R if A is an algebraic integer over R and A is strictly
greater than the absolute values of its other conjugates over R. Similarly, A is PF
over R if A" is Perron over R for some n e N. We will need the following lemmas.

LEMMA 2. //A, /x, /3 are PF numbers over R and A + fi =/3, then A, / ie F(/3).

LEMMA 3. IfT,, ..., rr are algebraically independent and a is an algebraic number
then <JX = ar{,... ,o-r= arr are algebraically independent.

LEMMA 4. If c r , , . . . , crr are algebraically independent then they are also independent
over 2, so that 2>[<T, , . . . , ar] is isomorphic to the polynomial ring ® [ x , , . . . , xr] in
r variables.

Lemmas 3 and 4 can be established by the usual arguments involving symmetric
polynomials. Note that Lemma 1 is a degenerate case of Lemma 2, with R=Z. The
following proof is similar to that of Proposition 5 of [7].

Proof of Lemma 2. Suppose A £ F(/3). Let / (x) = U"=i(x~ A,), with A, = A and n > 2,
be the minimal polynomial of A over F(B). Then the polynomial g{x) =
rK=i(x-/3 + A,) is also irreducible over F(B). Since g(fj.) = 0, g must be the minimal
polynomial, over F(/3), of fi. Hence, /3 - A2 is a conjugate of /A. Using the fact that
y., A are PF, we find

At 2= |>3 - A2| > |/3 - A j = /*,

which is impossible. Thus, we must have A, /u e F(/3). •

Suppose <j>: B(p)^> B(q) is a block code. Initially, we argue as in the proof of
Theorem 2: Find a e K such that ov+1 = arr+l,... ,ak = ark, ak+l = a are Perron
numbers and K =Q(o-,-) for i = r+ 1 , . . . , k + 1. For i = r+ 1 , . . . , k let TT, eQ[x] be
such that 77-,(a) = a,. Put cr, = a x , , . . . , ar = ax, also. Use Theorem 1 to write

qj = spr (Aj) = A,,

where Aj is an irreducible matrix whose non-zero entries are elements of
{o-, , . . . , crk+1} and A, = spr (Ay). Hence, A, satisfies a monic polynomial whose
coefficients lie in Z[o- , , . . . , crk+1]. By the usual arguments involving symmetric
polynomials, it follows that A, is an algebraic integer over 7?. Use Handelman's
theorem [3] to conjugate the companion matrix of a to an eventually positive
integral matrix B = Bk+l with spr (B) = a = ak+x. Put B, = 77-,(B) for / = r +1,..., k,
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and let cro = O. Replace, in Aj, each entry that equals af by B, for i = r+l,..., k + l,
and by aj for i = 0 , 1 , . . . , r. The result is an eventually non-negative matrix D,
with spr (Dj) = A,-. Furthermore, the entries of Dj lie in Q u { a , , . . . , err}. Eventual
non-negativity gives n, NeN and /u, such that /A, is PF over R and \" = fij/N".
As we already know A, to be an algebraic integer over R, it follows that \j is PF
over R.

From Y?j=\ % = 1 =Z!c=i fl.A w e obtain

J = l Pfc + 1 i = l 1 r + l

Putting 5 = Zj=i Ay — X;=i ai(Ti = Z , = r+i ai°"i> w e s e e t n a t s e 2), s is Perron, and
I r

I A, = £ Oicr, + s.

By Lemma 2, we have \jeF(Ji
r
j=l a.cr, + s) = F(s). Since

Rc%i fff] a n d Q(au...,ar,s) = 2[a1,...,ary2[al,...,ar],

this implies Ay e Q(o- , , . . . , ay, s).
Now note that K = QO) and that 2 ^ Q(s) = 2/2 is integrally closed. By Corol-

lary 2 on p. 312 of [1].

® [ o - , , • • •, ov ] «= Q(a1 ,...,ar,s) = 2[a,,..., <rr]/2[al,. .., ar]

is also integrally closed. That is, if an element of Q(o-, , . . . ,ar, s) is integral over
2[<TX ,..., 07] then it is, in fact, in ® [ t r , , . . . , ay]. Hence, A_,- e ®[cr , , . . . , crr].

Let d be the block-length of cj>. Then the inverse image </>~l[j] of the cylinder [_/]
is a disjoint union of cylinders of length d, which allows us to write

where IT is a sum of monomials of degree d in c r , , . . . , o-fc+1. Therefore, we have
an equation over 2[al,..., ay]:

\i = l /
*)

By Lemmas 3 and 4, @ [ a , , . . . , ay] is a polynomial ring in r variables. As an element
of @[o-, , . . . , a r ] , the degree of n is at most d, and comparison of the degrees of
the two sides of (**) reveals that the degree of A, is, at most, 1. Write A, =
a o + o,a-, + • • • + arcrr with o0, o , , . . . , or e 2. Then the coefficient of af is afat on
the left hand side of (**), while it is a non-negative integer on the right hand side.
Hence, we can find vj e 2 and non-negative bXj, b2j,..., brj e Z such that

\j = 0,/r, + • • • + brjar + Vj.
Now

X a,a-, + s = = X A;= £ I X! bij)ai+ X " j ,
i = l Pk+l j = l i=l \j = l / j=l

treated as an equation over ®[o- , , . . . , a r ] , implies that at = Xy = 1 b,7 for i = 1 , . . . , r
and X;=, vj = s. Go back to (**) and consider the constant terms to see that v} a 0.
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Considering terms of degree d — \, we have

,(£*»)'"'+(£*«)(£««)'
on the left hand side and Perron coefficients on the right. In particular, vja^l +
bijaf~2s, the coefficient of crf~', is Perron. As a , > 0 is an integer, vjai + bijs>0
exceeds the absolute values of its other conjugates. We summarize these facts as:

THEOREM 3. Suppose rt,..., xr are algebraically independent and r r + 1 , . . . , rk are
algebraic numbers. Let a e Q ( x r + 1 ? . . . , rk) be the Perron number chosen above, and
putcrx — (XT,, ..., rk = ark, ak+1 = a, and s = X,=r+i afr{. IfB(q) is a continuous image
ofB(p) then

qj = bxj<rx + • • • + brjar + v,

for non-negative integers bti with £ . b{j = a,, i = 1 , . . . , r, and non-negative algebraic
integers ^ e Q ( r r + , , . . . , rk) such that Y^jvj = s and each fjaj + b^s is positive and
exceeds the absolute values of its other conjugates. In particular, there are finitely many
Bernoulli images of B(p) by block codes.

COROLLARY [5]. If x,, ..., rk are algebraically independent then the only continuous
Bernoulli images of B(p) are its clusterings.

The remaining case is that where the transcendental elements of { r , , . . . , rk} are
algebraically dependent: When r , , . . . , T r are algebraically independent and
r r + 1 , . . . , Tk are algebraic over Z [ T , , ... ,rr] (and not all algebraic over Q), our
method leads to conditions involving Perron numbers over Z [ x , , . . . , rr] and. since
Z[T, , . . . , Tr] is not discrete, we are unable to reach the desired finiteness conclusion
from this.

Remarks and questions. Let us write p" for the probability vector obtained by
admitting, for each ( / , , . . . , in) e { 1 , . . . , k+ 1}", a,,a,, • • • ain copies of pitph • • • pin

among its entries. The finiteness conclusion reached in Theorems 2 and 3 may be
put thus: there exists an integer n(p)>0, depending only on p, such that for every
continuous image B{q) of B(p) the vector q is a clustering of p"{p). Does this hold
when the transcendental elements of { x , , . . . , rk} are algebraically dependent? Is
n(p) bounded by a simple function of p, such as the number of entries of p, or the
number of distinct entries? Can every block code </>: B{p)^> B{q) be replaced by
one of block length (at most) n(p)l
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